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The dominance-based fuzzy rough set approach (DFRSA) is a theoretical framework that can
deal with multi-criteria decision analysis of possibilistic information systems. While a set of
comprehensive decision rules can be induced from a possibilistic information system by using
DFRSA, generation of several intuitively justified rules is sometimes blocked by objects that
only partially satisfy the antecedents of the rules. In this paper, we use the variable consistency
models and variable precision models of DFRSA to cope with the problem. The models admit
rules that are not satisfied by all objects. It is only required that the proportion of objects
satisfying the rules must be above a threshold called a consistency level or a precision level.
In the presented models, the proportion of objects is represented as a relative cardinality of
a fuzzy set with respect to another fuzzy set. We investigate three types of models based on
different definitions of fuzzy cardinalities including �-counts, possibilistic cardinalities, and
probabilistic cardinalities; and the consistency levels or precision levels corresponding to the
three types of models are, respectively, scalars, fuzzy numbers, and random variables.

Keywords: dominance-based fuzzy rough set approach; preference-ordered possibilistic
information system; multi-criteria decision analysis; variable consistency DFRSA; variable
precision DFRSA; fuzzy cardinality

1. Introduction

The rough set theory proposed by Pawlak (1982) provides an effective tool for extracting knowl-
edge from information systems. When rough set theory is applied to multi-criteria decision
analysis (MCDA), it is crucial to deal with preference-ordered attribute domains and decision
classes (Greco et al. 2001, 2002, 2004; Słowiński et al. 2002). The original rough set theory
cannot handle inconsistencies arising from violations of the dominance principle due to its use
of the indiscernibility relation. Therefore, the indiscernibility relation is replaced by a dominance
relation to solve the multi-criteria sorting problem; and the information system is replaced by
a pairwise comparison table to solve multi-criteria choice and ranking problems. The approach
is called the dominance-based rough set approach (DRSA). For MCDA problems, DRSA can
induce a set of decision rules from sample decisions provided by decision-makers. The induced
rules form a comprehensive preference model and can provide recommendations about a new
decision-making environment.

*Corresponding author. Email: liaucj@iis.sinica.edu.tw
This is an extended version of (Fan et al. 2011b).
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660 T.-F. Fan et al.

A strong assumption about information systems is that each object takes exactly one value
with respect to an attribute. However, in practice, we may only have incomplete information
about the values of an object’s attributes. Thus, more general information systems have been
introduced to represent incomplete information (Kryszkiewicz 1998; Lipski 1981; Myszkorowski
2011; Sakai et al. 2011; Yao and Liu 1999). DRSA has also been extended to deal with missing
or uncertain values in MCDA problems (Greco et al. 2001; Fan et al. 2009; Inuiguchi 2009;
Słowiński et al. 2002). Since an information system with missing or uncertain values is a special
case of a possibilistic information system, further extension of DRSA to the decision analysis
of possibilistic information systems is desirable. In Fan (2011a), we propose such an extension
based on the fuzzy dominance principle. In the proposed approach, we first compute the degree of
dominance between any two objects based on their possibilistic evaluations with respect to each
criterion. This leads to a fuzzy dominance relation on the universe. Then, we define the degree
of adherence to the dominance principle by every pair of objects and the degree of consistency
of each object. The consistency degrees of all objects are aggregated to derive the quality of the
classification, which we use to define the reducts of possibilistic information systems. In addition,
the upward and downward unions of decision classes are fuzzy subsets of the universe. Therefore,
the lower and upper approximations of the decision classes based on the fuzzy dominance relation
are fuzzy rough sets. By using the lower approximations of the decision classes, we can derive
two types of decision rules that can be applied in new decision-making environments.

As in the case of DRSA, the strict requirement of dominance principle may prevent some useful
decision rules from being discovered. The situation may deteriorate in the DFRSA (dominance-
based fuzzy rough set approach) framework because objects partially satisfying the antecedent
of a rule may block the derivation of the rule if they do not satisfy the rule’s consequent at the
same time. Thus, an appropriate relaxation of the dominance principle is necessary to alleviate
the problem. This is achieved by allowing variable consistency or variable precision rules in
DRSA (Greco et al. 2000; Inuiguchi et al. 2009). These rules can be induced even though not
satisfied by all objects. It is only required that the proportion of objects satisfying the rules must
be above a threshold called a consistency level or a precision level. In this paper, we use fuzzy
cardinalities to develop the variable consistency models and variable precision models in the
DFRSA framework. The proportion of objects satisfying a rule is modeled as a relative fuzzy
cardinality in our approach. Because a fuzzy cardinality may be a scalar, a fuzzy number, or a
random variable, we can induce three types of rules for each model depending on what kinds of
fuzzy cardinalities are taken as the consistency level or precision level. Furthermore, we also use
examples to illustrate why an intuitively justified rule cannot be discovered in DFRSA and how
the proposed approach can solve the problem.

The remainder of the paper is organized as follows. In Section 2, we review the DRSA. In
Section 3, we present the extension of DRSA for decision analysis of possibilistic information
systems. The extended approach is called the DFRSA. In Section 4, we introduce the variable
consistency and variable precision models of DFRSA. Section 5 contains some concluding
remarks.

2. Review of rough set theory and DRSA

The basic construct of rough set theory is an approximation space, which is defined as a pair
(U, R), where U is a finite universe and R ⊆ U ×U is an equivalence relation on U . We write an
equivalence class of R as [x]R if it contains the element x . For any subset X of the universe, the
lower approximation and upper approximation of X are defined as R X = {x ∈ U | [x]R ⊆ X}
and RX = {x ∈ U | [x]R ∩ X �= ∅}, respectively.
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International Journal of General Systems 661

Although an approximation space is an abstract framework used to represent classification
knowledge, it can easily be derived from a concrete information system. Pawlak (1991) defined
an information system1 as a tuple T = (U, A, {Vi | i ∈ A}, { fi | i ∈ A}), where U is a
nonempty finite set, called the universe; A is a nonempty finite set of primitive attributes; for each
i ∈ A, Vi is the domain of values of i ; and for each i ∈ A, fi : U → Vi is a total function.
An attribute in A is usually denoted by the lower-case letters i or a. In decision analysis (and
throughout this paper), we assume the set of attributes is partitioned into {d}∪ (A −{d}), where d
is called the decision attribute, and the remaining attributes in C = A − {d} are called condition
attributes. Given a subset of attributes B, the indiscernibility relation with respect to B is defined
as ind(B) = {(x, y) | x, y ∈ U, fi (x) = fi (y)∀i ∈ B}.Obviously, for each B ⊆ A, (U, ind(B))
is an approximation space.

