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This article develops a new latent class (LC) model with a generalised nested logit
(GNL) formulation to enhance the methodology of market segmentation
analysis. The standard generalised nested logit (or the cross-nested logit model)
is a special case of the latent class generalised nested logit model (LCGNL) that
accounts for heterogeneity in individuals’ preferences by a number of segments
and simultaneously identifies segment sizes and individual profiles. In addition,
the LCGNL model allows flexible substitution patterns among alternatives. This
extends the standard LC model with the multinomial logit formulation, such that
the independence from irrelevant alternatives property does not hold within
segments. The proposed model was used to identify potential segments of
travellers’ preferences towards air and bus carriers. The estimation results of the
LCGNL models indicate that degrees of competition vary across carriers and that
differential sensitivity in preference parameters exists between segments. The
LCGNL model outperforms the other models; therefore, it is a better approach
for analysing carrier choice behaviour.
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1. Introduction

The traditional discrete choice model applies the identical values of the unknown
parameters to all individual decision makers. Such a model that does not account for taste
heterogeneity may fail to represent the underlying choice behaviour of all decision makers.
To account for the individual heterogeneity, discrete choice analysis often incorporates a
market segmentation scheme to capture variations in taste parameters across individual
decision makers. Various segmentation approaches have been used in the literature to
analyse travel choices. The standard and most popular segmentation approach specifies
the variable(s) to be used to segment the population into a finite number of segments and
typically adopts socioeconomic factors (e.g. income or car ownership) or trip patterns (e.g.
trip purpose and trip length) to create segments (Pels et al. 2001, Loo et al. 2006, Bekhor
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and Elgar 2007, Loo 2008, Rastogi and Krishna Rao 2009). Given pre-determined market
segments, the discrete choice model is further applied to estimate segment-specific
parameters for each segment. An alternative approach does not determine the number of
segments in advance, and statistical classification techniques such as cluster analysis (e.g.
Psaraki and Abacoumkin 2002, Outwater et al. 2004) and automatic interaction detection
(e.g. Badoe and Miller 1998) are used to establish segments and profiles of individuals in
each segment. Such an approach must perform segmentation and choice modelling in a
two-stage and sequential procedure.

Originally developed by Kamakura and Russell (1989) for brand choice, the latent
class (LC) choice model allows simultaneously performing segmentation and choice
modelling that jointly determine segment-specific parameters, individual profiles of each
segment and segment sizes. Both the LC choice model and mixed logit model (Revelt and
Train 1998, McFadden and Train 2000) can allow preference heterogeneity across
individuals. However, these two models accommodate variations of taste parameters in
different ways. The mixed logit model uses continuous probability distributions to account
for preference heterogeneity across individuals, while the LC choice model uses discrete
representation of systematic variations in taste parameters across segments. The advantage
of the LC model is that it can explicitly reveal the number, sizes and characteristics of
segments. The LC model has recently become widely noted in transportation research for
the studies of mode choice (Bhat 1997, Arunotayanun and Polak 2011), road type choice
(Greene and Hensher 2003), location choice (Walker and Li 2007), airline choice (Teichert
et al. 2008, Wen and Lai 2010), traffic accident types (Depaire et al. 2008) and household
car ownership choice (Zhang et al. 2009).

The LC choice model defines the unconditional choice probability as a mixture of two
probability functions: the conditional probability of choosing an alternative, given that an
individual belongs to a segment, and the membership probability of the individual in the
segment. The standard LC choice model uses the multinomial logit (MNL) formulation
(referred to the LCMNL model) for the conditional choice probability. The MNL model
has been noted for the restrictive assumptions (i.e. independent and identical error
distributions) that lead to the property of independence from irrelevant alternatives (I1A).
Consequently, the use of the MNL and LCMNL models is inadequate when the data
contradicts the IIA property. To address the weakness of the LC model with the
MNL formulation, Kamakura et al. (1996), Bodapati and Gupta (2004) and Swait (2003)
developed the LC nested logit (LCNL) model. The LCNL model relaxes the ITA
property by allowing the error terms of alternatives in a common nest to be
correlated. However, the LCNL model still suffers from the disadvantages of the
NL model. The NL model imposes equal covariance among alternatives within the
same nest. In addition, the error term of an alternative in a nest is uncorrelated with those
of alternatives in other nests because each alternative allows being a member of only
one nest.

The restriction on the covariance structure of the NL model can be relaxed by allowing
each alternative to be a member of more than one nest. Mostly on the basis of the
generalised extreme value (GEV) model (McFadden 1978), several types of discrete choice
models offer a more flexible structure for the covariance among alternatives than the NL
model can provide. These advanced GEV models include the ordered GEV (Small 1987),
the paired combinatorial logit (PCL) (Chu 1989, Koppelman and Wen 2000), the cross-NL
(CNL) (Vovsha 1997), the MNL-ordered GEV (Bhat 1998), the generalised NL (GNL)
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(Wen and Koppelman 2001), network GEV (Bierlaire 2002, Daly and Bierlaire 2006,
Newman 2008) and spatial correlated logit (Bhat and Guo 2004). Each of these GEV
models defines a slightly different generating function, which leads to a different model
structure. All the models have closed-form formulations for choice probabilities and allow
differential covariance among alternatives (Bekhor and Prashker 2008).

The LC model accommodates taste heterogeneity just as the mixed logit model does,
but it can explicitly identify the sizes and characteristics of segments, and thus is more
adequate for the purpose of segmentation. However, the existent LC models (i.e. LCMNL
and LCNL) do not allow a flexible structure for the covariance among alternatives. On the
other hand, the recently developed GEV-based models (e.g. CNL and GNL) allow for a
more general covariance structure, but they can only be used for segmentation and choice
modelling within a two-stage procedure in the current literature. Therefore, integrating the
advanced GEV models into the LC framework would allow heterogeneity in individuals’
preferences and a flexible structure for the covariance among alternatives, while
simultaneously identifying the segment sizes and profiles. The objective of this research
is to present a new LC model formulated on the GNL model. The latent class generalised
nested logit (LCGNL) model allows taste heterogeneity in utility function parameters just
as the standard LC model does, but the LCGNL retains the advantage of the GNL model
with a flexible covariance structure. The LCGNL model includes the LC models with the
MNL and NL formulations as special cases. Although this article adopts the GNL model
formulation, development of new LC models with other advanced GEV formulations is
fairly straightforward. Our development of the LCGNL model provides a methodological
advancement to the existing body of published research.