For MCDA problems, each object in an information system can be seen as a sample decision,
and each condition attribute is a criterion for that decision. Since a criterion’s domain of values
is usually ordered according to the decision-maker’s preferences, we define a preference-ordered
information system (POIS) as a tuple T = (U, A, {(Vi ,�i ) | i ∈ A}, { fi | i ∈ A}), where
(U, A, {Vi | i ∈ A}, { fi | i ∈ A}) is a classical information system; and for each i ∈ A,
�i⊆ Vi × Vi is a binary relation over Vi . The relation �i is called a weak preference relation or
outranking on Vi , and represents a preference over the set of values with respect to the criterion i
(Słowiński et al. 2002). The weak preference relation �i is supposed to be a complete preorder,
i.e. a complete, reflexive, and transitive relation. In addition, we assume that the domain of the
decision attribute is a finite set Vd = {1, 2, . . . , n} such that r is strictly preferred to s if r > s for
any r, s ∈ Vd .

To deal with inconsistencies arising from violations of the dominance principle, the indis-
cernibility relation is replaced by a dominance relation in DRSA. Let P be a subset of criteria.
Then, we can define the P-dominance relation DP ⊆ U × U as follows:

(x, y) ∈ DP ⇔ fi (x) �i fi (y) ∀i ∈ P. (1)

When (x, y) ∈ DP , we say that x P-dominates y, and that y is P-dominated by x . We usually
use the infix notation x DP y to denote (x, y) ∈ DP . Given the dominance relation DP , the
P-dominating set and P-dominated set of x are defined as D+

P (x) = {y ∈ U | y DP x} and
D−

P (x) = {y ∈ U | x DP y}, respectively. In addition, for each t ∈ Vd , we define the decision
class Clt as {x ∈ U | fd(x) = t}. Then, the upward and downward unions of classes are defined
as Cl≥t = ⋃

s≥t Cls and Cl≤t = ⋃
s≤t Cls , respectively. We can then define the P-lower and

P-upper approximations of Cl≥t and Cl≤t by using the P-dominating sets and P-dominated sets
instead of the equivalence classes.

3. DFRSA for possibilistic information systems

3.1. Preference-ordered possibilistic information systems

Ageneral approach used to specify the uncertainty of information exploits possibility distributions.
A possibility distribution on a domain V is simply a function π : V → [0, 1]. Intuitively, π
specifies the degree of possibility of each element in the domain V . Here, π(v) = 1 and π(v) = 0
mean that the elementv is fully possible and totally impossible, respectively, while the intermediate
values in (0, 1)mean partial possibilities of v. The notion of possibility distributions should not be
confused with that of probability distributions. A major difference is in the axiom about the union
of events. While probability calculus satisfies the additive axiom, the possibility measure of a set
is equal to the supremum of the possibility degrees of its elements (Dubois and Prade 2001). We
usually assume that a possibility distribution is normalized, i.e. supv∈V π(v) = 1. Let π1 and π2
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662 T.-F. Fan et al.

be two possibility distributions on V . Then, we say that π1 is at least as specific as π2, denoted
by π1 ≤ π2, if π1(v) ≤ π2(v) for each v ∈ V . Let us denote the set of all normalized possibility
distributions on V by (V → [0, 1])+. Then, a preference-ordered possibilistic information system
(POPIS) is a tuple T = (U, A, {(Vi ,�i ) | i ∈ A}, { fi | i ∈ A}), where U, A, {(Vi ,�i ) | i ∈ A}
are defined as above, and for each i ∈ A, fi : U → (Vi → [0, 1])+.

3.2. Fuzzy dominance relation

In a POPIS, the objects may have imprecise evaluations with respect to the condition criteria and
imprecise assignments to decision classes. Thus, the dominance relation between objects cannot
be determined with certainty. Instead, since possibility information for each value is available
in a POPIS, we can use the extension principle in fuzzy set theory to compute the degree of
dominance (Zadeh 1975). The extension principle extends an operation or a relation on a base
domain to the class of all fuzzy sets or possibility distributions on the domain. In our context, we
use the extension principle to extend the preference relation �i on Vi to a fuzzy preference relation
between two possibility distributions on Vi . Consequently, the dominance relation between two
objects with respect to the criterion i is determined by their respective possibility distributions on
the domain of the criterion. Let ⊗, ⊕, and → denote, respectively, a t-norm operation, an s-norm
operation, and an implication operation2 on [0, 1]. Then, the dominance relation with respect to
the criterion i is a fuzzy relation Di : U × U → [0, 1] such that

Di (x, y) = sup
v1,v2∈Vi

{ fi (x)(v1)⊗ fi (y)(v2) | v1 �i v2}. (2)

After deriving the fuzzy dominance relation for each criterion, we can aggregate all the
relations into P-dominance relations for any subset of criteria P . Thus, the fuzzy P dominance
relation DP : U × U → [0, 1] is defined as

DP(x, y) =
⊗
i∈P

Di (x, y). (3)

Since the dominance relation is a fuzzy relation, the satisfaction of the dominance principle is a
matter of degree. Thus, the degree of adherence of (x, y) to the dominance principle with respect
to a subset of condition criteria P is defined as

δP (x, y) = DP (x, y) → Dd(x, y), (4)

and the degree of P-consistency of x is defined as

δP(x) =
⊗
y∈U

(δP(x, y)⊗ δP (y, x)). (5)

Intuitively, (4) is a fuzzy logic counterpart of the dominance principle, which states that if x
P-dominates y (i.e. x is at least as good as y with respect to all criteria in P), then x should be
assigned to a decision class at least as good as the class assigned to y. In DRSA, an object x is
consistent if for all other objects y, (x, y) and (y, x) both satisfy the dominance principle. Thus,
(5) defines the degree of consistency of x in the fuzzy logic sense.