Two data sources (air and bus carrier choices) were used to empirically illustrate the
applicability of the proposed model. This study estimated a variety of LC segmentation
models to identify travellers’ preferences towards the service attributes of carriers and to
specify the individual characteristics of each segment. Carriers can use the findings to
establish successful operational and marketing tactics.

2. Model structure
2.1. LC model

The LC model uses discrete variations in taste parameters to accommodate preference
heterogeneity across individuals. The LC model rests on the assumption that there exist S
segments (where S is to be determined) that are relatively homogeneous within each
segment but heterogeneous across segments. Given a finite and fixed number of segments,
the LC model estimates segment-specific sets of parameters. The likelihood that
individuals belong to a segment is a probabilistic function that can depend on individual
characteristics (Gupta and Chintagunta 1994). The intrinsic alternative preferences and the
sensitivity to observed measures relating to alternative attributes are identical across
individuals within each segment, but are heterogeneous across segments.

The LC model assumes that the utility function of an individual # for any alternative j,
given that it belongs to segment s, can be expressed as

Unjls = BXuj + €njls» (M
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where X, is a vector of observable attributes, B is a vector of segment-specific parameters
to be estimated and &,;); captures a random error of the utility function. The probability
that an individual n chooses an alternative j is given by

S
Pu(j) =Y Pujls) - M,(s), ®)
s=1

where P,(j|s) is the choice probability of an alternative j by individual » within segment s
(s=1,2,...,5). The segment membership function M,(s) is the probability that individual
n belongs to segment s. Both P,(j|s) and M,(s) have the MNL formulation for the
standard LC model; Equation (2) can be rewritten as

L exp(B.X.) exp(V.Z,)
P" — S Y . S , 3
v ; [Z/ea, exp(B X)) 305, exp(viZy) ®

where C, is the choice set for individual n, including alternative j, Z, is a vector of
membership function variables that contain individual characteristics and y; is a vector of
parameters for segment s. For identification, membership function coefficients of one
segment are set to zero. The segment membership function may be a set of segment-specific
constants if none of the individual characteristics are incorporated. Under these
circumstances, the membership function probabilities are functions of S segment-specific
constants; one constant is set to zero and (S — 1) constants are estimated.

Estimations of complex segment membership functions require inclusion of individual
characteristics (e.g. individual socioeconomic and trip variables). After parameter
estimates have been identified, for each pairing of individuals and segments, one can
calculate the probability that the individual belongs to that segment. The size of a specific
segment is the average of individual membership probabilities. Furthermore, if individual
characteristics are included in each segment membership function, individual profiles of
each segment can be obtained.

2.2. GNL model

The GNL model allows more differential covariance among alternatives than many other
GEYV models, such as MNL, NL, PCL and CNL. The initial CNL model was developed by
Vovsha (1997); it is a special case of the GNL model. The extended CNL model is a
modification of the original CNL model formulation and is very similar to the GNL model
(e.g. Ben-Akiva and Bielaire 1999, Papola 2004, Bierlaire 2006, Bajwa et al. 2008). This
article adopts Wen and Koppelman’s (2001) GNL model formulation that has the
following probability function:

/ 1/ tm Hom
. [Ol'm eXp(ﬂ/Xn .)]l/l/’m [Z/"s: m [aj’m eXp(ﬂ an’)] ]
Pu(j) = Z / . :

’ m' (4)
7 | e oo XD 2 TS o exp(8 X1 |

/' €Nm /1 eN

where N,, is the set of all alternatives included in nest m. 8 is a vector of utility function
parameters to be estimated. o, is the allocation parameter which characterises the share of
alternative j assigned to nest m; aj;, must satisfy the condition, 0 < «a;, <1, and the
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additional condition ), &, = 1,Vj. ,, is the logsum or dissimilarity parameter for nest
m; i, must comply with the condition, 0 < w,, < 1, for the GNL model to be consistent

with random utility maximisation. In the case of w,, =1 for all m, no correlation
(independence) exists among any alternatives in any nests.

2.3. LCGNL model

Most applications of the LC model still use the MNL formulation, which exhibits the ITA
property within each segment. Such LC models result in biased estimates and incorrect
predictions if similarities exist among groups of alternatives within segments. This study
combines the advantages of the LC and GNL models into the development of a new
LCGNL model. The probability formulation of the LCGNL model is an extension of
Equation (2), as follows:

S
P(j)=) [Z P,(jlm,s)- Pn<m|s)} - M (s). (5)

s=1 m

Within the segment s, the conditional probabilities that individual n chooses alternative
j in nest m are:

; , i
[C{;m eXp(ﬂan/)] /#m
: , e -
Zj/eN,,, [a}m exp(ﬂs’\/"j')] i

where o, is the allocation parameter which represents the portion of alternative j assigned
to nest m for segment s; o}, must comply with the condition, 0 <}, <1, and the
additional condition }_,, o}, =1, Vj,s5. u;, is the logsum parameter for nest m and
segment s; p;, must satisfy the condition, 0 < uj <1, for the LCGNL model to be
consistent with maximization of random utilities.

Correspondingly, within the segment s, the marginal probabilities that individual » is in

nest m can be written as

Pu(jlm,s) = (6)

s T Hm
|2 en, [0, exp(BL X)) /40

P'7(n1|s) = 1/t ,Uv“,, . (7)
2 [Z//eNn,/ [ot),,y exp(B Xy )] /um,]
m
The segment membership function M,(s) has the same form as the MNL:
exp(V.Z,
Mn(S) = p(ys ) (8)

¥ exp(yiZy)

The GNL model can be regarded as a special case in which the LCGNL model has only
one segment. Moreover, the LCGNL model includes several LC models as special types.
They can be determined approximately through the restrictions on allocation and logsum
parameters. Table 1 illustrates the differences between LCGNL and other LC models. The
LCMNL model without grouping alternatives sets all logsum parameters equal to one,
and sets the allocation parameter to one for each alternative. The LCNL model allows
alternatives to be grouped into nests with distinct logsum parameters, such that the
allocation parameter is equal to one for each alternative because each alternative appears
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Table 1. Structural comparison of different LC models.