Let T be a POPIS. Then, the quality of the classification of T based on the set of criteria P is
defined as

γP(T ) =
∑

x∈U δP(x)

|U | . (6)

Note that γP (T ) is monotonic with respect to P , i.e. γQ(T ) ≤ γP (T ) if Q ⊆ P . Thus, we
can define every minimal subset P ⊆ C such that γP (T ) = γC (T ) as a reduct of C , where
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International Journal of General Systems 663

C = A − {d} is the set of all condition criteria. In addition, the degree of P-consistency is
monotonic with respect to P , so a reduct is also a minimal subset P ⊆ C such that δP(x) = δC (x)
for all x ∈ U . However, because δP(x) is less sensitive to individual changes in δP(x, y), we
cannot guarantee that a reduct will preserve the degree of adherence to the dominance principle for
each pair of objects. To overcome this difficulty, we can adopt the following alternative definition
of the quality of the classification:

ηP (T ) =
∑

x,y∈U δP(x, y)

|U |2 . (7)

The reducts can also be defined in terms of this kind of definition.
In addition, the rough set-based reduct has been extended to the notion of approximate reduct

in Slezak (2002) and Nguyen and Slezak (1999) by using information entropy measure. While
we use the standard notion in rough set theory to define reducts, it is also interesting to investigate
the effect of approximate reduct in the DFRSA framework. Although we cannot go into much
detail here, this will be further studied in the future work.

3.3. Dominance-based fuzzy rough approximations

In a POPIS, the assignment of a decision label to an object may be imprecise, so the decision
classes may be fuzzy subsets of the universe. Their membership functions are derived from the
possibility distributions associated with the assignments of the objects. Specifically, for each
t ∈ Vd , the decision class Clt : U → [0, 1] is defined by

Clt (x) = fd(x)(t). (8)

Then, the upward and downward unions of classes are defined by

Cl≥t (x) = sup
v≥t

fd(x)(v) = �x ({v ≥ t}) (9)

and
Cl≤t (x) = sup

v≤t
fd(x)(v) = �x ({v ≤ t}), (10)

respectively, where �x is the possibility measure corresponding to the possibility distribution
fd(x). Finally, since our dominance relation is a fuzzy relation and the decision classes are fuzzy
sets, the lower and upper approximations of the classes are defined in the same way as those
for fuzzy rough sets (Dubois and Prade 1990; Radzikowska and Kerre 2002). More specifically,
the P-lower and P-upper approximations of Cl≥t and Cl≤t for each t ∈ Vd are defined as fuzzy
subsets of U with the following membership functions:

P(Cl≥t )(x) =
⊗
y∈U

(DP (y, x) → Cl≥t (y)), (11)

P(Cl≥t )(x) =
⊕
y∈U

(DP (x, y)⊗ Cl≥t (y)), (12)

P(Cl≤t )(x) =
⊗
y∈U

(DP (x, y) → Cl≤t (y)), (13)

P(Cl≤t )(x) =
⊕
y∈U

(DP (y, x)⊗ Cl≤t (y)). (14)
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664 T.-F. Fan et al.

These equations are the fuzzy version of the corresponding definitions in DRSA. For example,
(11) is a fuzzification of the condition that x belongs to the P-lower approximation of Cl≥t if all
objects P-dominating x belong to Cl≥t .

3.4. Decision rules

To represent knowledge discovered from a POPIS, we consider a preference-ordered possibilistic
decision logic (POPDL). The well-formed formulas (wff) of POPDL are Boolean combinations
of atomic formulas of the form (≥i , πi ) or (≤i , πi ), where i ∈ A and πi ∈ (Vi → [0, 1])+. When
πi is a singleton possibility distribution such that π(x) = 1 if x = v and π(x) = 0 if x �= v, we
abbreviate (≥i , πi ) (resp. (≤i , πi )) as (≥i , v) (resp. (≤i , v)).

Let P denote a reduct of a POPIS and let t ∈ Vd . Then, for each object x , where P(Cl≥t )(x) > 0
(or above some pre-determined threshold), we can derive the D≥-decision rule:

∧
i∈P

(≥i , fi (x)) −→P(Cl≥t )(x) (≥d , t); (15)

and for each object x , where P(Cl≤t )(x) > 0 (or above some pre-determined threshold), we can
derive the D≤-decision rule:

∧
i∈P

(≤i , fi (x)) −→P(Cl≤t )(x) (≤d , t), (16)

where P(Cl≥t )(x) and P(Cl≤t )(x) are the respective confidences of the rules. Note that the symbol
“−→” is purely syntactic and is simply used to connect the antecedent and the consequent of a
decision rule. It should be not confused with the fuzzy implication → introduced in Section 3.2
because the latter is a binary operation on [0, 1].

Now, for a new decision case with evaluations based on the condition criteria P , we can
apply these two types of rules to derive the case’s decision label assignment. Specifically, let x
be a new object such that, for each criterion i ∈ P , fi (x) ∈ (Vi → [0, 1])+ is given; and let α
be a rule

∧
i∈P(≥i , πi ) −→c (≥d , t) discovered by the proposed approach. Then, according to

the rule α, we can derive that the degree of satisfaction of fd(x) �d t is ε(α, fd(x) �d t) =
c ⊗ ⊗

i∈P supv1�iv2
( fi (x)(v1) ⊗ πi (v2)). Let R≥

t denote the set of all rules with a consequent
(≥d , t prime) such that t prime ≥ t . Then, the final degree of fd(x) �d t is

⊕
α∈R≥

t
ε(α, fd(x) �d

t prime). We can derive the degree of fd(x) �d t from the second type of rule in a similar
manner.

Mathematically, the evaluations and assignments in a POPIS are possibility distributions, so
the atomic formulas of POPDL may also include any possibility distributions on the domain.
However, in general, the set of all (normalized) possibility distributions is infinite, even though
the domain is finite. This may result in a very large set of rules. Moreover, most of the possibility
distributions may lack semantically meaningful interpretation for human users; hence, the induced
rules may be hard to use. To resolve the difficulty, the standard practice in fuzzy logic is to use
a set of meaningful linguistic labels whose interpretations are simply possibility distributions
on the domain. Thus, the evaluations and assignments given in a POPIS are restricted to the
(usually finite) set of linguistic labels, so the set of atomic formulas in our POPDL only contains
(≥i , πi ) or (≤i , πi ), where πi corresponds to a linguistic label. For example, if the evaluated
criterion is “score” and its domain is [0,100], then the set of linguistic labels may be {poor, fair,
good, and excellent}, and their corresponding interpretations are possibility distributions on the
domain.
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3.5. An illustrative example

A variety of theoretical properties about the DFRSA framework have been proved in Fan (2011a).
Instead of repeating the theoretical presentation, we will use an example to illustrate the pro-
cedures. The information system in this example contains guests’ evaluations of hotels. Each
evaluation consists of three criteria: “service”( f1), “rooms”( f2), and “location”( f3) of a hotel;
and the decision attribute is a guest’s overall recommendation( fd ) on the hotel. The evaluations
are given in terms of linguistic labels: “terrible”(L1), “poor”(L2), “average”(L3), “good”(L4),
and “excellent”(L5). Since the guests’evaluations are always subjective and inevitably imprecise,
it is quite natural to interpret the linguistic labels as possibility distributions on the underlying
domain [0, 10]. The possibility distributions corresponding to the five linguistic labels are shown
in Figure 1. Formally, the POPIS in this example is T = (U, A, {(Vi ,�i ) | i ∈ A}, { fi | i ∈ A}),
where U = {x1, . . . , x8}, A = {1, 2, 3, d}, Vi = [0, 10], and �i is defined for each i ∈ A such
that v �i v

′ iff v ≥ v prime for any v, v prime ∈ Vi , and fi (i ∈ A) is specified in Table 1. For
simplification of presentation, we will use fi s and Li s in parentheses to denote corresponding
attributes and linguistic labels, respectively.

Let us assume the t-norm ⊗ = min and the corresponding implication → is the Gödel
implication.3 Then, the fuzzy dominance relations can be derived from (2) and are represented by

Figure 1. Possibility distributions corresponding to linguistic labels “terrible”(L1), “poor”(L2),
“average”(L3), “good”(L4), and “excellent”(L5).

Table 1. A POPIS of hotel evaluations.

U\A Service ( f1) Rooms ( f2) Location ( f3) Overall recommendation ( fd )

x1 Good (L4) Excellent (L5) Excellent (L5) Excellent (L5)

x2 Average (L3) Good (L4) Excellent (L5) Good (L4)

x3 Average (L3) Excellent (L5) Good (L4) Good (L4)

x4 Average (L3) Good (L4) Average (L3) Average (L3)

x5 Good (L4) Excellent (L5) Good (L4) Good (L4)

x6 Average (L3) Poor (L2) Average (L3) Poor (L2)

x7 Poor (L2) Average (L3) Good (L4) Average (L3)

x8 Poor (L2) Poor (L2) Terrible (L1) Terrible (L1)
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666 T.-F. Fan et al.

Table 2. Fuzzy dominance relations for the POPIS.

1 2 3 4 5 6 7 8

1 (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)

2
(

1
2 ,

1
4 , 1, 1

4

)
(1,1,1,1)

(
1, 1

4 , 1, 1
)

(1,1,1,1)
(

1
2 ,

1
4 , 1, 1

)
(1,1,1,1) (1,1,1,1) (1,1,1,1)

3
(

1
2 , 1, 1

4 ,
1
4

) (
1, 1, 1

4 , 1
)

(1,1,1,1) (1,1,1,1)
(

1
2 , 1, 1, 1

)
(1,1,1,1) (1,1,1,1) (1,1,1,1)

4
(

1
2 ,

1
4 , 0, 0

) (
1, 1, 0, 1

2

) (
1, 1

4 ,
1
2 ,

1
2

)
(1,1,1,1)

(
1
2 ,

1
4 ,

1
2 ,

1
2

)
(1,1,1,1)

(
1, 1, 1

2 , 1
)

(1,1,1,1)

5
(

1, 1, 1
4 ,

1
4

) (
1, 1, 1

4 , 1
)

(1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)

6
(

1
2 , 0, 0, 0

)
(1,0,0,0)

(
1, 0, 1

2 , 0
) (

1, 0, 1, 1
2

) (
1
2 , 0, 1

2 , 0
)

(1,1,1,1)
(

1, 1
2 ,

1
2 ,

1
2

)
(1,1,1,1)

7
(

0, 0, 1
4 , 0

) (
1
2 ,

1
2 ,

1
4 ,

1
2

) (
1
2 , 0, 1, 1

2

) (
1
2 ,

1
2 , 1, 1

) (
0, 0, 1, 1

2

) (
1
2 , 1, 1, 1

)
(1,1,1,1) (1,1,1,1)

8 (0,0,0,0)
(

1
2 , 0, 0, 0

) (
1
2 , 0, 0, 0

) (
1
2 , 0, 0, 0

)
(0,0,0,0)

(
1
2 , 1, 0, 1

4

) (
1, 1

2 , 0, 0
)

(1,1,1,1)

a matrix in Table 2, where the entry (i, j) of the matrix denotes the tuple (D1(xi , x j ), D2(xi , x j ),

D3(xi , x j ), Dd(xi , x j )) for 1 ≤ i, j ≤ 8.
It is easy to check that min(c1, c2, c3) ≤ c4 for any tuple (c1, c2, c3, c4) in the matrix. This

means that δP(x, y) = 1 and δP(x) = 1 for any x, y ∈ U and P = {1, 2, 3}. Thus, the
quality of classification of the POPIS is equal to 1, i.e. the POPIS is totally consistent. In the
same way, we can check that δP(x, y) = 1 and δP(x) = 1 for any x, y ∈ U and P = {2, 3}.
Furthermore, when P = {1, 2}, we can find that δP(u3, u1) = 1

4 , and when P = {1, 3}, we can
find that δP(u6, u5) = 0. Consequently, γ{1,2}(T ) < γ{1,2,3}(T ) and γ{1,3}(T ) < γ{1,2,3}(T ), but
γ{2,3}(T ) = γ{1,2,3}(T ). Thus, {2, 3} is the only reduct of the POPIS.

To highlight the difference between POIS and POPIS, we can define a POIS T prime =
(U, A, {(Vi ,�i ) | i ∈ A}, { f prime

i | i ∈ A}) such that Vi = {1, 2, 3, 4, 5}, v �i v
prime iff

v ≥ v prime, and f prime
i (x) = j iff fi (x) = L j for any i ∈ A. In other words, T prime is simply a

variant of T in which the linguistic labels are treated as categorical values instead of possibility
distribution. Thus, the dominance relations for T ′ are crisp and can be obtained by replacing all
fractional numbers 1

4 and 1
2 in Table 2 with 0. Then, by using standard DRSA, the reducts of

T ′ are {1, 3} and {2, 3}. Hence, while criteria 1 and 2 seem equally important in T ′, the more
fine-grained representation of POPIS T allows us to distinguish the relative importance between
them.

Next, the upward and downward union of decision classes can be computed by using (9) and
(10). For example, the membership function of Cl≥t for different ranges of t is shown in Table 3.

Furthermore, by using the reduct P = {2, 3}, we can derive DP(x, y) = min(D2(x, y),
D3(x, y)) from Table 2. The results are recorded in Table 4.