Type Choice probabilities within segment
LCMNL : exp(BiX )

Z/’EC,, exp(ﬂsA/n/")
LCNL Pu(jls) = Pu(jls,m) - Py(mls)

s M
[exp(B,X;,)]"/ I:Zj’eN”, [exp(B; X,y)]" ]
= i PR

2 jren, [XP(BXoy)] Z [Zj N, [exp(B,X,;)]'/* ,,u]

LCCNL Pu(j1s) =Y Pu(jls.m) - Py(mls)
1/ s > 1/p w
[0[.’;”1 eXp(ﬁ@X,,/)] ! Z/'ENm [a/'/m exp(ﬂx ”j’)]

R

LCGNL Pu(jls) =Y Pu(jls,m)- P,(mls)

m

5 N/t : e
Z//ENW [a}’r71 eXp('BA/vX'l/')] 8 Z I:Zj/eN,,,/ [a/v’m’ exp(ﬂ;Xﬂi/)]l/M ]
P

w
‘ s : O LY

-y [}, exp(BXn [ e, 0 exp(B,)] /7%

- s Y\ ) s M

m Zj/eNm [aj/m exp(ﬂsX”.I ] Z I:Z.//EN/r;’ [Ot;,m, exp(ﬁ;Xn/’)]l/M'",:I

mn

in only one nest. The LC cross-nested logit (LCCNL) model allows each alternative to
appear in different nests just as the LCGNL model does, but the LCCNL model imposes
equality constraints on the logsum parameters of all nests, if following the initial CNL
formulation proposed by Vovsha (1997).

2.4. Estimation approach

The estimation procedure of the LCGNL model requires simultaneous calibration of
utility function, logsum, allocation and membership parameters. In this study, the
constrained maximum likelihood module of GAUSS statistical software (Aptech Systems
2008) was used to impose constraints on parameters; this estimation approach is similar to
that of the traditional GNL. As Bhat (1997) suggested, maximisation of the log-likelihood
function using the common routines in the LC model can be computationally unstable.
Initially, it may be necessary to rely on simple models and computationally tractable
values. Estimations of the MNL model can provide the estimates of various utility
function specifications and identify the important explanatory variables affecting the
choice. Based on the preferred MNL model and its parameter coefficients as the starting
values, the NL and GNL models can be estimated. In particular, various estimation
procedures to search for a preferred GNL model structure are discussed in Wen and
Koppelman (2001).

If any behaviourally interpretable nested structures are identified when estimating
standard NL and GNL models, analysts can estimate the LCNL and LCGNL models.
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Given a pre-specified number of segments, estimations of LCNL and LCGNL models can
be implemented in two ways. Analysts can estimate the LCMNL model using the MNL
coefficients as starting values. Subsequently, the LCNL and LCGNL models with
additional parameters (e.g. logsum) can be estimated using the LCMNL parameter
coefficients. Alternatively, analysts can use the NL and GNL coefficients as starting values
to estimate the LCNL and LCGNL models, respectively.

To search a preferred specification for a particular LC model (e.g. LCMNL model),
various models with different numbers of segments should be estimated and measures of
goodness of fits should be evaluated. Determination of the best number of segments for a
specific LC model involves an assessment of measures such as the Akaike information
criterion (AIC), the Bayesian information criterion (BIC) and adjusted likelihood ratio. If
LL is the value of the log-likelihood function at convergence, k is the number of
parameters in the model and N is the sample size, AIC = —2LL + 2k and BIC = —2LL+
kIn(N). The adjusted likelihood ratio is similar to likelihood ratio index, but it accounts
for the number of parameters estimated in the model. An LC model with lower values of
AIC and BIC is preferred over the LC models with higher values. The adjusted likelihood
ratio lies between 0 and 1, and the value close to 1 indicates the model fits the data well. In
addition, segments must be interpretable (Bucklin and Gupta 1992). Although additional
segments may improve the model fit, it may not be worthwhile if further insight is not
supplied or segment interpretability is difficult. The LCGNL model includes several LC
models as special cases. Given the number of segments, the likelihood ratio test can be
used to test the LCGNL model versus other LC models (e.g. a three-segment LCGNL vs. a
three-segment LCNL).

3. Results and discussion
3.1. Empirical data

The first data used to illustrate the models came from studies by Wen et al. (2009) and
Wen and Lai (2010). The stated preference survey was conducted face-to-face with air
travellers at the international terminal at Taiwan Taoyuan International Airport in 2008.
The respondents had taken at least one international flight on the Taipei-Tokyo route.
Each respondent was asked to evaluate three hypothetical scenarios in the experiments.
The survey data included 322 valid respondents.

The survey included stated preference questionnaires that asked air travellers to choose
one of four air carriers: China Airlines (CAL), EVA Airways (EVA), Japan Asia Airways
(JAL) and All Nippon Airways (ANA), all offering service from Taipei to Tokyo. In the
stated preference questionnaires, the attributes used to describe air carriers included
quantitative and qualitative attributes (Table 2). Air fare, preferred departure time (i.e. the
time difference between preferred and actual flight departure time), flight frequency and
punctuality (i.e. on-time performance) were quantitative variables, while the rest of the
variables were qualitative in nature. Each qualitative attribute had three levels (e.g. cabin
crew service had three levels, including very unfriendly, friendly enough and very friendly).

The second data used to demonstrate the proposed models came from Wen et al.
(2011). The intercity bus travel survey data included 717 valid respondents. Each
respondent was asked to evaluate nine hypothetical scenarios in the stated preference
experiments, with a total of 6453 observations. The survey included stated preference
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Table 2. Stated preference experiments of airline and bus choice datasets.

Data Attributes Types Levels
Airline Fare Quantitative High, medium, low
Preferred departure time Quantitative No time difference, early 120 min, late 120 min
Frequency Quantitative 1,3,5 flights/day
Punctuality Quantitative On time, 30 min late, 60 min late
Airport check-in service  Qualitative  Very friendly, friendly enough, very unfriendly
Cabin crew service Qualitative  Very friendly, friendly enough, very unfriendly
In-flight seat space Qualitative ~ Very comfortable, comfortable enough, very
uncomfortable
Bus Fare Quantitative High, medium, low
Travel time Quantitative 120, 150, 180 min
Frequency Quantitative  Every 10, 25, 40 min
Punctuality Quantitative On time, 10 min late, 20 min late
Personnel attitude Qualitative  Very friendly, friendly enough, very unfriendly
Driver behaviour Qualitative ~ Very safe, safe enough, very unsafe
On-board comfort Qualitative Very comfortable, comfortable enough, very
uncomfortable

questionnaires that asked intercity bus travellers to choose one of four carrier alternatives:
bus carriers A—D. The attributes used to describe bus carriers included quantitative and
qualitative attributes (Table 2). Bus fare, frequency, travel time and punctuality were the
quantitative variables, while the rest of the variables were qualitative, of which there were
three levels (e.g. the levels for personnel attitude include very unfriendly, friendly enough
and very friendly).