Applying (11) and (12) to Tables 3 and 4, we can derive the lower and upper approximations
of the upward union of decision classes Cl≥t for any t ∈ [0, 10]. In the same way, we can also
derive the rough approximations of the downward unions. Then, we can induce rules based on
the lower approximations. For example, for t = 8, we have P(Cl≥t )(x1) = 1, P(Cl≥t )(x2) = 1

2 ,
and P(Cl≥t )(xi ) = 0 for 3 ≤ i ≤ 8. From this, we can derive two rules as follows:

(≥ 2, L5) ∧ (≥ 3, L5) −→1 (≥ d , 8),

(≥ 2, L4) ∧ (≥ 3, L5) −→ 1
2
(≥ d , 8),
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Table 3. The upward union of decision classes.

Cl≥t x1 x2 x3 x4 x5 x6 x7 x8

0 ≤ t ≤ 3 1 1 1 1 1 1 1 max
(
1 − t

2 , 0
)

3 < t ≤ 5 1 1 1 1 1 5−t
2 1 0

5 < t ≤ 7 1 1 1 7−t
2 1 0 7−t

2 0

7 < t ≤ 10 1 max
(

9−t
2 , 0

)
max

(
9−t

2 , 0
)

0 max
(

9−t
2 , 0

)
0 0 0

Table 4. The fuzzy dominance relation DP (x, y).

DP (x, y) x1 x2 x3 x4 x5 x6 x7 x8

x1 1 1 1 1 1 1 1 1
x2

1
4 1 1

4 1 1
4 1 1 1

x3
1
4

1
4 1 1 1 1 1 1

x4 0 0 1
4 1 1

4 1 1
2 1

x5
1
4

1
4 1 1 1 1 1 1

x6 0 0 0 0 0 1 1
2 1

x7 0 1
4 0 1

2 0 1 1 1
x8 0 0 0 0 0 0 0 1

which mean “if the rooms and the location of a hotel are both excellent, then its overall score
is at least 8” and “it is half certain that if the rooms of a hotel are at least good and its location
is excellent, then its overall score is at least 8”, respectively. Note that both rules belong to R≥

8
according to the notation defined in Section 3.4. Thus, the procedure stated there can be used to
derive the degree of fd(x) �d 8 for a new object x . During the application of the procedure, both
rules (possibly among other rules) can be applied to the new object at the same time.

4. Variable consistency and variable precision models of DRSA for possibilistic information
systems

As the rough approximations defined in DRSAare based on consistency in terms of the dominance
principle, it has been observed that some inconsistencies may reduce the cardinality of lower
approximations to such an extent that it is impossible to discover strong patterns in the data,
particularly when the data-set is large. Thus, Greco et al. (2000) proposed a relaxation of the strict
dominance principle. The relaxation, which is controlled by a parameter called the consistency
level, allows some inconsistent objects to be included in the lower approximations. The resulting
model is called the variable-consistency model (VC-DRSA).

Inuiguchi et al. (2009) noted that inconsistencies in a decision table may occur for different
reasons, such as: (1) hesitation in evaluating the decision attribute values; (2) errors in recording,
measurement, and observation; (3) missing condition attributes related to the evaluation of deci-
sion attribute values; and (4) the unstable nature of the system represented by the decision table.
The authors also showed that, although VC-DRSA can easily handle the inconsistency caused by
hesitation in evaluating the attribute values, it cannot deal with other types of inconsistency. To
alleviate the problem, they proposed a variable precision model (VP-DRSA).
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668 T.-F. Fan et al.

Although VC-DRSA and VP-DRSA improves the robustness of DRSA, the users have to
specify a consistency or precision level as the parameter for the induction of rules. Because
the parameter is a scalar, the specification is usually arbitrary and a small perturbation on the
specified parameter can cause abrupt change on the induced rules. Therefore, the flexibility for
the imprecision-tolerance of the parameter is useful. The extension of the DFRSA framework can
provide such a flexibility by allowing the consistency or precision level to be a fuzzy number or a
random variable. Thus, in addition of the usual numerical level, the user can require that the rule
is highly possible or probable without an explicit specification of the cutting point. In this section,
we utilize the notion of fuzzy cardinality to extend the DFRSA framework along this direction.

4.1. Fuzzy cardinality

The cardinality of a fuzzy set is normally used to evaluate fuzzy quantified sentences. For example,
to evaluate the truth degree of the sentence “Most students are young,” we have to determine if the
cardinality of the set of young students satisfies the interpretation of the fuzzy quantifier “most.”
In applications, two kinds of cardinality are considered: absolute cardinality, which measures the
number of elements in a set, and relative cardinality, which measures the percentage of elements
of one set (called the referential set) that are also present in another set (Delgado et al. 2002).4

Since both VC-DRSA and VP-DRSA are concerned with the percentage of elements in an object’s
dominating set or dominated set that are also in the approximated concept, relative cardinality
plays an important role in our analysis.

Several approaches for measuring the cardinality of a fuzzy set have been proposed in the
literature. The approaches, which extend the classic approach in different ways, can be classified
into two categories: scalar cardinality approaches and fuzzy cardinality approaches. The former
measure the cardinality of a fuzzy set by means of a scalar value, either an integer or a real value;
whereas the latter assume that the cardinality of a fuzzy set is just another fuzzy set over the
nonnegative numbers (Delgado et al. 2002). The most simple scalar cardinality of a fuzzy set is
its power (also called the�-count), which is defined as the summation of the membership degrees
of all elements (de Luca and Termini, 1972). Formally, for a given fuzzy subset F on the universe
U , the �-count of F is defined as

�
(F) =
∑
x∈U

μF (x). (17)

The relative cardinality of a fuzzy set G with respect to another fuzzy set F is then defined as
(Zadeh 1975):

�
(G/F) = �
(F ∩ G)

�
(F)
. (18)

Subsequently, Zadeh (1979) proposed a fuzzy subset Z(F) of N as the measure of the absolute
cardinality of a fuzzy set F such that the membership degree of a natural number k ∈ N in Z(F)
is defined as

Z(F, k) = sup{α | |Fα| = k}, (19)

where Fα is the α-cut of F . In addition, a fuzzy multiset Z(G/F) over [0, 1] is introduced in
Zadeh (1983) to measure the fuzzy relative cardinality of G with respect to F . The membership
function of Z(G/F) is defined as