3.2. Airline choice models
3.2.1. Results of LCNL models

Three airline-specific constants were included; ANA was selected as the reference carrier.
Each qualitative variable (i.e. check-in service, in-flight seat space and cabin crew service)
had three levels. Using the lowest level (e.g. ‘very unfriendly’) as the base category, ecach
variable was modified to create two 0—1 dummy variables for the medium and highest
levels. Each qualitative variable had two parametric coefficients, both of which were
expected to have positive signs. A large estimated value was expected for the highest of the
three qualitative levels.

Estimation of the MNL model can identify the important explanatory variables that
have been reported in Wen and Lai (2010). A variety of standard NL models can be
estimated using the same utility specification as the preferred MNL model. Two
behaviourally interpretable NL models were identified: EVA-ANA nested and JAL-ANA
nested (Wen et al. 2009). Two logsum parameters were within the 0-1 range and were
statistically different from one at the 0.05 level of significance (z-value > 1.96). JAL and
ANA are Japanese national carriers and, as expected, they may share some common
attributes. EVA and ANA are strategic partners under a code-sharing agreement. Such
cooperation causes air travellers to perceive EVA and ANA as similar. Surprisingly,
although CAL and EVA are Taiwanese carriers, the logsum parameter of a nested model
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Table 3. The LCNL model results: airline choice.

LCNL Model 1 LCNL Model 2
Segment 1 Segment 2 Segment 1 Segment 2

Variable Coeff. (t-value) Coeff. (z-value) Coeff. (7-value) Coeff. (z-value)
CAL constant 0.087 (0.50) —5.024 (—8.50)  0.027 (0.18) —4.383 (—11.79)
EVA constant 0.778 (6.56) —8.573 (—8.23)  0.624 (4.95) —7.224 (—6.92)
JAL constant —0.155 (—=0.98)  14.325 (7.57) 0.039 (0.43) 12.672 (6.44)
Airfare —0.068 (—4.57) —5.093 (—8.20) —0.054 (—3.56) —4.429 (—7.23)
Preferred departure time —0.052 (—=5.78) —0.272 (—4.40) —0.050 (—6.35) —0.258 (—5.60)
Flight frequency 0.004 (0.16) 2.269 (6.22) 0.005 (0.24) 1.969 (5.32)
Punctuality 0.131 (5.91) —0.095 (—=1.05)  0.119 (5.66) —0.073 (—1.14)
Check-in (friendly enough)  0.392 (3.37) —0.863 (—1.33)  0.248 (1.97) —0.718 (—1.40)
Check-in (very friendly) 1.187 (7.42) —2.685 (—5.00) 1.041 (6.66) —2.107 (—4.74)
Seat (comfortable enough) 0.293 (2.42) —2.642 (—4.39)  0.275(2.47) —2.173 (—5.26)
Seat (very comfortable) 0.564 (4.31) 9.369 (6.33) 0.577 (5.29) 8.353 (5.90)
Cabin (friendly enough) 0.225 (2.19) 5.810 (5.04) 0.218 (2.45) 4.896 (5.01)
Cabin (very friendly) 0.529 (4.55) 6.035 (5.83) 0.493 (4.44) 5.059 (4.92)
Logsum (z-value vs. 1)

EVA and ANA nest 0.819 (1.50) 0.819 (1.50)

JAL and ANA nest 0.573 (3.72) 0.573 (3.72)
Segment size 82% 18% 81% 19%
Final log-likelihood —1066.349 —1062.260
Likelihood ratio 0.2037 0.2068
Adjusted likelihood ratio 0.1828 0.1859

for these two carriers was greater than one, indicating CAL and EVA do not have
common unobserved attributes (e.g. the safety records and company images of CAL and
EVA are quite distinct). These standard NL models indicate that competitive structures
exist among airlines and that degrees of competition vary across airlines.

Given a pre-specified number of segments, analysts can estimate LCMNL model using
the MNL coefficients as starting values. The proper number of segments was evaluated
with the values of AIC, BIC, and adjusted likelihood ratio. LCMNL models with two or
more segments were attempted, but as the number of segments increased to three, the
parameter estimates became very unstable and difficult to interpret due to occurrence of
small segment probabilities. This phenomenon also occurred when the LCNL and
LCGNL models were estimated. Consequently, the two-segment model was adopted for
the rest of the analysis.

Table 3 reports estimation results of two LCNL models using the LCMNL coefficients
as starting values. The initial model estimations allowed different logsum parameters for
two segments. However, our experience suggests that logsum estimates in a single segment
can often be insignificant or out of range. Consequently, the estimation results tended to
give one segment an NL structure and the other an MNL structure. On the other hand,
when the LCNL model imposed equality constraints on the logsum parameters for both
segments with the same model structure, the estimation was computationally feasible, and
the logsum parameters were more stable.

LCNL Model 1 (EVA and ANA in a nest) had a logsum parameter of 0.819 that was
within the 0—1 range, but statistically insignificant at the 0.05 level of significance. LCNL
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Model 2 (JAL and ANA in a nest) had a logsum parameter of 0.573 that was within the
0-1 range, and statistically different from one at the 0.05 level of significance. Two LCNL
models outperformed the corresponding LCMNL model in terms of the goodness-of-fit
measures and the likelihood ratio test at the 0.05 level of significance. LCNL Model 2,
with the adjusted likelihood ratio index 0.1859, had a log-likelihood value that was better
than that of LCNL Model 1.

Both LCNL models had a small number of air travellers (19%) allocated to Segment 2,
and approximately 81% of air travellers in Segment 1 that was a relatively large market. In
Segment 1, the coefficient estimates of ticket price and preferred departure time had
negative signs, as expected. This indicates that any increase in the value of any of these
variables would decrease the utility of the specific carrier and thus reduce the
probability that the airline would be chosen. Similarly, positive estimates were associated
with flight frequency and punctuality. For each qualitative variable, two coefficient
estimates had the positive and expected signs, and a large value was obtained for
the highest of the three qualitative levels. A series of 7-tests showed that, with the exception
of flight frequency, these parameters were significantly different from zero, at the
0.05 level.

Air travellers in Segment 2 were more sensitive to airfare, preferred departure time,
flight frequency and cabin crew service. Segment 2 yielded negative and counterintuitive
coefficients on punctuality, check-in service (friendly enough), check-in service (very
friendly) and in-flight seat space (comfortable enough), which indicates that air travellers
in this segment were not as concerned about these services as were travellers in Segment 1.
It, however, does not imply that the passengers prefer uncomfortable seats or poor check-
in service; as each qualitative attribute had three levels in the stated preference
experiments, it is possible that the passengers selected an airline that had uncomfortable
seats or poor service. Besides, this may have been partially caused by the small number of
air travellers allocated to Segment 2. One may argue that the insignificance or
counterintuition of some coefficients may impact the model performance for prediction
and market share estimation. Because this research does not produce predictions of airline
market shares, such problems are irrelevant.

3.2.2. Results of LCGNL models

The standard GNL models were estimated using the same utility specification as the
preferred MNL model and the nested structures obtained from the two standard NL
models. The preferred GNL model had both EVA-ANA and JAL-ANA nests as depicted
in Figure I; this indicated more flexible airline competition than the standard NL models
have indicated. Table 4 presents the estimates of the preferred two-segment LCGNL
models with and without socioeconomic and trip variables in the segment memberships.
As with the LCNL model, the LCGNL Model 1 imposed equality constraints on logsum
and allocation parameters for all segments. The nested structure of the LCGNL Model 1
collapsed to that of the GNL model, with two logsum and ANA allocation estimates for
each segment. The JAL-ANA logsum estimate was statistically different from one at the
0.05 level of significance, whereas the EVA-ANA logsum estimate was not statistically
significant at the 0.05 level, just as with the LCNL model. However, the significance of the
logsum parameters was consistent between the LCGNL and LCNL models. Based on the
likelihood ratio tests, LCGNL Model 1 outperformed two LCNL models at the 0.10 level



Downloaded by [National Chiao Tung University | at 07:27 24 April 2014

Transportmetrica A: Transport Science

EVA

ANA JAL

CAL

ANA

Figure 1. The nested structure of the GNL model (airline choice).

Table 4. The LCGNL model results: airline choice.
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LCGNL Model 1

LCGNL Model 2

Segment 2

Coeff. (r-value)

Segment 1
Coeff. (r-value)

Segment 2
Coeff. (r-value)

Segment 1
Variables Coeff. (z-value)
CAL constant —0.149 (—0.95)
EVA constant 0.487 (3.72)
JAL constant —0.175 (—1.17)
Airfare —0.051 (—4.07)
Preferred departure time —0.049 (—6.64)
Flight frequency 0.009 (0.40)
Punctuality 0.104 (5.35)
Check-in (friendly enough) 0.209 (1.91)
Check-in (very friendly) 0.953 (7.33)
Seat (comfortable enough) 0.256 (2.54)
Seat (very comfortable) 0.528 (5.28)
Cabin (friendly enough) 0.237 (2.70)
Cabin (very friendly) 0.516 (5.29)
Logsum (z-value vs. 1)
EVA and ANA nest 0.780 (1.48)
JAL and ANA nest 0.365 (6.38)
Allocation
EVA and ANA nest
EVA 1.000 (—)
ANA 0.472 (3.38)
ANA and JAL nest
JAL 1.000 (—)
ANA 0.528 (3.77)
CAL 1.000 (—)
Segment membership
Constant
Number of trips
Income
Segment size 81%
Final log-likelihood —1059.294
Likelihood ratio 0.2090
Adjusted likelihood ratio 0.1866

—5.173 (=3.23)  —0.139 (—0.88)
—9.346 (—=3.24)  0.499 (3.77)
16.002 (3.50)  —0.170 (=1.12)
—5.567 (—=3.62) —0.053 (—4.14)
—0.315 (=3.17)  —0.049 (—6.64)
2.573 (3.01) 0.009 (0.38)
—0.069 (—0.66)  0.105 (5.39)
—0.655 (—0.46)  0.217 (1.97)
—2.798 (—=2.55)  0.965 (7.38)
2927 (=2.69)  0.262 (2.58)
10.445 (3.49) 0.535 (5.30)
6.321 (3.25) 0.239 (2.70)
6.455 (3.18) 0.513 (5.24)
0.780 (1.48) 0.786 (1.41)
0.365 (6.38) 0.374 (6.12)
1.000 (—) 1.000 (—)
0.472 (3.38) 0.470 (3.25)
1.000 (—) 1.000 (—)
0.528 (3.77) 0.530 (3.66)
1.000 (—) 1.000 (—)
2.804 (4.69)
—0.611 (=1.70)
—1.046 (—2.04)
19% 90%
—1054.577
0.2125
0.1879

—6.735 (—2.36)
—13.086 (=2.15)
21.515 (2.46)
—7.331 (—2.63)
—0.382 (—2.66)
3.532 (2.30)
—0.062 (—0.40)
—0.557 (—0.25)
~3.919 (=2.13)
—4.000 (—1.98)
13.989 (2.52)
8.236 (2.67)
8.594 (2.43)

0.786 (1.41)
0.374 (6.12)
1.000 (—)
0.470 (3.25)
1.000 (—)

0.530 (3.66)
1.000 (-)

10%
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of significance, but it did not outperform the LCNL Model 2 at the 0.05 level
(x*=5.93 < 5.99) due to the insignificant logsum estimate.

The LCGNL Model 2 had segment membership function that incorporated individual
socioeconomic and trip characteristics; its results are shown in Table 4. Segment 2 was
used as a basis for comparison, and all membership coefficients in Segment 2 were
normalised to zero. The membership coefficient estimates in Segment 1 were interpreted
relative to Segment 2. The results indicate that negative coefficients were related to
frequent international air travellers (number of trips to overseas) and high-income
(personal monthly income > NT$20,000) travellers. Most travellers in Segment 1 were
low-income and had less frequent travels; in addition, these passengers were more likely to
choose EVA, which was indicated by the positive air carrier constant. Air travellers in
Segment 2 were high-income and had more frequent travels; these passengers preferred to
use JAL or ANA, and were very unlikely to use EVA. The results elucidate travellers’
behavioural profiles. The LCGNL model with socioeconomic and trip variables in the
segment memberships had the best goodness-of-fit of all the LC models in terms of the log-
likelihood, likelihood ratio index and adjusted likelihood ratio index. According to the
likelihood ratio test at the 0.05 level of significance, the LCGNL model with
socioeconomic and trip variables in the segment memberships outperformed the
corresponding LCGNL model without these variables (x>=9.43 > 5.99), as well as the
LCNL Model 2 (*=15.37 > 9.49).