Z(G/F) =
∑

α∈�(F)∪�(G)
α/

|Fα ∩ Gα|
|Fα| , (20)
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where�(F) and�(G) are the level sets of F and G, respectively, i.e.�(F) = {μF (x) | x ∈ U }.
Delgado et al. (2002) proposed a more compact representation of Z(G/F) by transforming the
fuzzy multiset into a fuzzy subset of rational numbers in [0, 1]. The representation is formulated
as follows:

E S(G/F, q) = sup

{
α ∈ �(G/F) | |(F ∩ G)α|

|Fα| = q

}
(21)

for any q ∈ Q ∩ [0, 1], where �(G/F) = �(F ∩ G) ∪�(G).
In the context of a finite universe U , Delgado et al. (2002) proposed a family of fuzzy measures

E for absolute cardinalities based on the evaluation of fuzzy logic sentences. To define the
measures, the possibility of a fuzzy set F containing at least k elements is identified with the
truth degree of the fuzzy statement “∃X ⊆ U such that (|X | = k ∧ X ⊆ F),” which can be
formally defined as

L(F, k) =
⎧⎨
⎩

1, if k = 0,
0, if k > |U |,⊕

X⊆kU
⊗

x∈XμF(x), if 1 ≤ k ≤ |U |,
(22)

where X ⊆k U denotes that X is any k-element subset of U . Then, the possibility that F contains
exactly k elements is formulated as follows:

E(F, k) = L(F, k)⊗ ¬L(F, k + 1), (23)

where ⊗ is any t-norm (not necessarily the same as that used in the definition of L(F, k)), and ¬
stands for a fuzzy negation. Each member of the family E is determined by the choice of s-norm,
t-norms, and negation in (22) and (23). Using max and min in (22) and standard negation as well
as Lukasiewicz’s t-norm max(0, a +b−1) in (23), a probabilistic measure of absolute cardinality
E D defined as

E D(F, k) = αk − αk+1 (24)

is shown to be a member of the family E , where αk is the kth largest value of the multiset
{μF (x) | x ∈ U } for 1 ≤ k ≤ |U |, α0 = 1, and αk = 0 when k > |U |. The relative version of
E D is also defined as

E R(G/F, q) =
∑

i : |(F∩G)αi |
|Fαi | =q

(αi − αi+1) (25)

for any q ∈ Q ∩ [0, 1], where αi is the i th largest value of �(G/F).
The following proposition shows that all these definitions collapse to the standard one in the

case of crisp sets.

Lemma 4.1 Let F and G be crisp sets, |F | = n and |F∩G|
|F | = q. Then,

(1) �
(F) = n and �
(G/F) = q;
(2) Z(F, n) = 1 and Z(F, k) = 0 if k �= n;
(3) μZ(G/F)(q) = 1 and μZ(G/F)(v) = 0 if v �= q;
(4) E S(G/F, q) = 1 and E S(G/F, v) = 0 if v �= q;
(5) E D(F, n) = 1 and E D(F, k) = 0 if k �= n; and
(6) E R(G/F, q) = 1 and E R(G/F, v) = 0 if v �= q.

Proof We note that, for crisp sets, the level sets �(F),�(F ∩ G), and �(G/F) are equal
to {0, 1}. Furthermore, each crisp set is equal to its 1-cut. Then, the results follows from the
definitions immediately. For example, for the proof of item (5), if |F | = n, then according to the
definition of (24), αk = 1 if 0 ≤ k ≤ n and αk = 0 if k > n. Thus, we have αk − αk+1 = 0 for
k �= n and αn − αn+1 = 1. �
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670 T.-F. Fan et al.

4.2. Variable consistency models of DFRSA

The main difference between VC-DFRSAand DFRSAis the definition of the lower approximation,
so we still use the fuzzy dominance relation and the notion of reduct defined in Section 3 to develop
VC-DFRSA. The main feature of VC-DRSA is that it includes objects that partially violate the
dominance principle. For example, if an object belongs to the lower approximation of an upward
union of classes, it is not necessary for all objects that dominate the object to belong to the same
upward union of classes. Instead, the only requirement for an object to be included in the lower
approximation of a target set is that a sufficiently large portion of the object’s dominating set
belongs to the target set. In DFRSA, an object’s dominating set and dominated set as well as the
target sets are all fuzzy sets; therefore, we can determine if the portion is sufficiently large by
comparing the sets’ relative cardinalities with the consistency level. To formulate the VC-DFRSA
model, we define the P-dominating set and P-dominated set of an object x as fuzzy subsets of
U with the following membership functions:

(1) P-dominating set: D+
P (x)(y) = DP(y, x) for every y ∈ U ,

(2) P-dominated set: D−
P (x)(y) = DP(x, y) for every y ∈ U .

Then, we can consider three kinds of generalizations of VC-DRSA to VC-DFRSA.
First, if a scalar consistency level l ∈ (0.5, 1] is given, then we use the relative �-count to

measure if an object satisfies the partial consistency requirement. Thus, the P-lower and P-upper
approximations of Cl≥t and Cl≤t for each t ∈ Vd are defined as fuzzy subsets of U with the
following membership functions:

Pl(Cl≥t )(x) =
{

Cl≥t (x), if �
(Cl≥t /D+
P (x)) ≥ l,

0, otherwise,
(26)

Pl(Cl≤t )(x) =
{

Cl≤t (x), if �
(Cl≤t /D−
P (x)) ≥ l,

0, otherwise,
(27)

P
l
(Cl≥t )(x) =

{
Cl≥t (x), if �
(Cl≥t /D−

P (x)) ≤ 1 − l,
Cl≥t (x)⊕ Cl≤t (x), otherwise,

(28)

P
l
(Cl≤t )(x) =

{
Cl≤t (x), if �
(Cl≤t /D+

P (x)) ≤ 1 − l,
Cl≥t (x)⊕ Cl≤t (x), otherwise.