3.3. Bus choice model
3.3.1. Results of MNL and GNL models

The estimation results of the MNL and GNL models for the bus carrier choice are
reported in Table 5. One of the alternatives, bus carrier D, was set as the base (i.e.
alternative specific constant was zero). For each of the qualitative variables, two 0-1
dummy variables (1 indicates the designated level, and 0 otherwise) were created for the
medium and highest levels, using the lowest level as the base category. Taking driver
behaviour as an example, two 0—1 dummy variables for ‘safe enough’ and ‘very safe’ were
created, while ‘very unsafe’ was used as the base. Dividing bus fare by personal monthly
income was found to enhance the goodness-of-fit, indicating that the fare sensitivity of bus
travellers decreases with an increase in personal income. All attributes had expected signs
and were significantly different from zero, providing evidence that passengers’ choices of
intercity bus carriers were associated with these variables.

This study further used the GNL model to account for similarity among intercity bus
alternatives. The preferred GNL model consisted of two bus carrier nests, A—B and A-C,
as depicted in Figure 2, indicating a high substitution pattern between bus carriers. As bus
carriers A and B both offer lower pricing for passengers, they can be grouped into the same
nest. In addition, bus carriers A and C were in the same nest because they provide a similar
level of service for passengers. The logsum estimates for two nests were within the 0-1
range and were significantly different from one. Using the likelihood ratio test at the 0.05
significance level, the GNL model outperformed the MNL model as well as two
corresponding NL models (bus carriers A and B in a single nest and bus carriers A and C
in a single nest).
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Table 5. The MNL and GNL model results: bus choice.

MNL model GNL model
Variables Coeff. (t-value) Coeff. (z-value)
Bus A constant 0.116 (3.87) 0.304 (5.50)
Bus B constant 0.536 (2.84) 0.396 (6.52)
Bus C constant 0.748 (0.04) 0.545 (10.00)
Fare —0.568 (-11.12) —0.568 (-12.30)
Travel time —0.939 (-16.07) —0.781 (-13.67)
Frequency 0.099 (7.35) 0.087 (7.47)
Punctuality 0.239 (9.06) 0.208 (11.96)
Comfort (comfortable enough) 0.537 (12.97) 0.433 (11.07)
Comfort (very comfortable) 0.927 (22.92) 0.770 (17.40)
Driver (safe enough) 0.390 (9.40) 0.323 (8.71)
Driver (very safe) 0.831 (20.57) 0.698 (16.66)
Attitude (friendly enough) 0.407 (10.25) 0.323 (8.85)
Attitude (very friendly) 0.597 (15.03) 0.483 (12.40)
Logsum (z-value vs. 1)
Bus A and B nest 0.509 (5.47)
Bus A and C nest 0.706 (5.68)
Allocation
Bus A and B nest
Bus A 0.377 (5.41)
Bus B 1.000 (-)
Bus A and C nest
Bus A 0.623 (8.94)
Bus C 1.000 (-)
Bus D 1.000 (-)
Final log-likelihood —7753.425 —7733.992
Likelihood ratio 0.1333 0.1355
Adjusted likelihood ratio 0.1318 0.1337
Bus D
Bus A BusB  BusA Bus C

Figure 2. The nested structure of the GNL model (bus choice).

3.3.2. Results of LC models

Various LCMNL models with different numbers of segments (i.e. two, three, four and five
segments) were estimated. Table 6 presents the fit measures, such as log-likelihood,
adjusted likelihood ratio, AIC and BIC, of determining the number of segments.
The LCMNL is identical to the MNL when the number of segments is one. The five-
segment solution had the lowest BIC and AIC values as well as the largest log-likelihood
and likelihood ratio. However, the size of one segment was relatively small (2%), which
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Table 6. Goodness-of-fit measures of LCMNL models: bus choice.

Number of Log- Adjusted
Segment  parameters likelihood likelihood ratio AIC  BIC Segment size
1 (MNL) 13 —7753.425 0.1318 15533 15621 1.0
2 27 —7361.428 0.1741 14777 14960 0.20, 0.80
3 41 —7209.694 0.1895 14501 14779 0.22, 0.27, 0.51
4 55 —7011.505 0.2101 14133 14505 0.21, 0.23, 0.27, 0.29
5 69 —6920.772 0.2186 13980 14447 0.02, 0.20, 0.22, 0.27, 0.29

caused the difficulty of interpreting the meaning of that segment. Therefore, the four-
segment solution was preferred because it had the lower BIC and AIC values as well as the
larger log-likelihood and likelihood ratio than the two- and three-segment results. The
four-segment solution was also adopted for the LCNL and LCGNL models.

Since the interpretable nested structures have been identified by the NL and GNL
models, the LCNL and LCGNL models were estimated. In order to simplify estimation
procedures, the LCGNL model was directly estimated. The initial estimations of the
LCGNL models imposed equality constraints on the logsum and allocation parameters
across segments; however, a logsum estimate (bus carriers A and C in a single nest) became
statistically insignificant. Therefore, the final estimations of LCGNL models allowed for
differential logsum parameters across segments and imposed restrictions on the logsum
estimates within a reasonable range.

Table 7 provides the estimates of the preferred four-segment LCGNL models without
socioeconomic and trip variables in the segment memberships. The nested structure of
Segments 2 and 3 collapsed to that of the GNL model, with two logsum and bus A
allocation estimates for these two segments. The nested structure of Segments 1 and 4
collapsed to that of the NL model with bus carriers A and B in a single nest. The logsum
and allocation estimates were statistically significant at the 0.05 level of significance. Based
on the likelihood ratio tests at the 0.05 level, the LCGNL model outperformed two
corresponding LCNL models: the LCNL model with bus carriers A and B in a single nest
(x*=16.23 > 5.99) and the LCNL model with bus carriers A and C in a single nest
(x*=26.98 > 5.99).

Segment | was the largest one with 33% of the total. The coefficient of bus fare was
statistically insignificant in this segment. Bus travellers in this segment care more about
service attributes than the travellers in other segments. The most favoured alternative in
this segment was bus carrier D (as indicated by the carrier-specific constant). 20% of the
bus travellers were in Segment 2. Bus travellers in this segment generally preferred
carrier A. The coefficients of travel time, frequency and on-time performance were more
sensitive in this segment than in other segments. Bus travellers in Segment 3 (24%) were
very sensitive to bus fare and insensitive to other attributes except for on-time performance
and service attitude. Segment 4 consisted of 23% of bus travellers who were sensitive to
bus fare as well as other attributes and generally preferred to use carrier C.

Table 8 reports the estimation result of the LCGNL model with individual
characteristics in segment membership functions. The membership coefficients in
Segment 4 were set to zero. The results indicate that positive coefficients were related to
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Table 7. The LCGNL model result without individual characteristics in membership functions: bus

choice.
Segment 1 Segment 2 Segment 3 Segment 4
Variables Coeff. (t-value)  Coeff. (-value)  Coeff. (t-value)  Coeff. (z-value)
Bus A constant ~0.256 (-3.87)  1.008 (7.28) 0.632 (5.53) 1.946 (5.67)
Bus B constant —0.227 (-2.84) 0.924 (6.03) 0.861 (7.29) 2.185 (6.29)
Bus C constant —0.003 (-0.04) 0.803 (5.09) —0.039 (-0.28) 3.562 (10.15)
Fare —0.066 (—0.74)  —0.739 (-5.91) —1.746 (-14.72)  —0.955 (-10.64)
Travel time —0.900 (-8.14)  —3.302 (-13.79)  —0.181 (-1.36) —0.516 (-3.44)
Frequency 0.020 (0.76) 0.496 (10.81) 0.014 (0.45) 0.012 (0.35)
Punctuality 0.306 (9.06) 0.459 (8.09) 0.095 (2.27) 0.128 (2.33)
Comfort (comfortable enough) 1.322 (17.74) 0.196 (1.88) 0.075 (0.88) 0.347 (2.95)
Comfort (very comfortable) 1.824 (25.35) 1.084 (9.37) 0.130 (1.60) 0.551 (5.48)
Driver (safe enough) 1.224 (16.04)  —0.076 (-0.69) 0.100 (1.13) 0.078 (0.67)
Driver (very safe) 1.770 (24.04) 0.938 (8.01) 0.109 (1.42) 0.612 (5.87)
Attitude (friendly enough) 0.725 (9.11) 0.335 (2.91) 0.379 (4.98) 0.239 (2.42)
Attitude (very friendly) 0.903 (12.74) 0.977 (9.56) 0.467 (6.35) 0.606 (5.28)
Logsum (z-value vs. 1)
Bus A and B nest 0.369 (8.85) 0.369 (8.85) 0.369 (8.85) 0.369 (8.85)
Bus A and C nest 0.749 (2.88) 0.749 (2.88)
Allocation
Bus A and B nest
Bus A 0.435 (7.64) 0.435 (7.64)
Bus B 1.000 () 1.000 (-)
Bus A and C nest
Bus A 0.565 (9.93) 0.565 (9.93)
Bus C 1.000 (-) 1.000 (-)
Bus D 1.000 () 1.000 ()
Membership function constant 0.366 (2.94) —0.120 (—0.81) 0.058 (0.41)
Segment size 33% 20% 24% 23%
Final log-likelihood —6996.173
Likelihood ratio 0.2179
Adjusted likelihood ratio 0.2115

high-income travellers in Segments 1 and 3. Likewise, bus travellers in Segment 4 were
relatively lower income and more likely to choose carriers B and C. The LCGNL model
with socioeconomic and trip variables in the segment memberships had the best goodness-
of-fit of all the LC models in terms of the log-likelihood, likelihood ratio index and
adjusted likelihood ratio index. This LCGNL model outperformed the corresponding
LCGNL model without socioeconomic and trip variables in the segment memberships,
using the likelihood ratio test at the 0.05 level (x*>=13.20 > 7.81). Thus, the LCGNL
model with segment membership functions, including the personal income variables, is the
most preferred LC specification.

3.4. Discussion

Modelling passenger carrier choice typically used the MNL or NL model in the current
literature (Proussaloglou and Koppelman 1995, Hensher et al. 2003, Eboli and Mazzulla
2008, Wen et al. 2009). Our results indicate that advanced GEV models such as GNL
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Table 8. The LCGNL model result with individual characteristics in membership functions:
bus choice.

Segment 1 Segment 2 Segment 3 Segment 4
Coeff. Coeff. Coeff. Coeff.
Variables (t-value) (t-value) (t-value) (t-value)
Bus A constant -0.261 (-3.88) 1.007 (7.18) 0.631 (5.47) 2.398 (6.56)
Bus B constant —0.229 (-2.84) 0.931 (6.01) 0.871 (7.35) 2.611 (7.05)
Bus C constant 0.002 (0.04) 0.808 (5.06) —0.053 (-0.37) 3.953 (10.56)
Fare —0.039 (-0.43)  —0.725 (-5.96) —1.751 (-14.47) 0917 (-10.44)
Travel time —0.904 (-8.14)  —3.269 (-13.74)  —0.188 (-1.38) —0.504 (-3.44)
Frequency 0.020 (0.74) 0.485 (10.84) 0.016 (0.52) 0.015 (0.43)
Punctuality 0.304 (8.95) 0.461 (8.10) 0.093 (2.21) 0.131 (2.41)
Comfort (comfortable enough) 1.325 (17.73) 0.200 (1.94) 0.070 (0.87) 0.355 (3.07)
Comfort (very comfortable) 1.825 (25.12) 1.088 (9.43) 0.128 (1.52) 0.559 (5.69)
Driver (safe enough) 1.231 (15.99) -0.077 (-0.70) 0.113 (1.25) 0.078 (0.69)
Driver (very safe) 1.780 (23.86) 0.947 (8.09) 0.105 (1.36) 0.608 (5.95)
Attitude (friendly enough) 0.720 (9.02) 0.341 (3.00) 0.396 (5.12) 0.241 (2.51)
Attitude (very friendly) 0.897 (12.59) 0.983 (9.61) 0.477 (6.40) 0.602 (5.30)
Logsum (z-value vs. 1)
Bus A and B nest 0.362 (9.11) 0.362 (9.11) 0.362 (9.11) 0.362 (9.11)
Bus A and C nest 0.765 (2.62) 0.765 (2.62)
Allocation
Bus A and B nest
Bus A 0.433 (8.54) 0.433 (8.54)
Bus B 1.000 (-) 1.000 (-)
Bus A and C nest
Bus A 0.567 (10.20) 0.567 (10.20)
Bus C 1.000 () 1.000 ()
Bus D 1.000 (-) 1.000 (-)
Membership function
Constant 0.115(0.78)  —0.170 (—=1.02)  —0.210 (—1.23)
Income 0.640 (2.52) 0.146 (0.50) 0.661 (2.40)
Segment size 33% 20% 24% 23%
Final log-likelihood —6989.58
Likelihood ratio 0.2187
Adjusted likelihood ratio 0.2119