(29)

Second, if the consistency level is a fuzzy number over (0.5, 1] ∩ Q, then we use the
relative cardinality E S to measure an object’s degree of consistency. Hence, for a fuzzy number
l̃ : (0.5, 1]∩Q → [0, 1], the membership functions for the P-lower and P-upper approximations
of Cl≥t and Cl≤t are defined as follows:

Pl̃(Cl≥t )(x) = Cl≥t (x)⊗ π(E S(Cl≥t /D+
P (x)) ≥ l̃), (30)

Pl̃(Cl≤t )(x) = Cl≤t (x)⊗ π(E S(Cl≤t /D−
P (x)) ≥ l̃), (31)

P
l̃
(Cl≥t )(x) = Cl≥t (x)⊕ (Cl≤t (x)⊗ π(E S(Cl≥t /D−

P (x)) > 1 − l̃)), (32)

P
l̃
(Cl≤t )(x) = Cl≤t (x)⊕ (Cl≥t (x)⊗ π(E S(Cl≤t /D+

P (x)) > 1 − l̃)). (33)

In the above definition, the relative cardinality E S is regarded as a fuzzy number, and π(·) returns
the possibility of the comparison statement between two fuzzy numbers based on the extension
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principle. For example, the possibility of a fuzzy number l̃1 being greater than another fuzzy
number l̃2 is defined as π(l̃1 > l̃2) = supv1>v2

min(μl̃1
(v1), μl̃2

(v2)), where v1 and v2 are ranged
over the domain of the fuzzy numbers (i.e. v1, v2 ∈ [0, 0.5) ∩ Q). In addition, the membership
function of the fuzzy number 1 − l̃ is defined as μ1−l̃(v) = μl̃(1 − v) for any v ∈ [0, 0.5) ∩ Q.

Third, if the consistency level is a (0.5, 1]∩Q-valued random variable, we can use the relative
cardinality E R to measure the probability of an object’s consistency. Let us overload the notation
E R(G/F) to denote a [0, 1] ∩ Q-valued random variable whose probability mass function is
defined as Pr(E R(G/F) = q) = E R(G/F, q) for any fuzzy sets F and G, and let l̂ be any
(0.5, 1]∩Q-valued random variable. Then, the membership functions for the P-lower and P-upper
approximations of Cl≥t and Cl≤t are defined as follows:

Pl̂(Cl≥t )(x) = Cl≥t (x)⊗ Pr(E R(Cl≥t /D+
P (x)) ≥ l̂), (34)

Pl̂(Cl≤t )(x) = Cl≤t (x)⊗ Pr(E R(Cl≤t /D−
P (x)) ≥ l̂), (35)

P
l̂
(Cl≥t )(x) = Cl≥t (x)⊕ (Cl≤t (x)⊗ Pr(E R(Cl≥t /D−

P (x)) > 1 − l̂)), (36)

P
l̂
(Cl≤t )(x) = Cl≤t (x)⊕ (Cl≥t (x)⊗ Pr(E R(Cl≤t /D+

P (x)) > 1 − l̂)). (37)

The three types of variable consistency models for DFRSA are called VC1-DFRSA,
VC2-DFRSA, and VC3-DFRSA, respectively. As a scalar l can be regarded as a single-point
(possibility or probability) distribution, all three types of models are applicable when the consis-
tency level is a scalar. A typical application of VC2-DFRSA is when the consistency level is given
by a linguistic term. For example, it may be required that the consistency level is moderately high.
On the other hand, VC3-DFRSA may be applied when the consistency level is set as a sub-interval
of (0.5, 1] ∩ Q. In this case, the consistency level is regarded as a uniform distribution on the
sub-interval, so it is actually a random variable.

Proposition 4.2

(1) VC1-DFRSA is reduced to VC-DRSA for the analysis of POIS.
(2) VC1-DFRSA is a special case of both VC2-DFRSA and VC3-DFRSA for the analysis of

POIS.

Proof

(1) In the case of POIS, the sets D+
P (x) and D−

P (x) for any x ∈ U and Cl≥t and Cl≤t for any
t ∈ Vd are all crisp sets. Thus, by Lemma 4.1, the relative � count of two crisp sets is
simply the classical relative cardinality. Consequently, the definitions in (26), (27), (28),
(29) reduce to those given in Greco et al. (2000).

(2) By Lemma 4.1, the values of E S in (30), (31), (32), (33) are single-point possibility
distributions and the values of E D in (34), (35), (36), (37) are single-point proba-
bility distributions. Thus, when the consistency level of the VC2-DFRSA (resp. VC3-
DFRSA) is the special case of a single-point possibility (resp. probability) distribution,
definitions (30), (31), (32), (33) (resp. (34), (35), (36), (37)) are equivalent to (26)-(29),
respectively. For example, if �
(Cl≥t /D+

P (x)) = q , then E S(Cl≥t /D+
P (x), q) = 1 and

E S(Cl≥t /D+
P (x), x) = 0 for x �= q . Let the consistency level l̃ be defined such that

μl̃(l) = 1 and μl̃(v) = 0 if v �= l. Then, π(E S(Cl≥t /D+
P (x)) ≥ l̃) = 1 iff q ≥ l and

π(E S(Cl≥t /D+
P (x)) ≥ l̃) = 0 otherwise. Thus, (30) is equivalent to (26). �
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672 T.-F. Fan et al.

4.3. Variable precision models of DFRSA

The variable precision DRSA model can be understood from an evidence-based perspective. In
VP-DRSA, each object can be regarded as a piece of evidence about whether a target object
should be included in a given class. For example, when we consider whether an object x should
be included in the upward union of classes Cl≥t , each object could be

(1) a piece of positive evidence if it is P-dominated by x and belongs to Cl≥t at the same
time;

(2) a piece of negative evidence if it P-dominates x , but belongs to Cl≤t−1; or
(3) a piece of neutral evidence if it is neither positive nor negative.

Thus, an object supports the hypothesis x ∈ Cl≥t if it is a piece of positive evidence, and rejects
the hypothesis if it is a piece of negative evidence. Furthermore, an object is irrelevant to the
hypothesis if it is a piece of neutral evidence. Consequently, the degree of confirmation for the
hypothesis is the ratio of supporting objects over relevant objects. The VP-DRSA model considers
that x belongs to the lower approximation of Cl≥t if the degree of confirmation for the hypothesis
x ∈ Cl≥t is not less than a precision level in (0.5, 1] (Inuiguchi et al. 2009).

As in the case of VC-DFRSA, we can consider three types of variable precision models for
DFRSA, since the precision level may be a scalar, a fuzzy number, or a random variable in DFRSA.
However, because the ratio of supporting objects over relevant objects in DFRSA is not directly
equal to the relative cardinality between two fuzzy sets, we have to change the definitions of �
,
E S, and E R slightly, although we still use the same notation. For two fuzzy subsets F and G of
the same universe, we define

�
(G†F) = �
(G)

�
(G)+�
(F)
; (38)

E S(G†F, q) = sup

{
α ∈ �(G) ∪�(F) | |Gα|

|Gα| + |Fα| = q

}
(39)

for any q ∈ Q ∩ [0, 1]; and

E R(G†F, q) =
∑

|Gαi |
|Fαi |+|Gαi | =q

(αi − αi+1) (40)

for any q ∈ Q ∩ [0, 1], where αi is the i th largest value of �(G) ∪�(F) (recall that �(F) and
�(G) are the level sets of F and G, respectively, i.e. �(F) = {μF (x) | x ∈ U }). Analogous to
lemma 4.1, we have the following results for crisp sets.