appear to be superior to the standard MNL and NL in modelling carrier choice behaviour.
For example, two Japanese airlines (ANA and JAL) may have some similar
characteristics. On the other hand, airlines that perform strategic cooperation under a
code-sharing agreement, such as ANA and EVA, may be perceived by air travellers to be
similar in certain features. The complex substitution patterns among airlines were
evidently elucidated by the GNL model.

The proposed LCGNL model allows a flexible structure for the covariance among
alternatives as well as preference heterogeneity across individuals, while simultaneously
identifying segment sizes and profiles. In both empirical cases, the LCGNL model statis-
tically outperformed the corresponding LCMNL and LCNL models, illustrating the
applicability of the proposed model. Besides, the LCGNL model with individual charac-
teristics in segment membership functions had the best goodness-of-fit of all the LC
models; therefore, it is a better modelling approach for analysing carrier choice behaviour.

In both cases, the estimations of the LCGNL models imposed equality constraints on
the logsum and allocation parameters across segments, which results in decreasing the
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significance of some logsum estimates, especially in the case of a large number of segments
(e.g. bus choice model). This phenomenon often occurs when accounting for the joint
effects of taste variation and flexible substitution patterns between alternatives (Hess et al.
2005). Such a problem may be resolved by allowing differential logsum and allocation
parameters across segments and imposing restrictions on these estimates within a
reasonable range. Consequently, the result gives some segments a GNL structure and the
others an NL structure in which the model still fits into an LCGNL structure.

The estimation results of various models indicate that both air and bus travellers
perceived service quality of carriers to be important. This is consistent with the previous
findings reported in Eboli and Mazzulla (2008), Espino et al. (2008), Martin et al. (2008)
and Habib ef al. (2011). Accordingly, carriers can use the findings to develop effective
operational and marketing strategies. The check-in service for air travel, for example, is
considered to be important based on the relatively large coefficient estimates. The
interpretation is that airline check-in is the earliest service that air passengers encounter
when arriving at the airport. For international travel, passengers are required to check-in
at the counter 2 hours before departure. Long queues and waiting time are very likely to
occur during peak hours at the airport, resulting in poor service quality perceived by
passengers. Taoyuan International Airport Authority and some airlines have initiated
major improvements of check-in service at the airport. Since December 2009, two
Taiwanese airlines (CAL and EVA) allow passengers to receive their boarding pass and
pre-check their luggage at a Taiwan high-speed rail station near the international airport.
Additionally, a new construction of Taoyuan International Airport Metro line is
underway. Similar to the Hong Kong International Airport, self-service check-in kiosks
will be installed at some Metro stations to increase travel convenience. Airlines could also
popularise online check-in service allowing prior check-in within 24 hours of flight
departure. Although kiosks can reduce check-in times and queues at check-in counters,
most interfaces are not friendly enough for air travellers, particularly first-time users.
Airline companies should allocate staff, especially during peak hours, to assist air
travellers with self-service check-in kiosks.

This study has identified separate segments for air and bus markets. Strategies are
likely to be effective when accounting for the travellers’ preferences of each segment. For
example, air travellers in Segment 2 are sensitive to price, although they are also concerned
about flight frequency. This group of air travellers considers airfare to be a critical factor
when choosing airlines. Differential and discount airfares may be effective for customers in
this segment. All international airlines in this route are full-service operations, and low-
cost airlines do not exist. To attract price-sensitive but quality-insensitive air travellers,
airlines could launch low-cost services.

4. Conclusions

This article proposes a new LC model with the GNL formulation — the LCGNL model —
which performs two functions: it accommodates flexible substitution patterns among
alternatives and heterogeneous preferences for individuals, and it identifies segment sizes
and individual profiles. The LCGNL model extends the popular LCMNL model, such
that the ITA property does not hold within segments. The LCNL model, an extension of
the LCMNL model, allows the correlated errors of utilities for alternatives in a common
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nest but still suffers from the disadvantages of the NL model. By integrating the GNL, one
of the most flexible GEV models, into the LC model, the LCGNL shows considerably
higher flexibility in error covariance structure than the LCNL model. The development of
the LCGNL model has made a methodological contribution to the literature.

The LCGNL and other models were empirically demonstrated using airline and bus
choice datasets. Both empirical cases indicate that the conventional MNL or NL models
may fail to capture complex substitution patterns among carriers. Likewise, the GNL
model provides a more flexible covariance structure for modelling competition among
carriers. The estimation results of various LC models indicate the existence of taste
heterogeneity in both cases. The LC model adequately accommodates variations of taste
parameters as well as explicitly identifies the number, sizes and characteristics of segments.

The proposed LCGNL model statistically outperformed the LCMNL and LCNL
models in both cases, which demonstrates the applicability and superiority of this model
for analysing carrier choice behaviour. The LCGNL model, with segment membership
functions that incorporated individual socioeconomic and trip characteristics, can further
enhance the goodness-of-fit and is the most preferred specification. Based on the
estimation result of the preferred model, carriers can develop effective operational and
marketing strategies to attract new customers.

A number of ideas could be considered for future research. This study chooses two data
sets for empirical illustrations. More applications in other geographic regions of interest
with large data sets to validate the proposed LCGNL model would be helpful. This research
has used various LC models to analyse carrier market segmentation. Once customers’
segments have been identified, carriers should select target market(s) and understand
competitive positions relative to their rivals. Positioning analysis often uses a choice
mapping approach to illustrate the competitive positions of products or services
(Chintagunta 1994, Gonzalez-Benito et al. 2009, Yang and Sung 2010). Future studies
could integrate the LCGNL model with the choice mapping approach to simultaneously
explore market segmentation and competitive positioning within the carrier choice context.
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