Lemma 4.3 Let F and G be crisp sets and |G|
|F |+|G| = q. Then,

(1) �
(G†F) = q;
(2) E S(G†F, q) = 1 and E S(G†F, v) = 0 if v �= q;
(3) E R(G†F, q) = 1 and E R(G†F, v) = 0 if v �= q.

To simplify the presentation, for each object x ∈ U and each class label t ∈ Vd , we denote
the fuzzy subsets of objects that support x ∈ Cl≥t and x ∈ Cl≤t by S≥t

x = D−
P (x) ∩ Cl≥t

and S≤t
x = D+

P (x) ∩ Cl≤t , respectively. Following the terminology of Inuiguchi et al. (2009),
we call the lower and upper approximations of VP-DFRSA positive and nonnegative regions,
respectively. Hence, when the precision level is a scalar l ∈ (0.5, 1], we can define the P-positive
and P-nonnegative regions of Cl≥t and Cl≤t as follows:

P O Sl
P (Cl≥t ) =

{
x ∈ U | �


(
S≥t

x †S≤t−1
x

)
≥ l

}
, (41)
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P O Sl
P (Cl≤t ) =

{
x ∈ U | �


(
S≤t

x †S≥t+1
x

)
≥ l

}
, (42)

N N Gl
P (Cl≥t ) =

{
x ∈ U | �


(
S≥t

x †S≤t−1
x

)
> 1 − l

}
, (43)

N N Gl
P (Cl≤t ) =

{
x ∈ U | �


(
S≤t

x †S≥t+1
x

)
> 1 − l

}
. (44)

The model based on these definitions is called VP1-DFRSA. Note that, in the definitions, an
object that supports x ∈ Cl≥t+1 could be regarded as a piece of negative evidence for x ∈ Cl≤t ,
and an object that supports x ∈ Cl≤t−1 could be regarded as a piece of negative evidence for
x ∈ Cl≥t . In contrast to VC1-DFRSA, the positive and nonnegative regions in VP1-DFRSA are
crisp sets. Furthermore, the membership of an object in the positive region or the nonnegative
region of a union of classes does not depend on its membership degree in that union. Thus,
P O Sl

P (Cl≥t ) ⊆ Cl≥t ,Cl≥t ⊆ N N Gl
P (Cl≥t ), P O Sl

P (Cl≤t ) ⊆ Cl≤t , and Cl≤t ⊆ N N Gl
P (Cl≤t ) are

not always valid in the VP-DFRSA model.
If the precision level is a fuzzy number l̃ over (0.5, 1], we can formulate the VP2-DFRSA

model by using the E S measure. In this case, the P-positive and P-nonnegative regions of Cl≥t
and Cl≤t are fuzzy sets with the following membership functions:

P O Sl̃
P(Cl≥t )(x) = π

(
E S(S≥t

x †S≤t−1
x ) ≥ l̃

)
, (45)

P O Sl̃
P(Cl≤t )(x) = π

(
E S(S≤t

x †S≥t+1
x ) ≥ l̃

)
, (46)

N N Gl̃
P (Cl≥t )(x) = π

(
E S(S≥t

x †S≤t−1
x ) > 1 − l̃

)
, (47)

N N Gl̃
P (Cl≤t )(x) = π

(
E S(S≤t

x †S≥t+1
x ) > 1 − l̃

)
, (48)

where E S(·†·) is regarded as a fuzzy number and the possibility of the comparison between fuzzy
numbers is obtained based on the extension principle, as in the case of VC2-DFRSA.

Finally, if the precision level is a (0.5, 1]∩Q-valued random variable l̂, then we can formulate
the VP3-DFRSA model by using the E R measure defined above. In this case, the P-positive and
P-nonnegative regions of Cl≥t and Cl≤t are fuzzy sets with the following membership functions:

P O Sl̂
P (Cl≥t )(x) = Pr

(
E R(S≥t

x †S≤t−1
x ) ≥ l̂

)
, (49)

P O Sl̂
P (Cl≤t )(x) = Pr

(
E R(S≤t

x †S≥t+1
x ) ≥ l̂

)
, (50)

N N Gl̂
P (Cl≥t )(x) = Pr

(
E R(S≥t

x †S≤t−1
x ) > 1 − l̂

)
, (51)

N N Gl̂
P (Cl≤t )(x) = Pr

(
E R(S≤t

x †S≥t+1
x ) > 1 − l̂

)
, (52)

where E R(G†F) is regarded as a random variable with the distribution function Pr(E R(G†F) =
q) = E R(G†F, q).

Proposition 4.4

(1) VP1-DFRSA is reduced to VP-DRSA for the analysis of POIS.
(2) VP1-DFRSA is a special case of both VP2-DFRSA and VP3-DFRSA for the analysis of

POIS.

Proof The proof is similar to that of Proposition 4.2 and we omit the details. �
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4.4. Attribute reduction and rule generation

The main objective of attribute reduction is to remove superfluous condition attributes so that we
can find condition attributes related to the decision attribute. A number of approaches have been
proposed for attribute reduction in DFSA. Susmaga et al. (2000) presented an approach based on
the quality of sorting, while Inuiguchi et al. (2009) suggested several attribute reduction methods
that preserve the positive or nonnegative regions. Our definition of reduct for DFRSA based on
the degree of adherence to the dominance principle is similar to that proposed by Susmaga et al.
(2000). Since different formulations of the lower and upper approximations in VC-DFRSA and
VP-DFRSA do not influence the degree of adherence to the dominance principle, our attribute
reduction approach for DFRSA can be applied uniformly to all VC-DFRSA and VP-DFRSA
models. It is noteworthy that the methods proposed by Inuiguchi et al. (2009) can also be adapted
to VC-DFRSA and VP-DFRSA models in a straightforward way.

As in the case of DFRSA, we can also derive fuzzy decision rules for the VC-DFRSA and
VP-DFRSA models. To observe how these rules can be induced, let us take a closer look at the
process of generating rules in DFRSA. Each rule in DFRSA is regarded as a universal rule, which
means that all objects satisfying the antecedent should also satisfy the consequent. However,
due to the fuzziness of the rule, it is not possible to make a crisp decision about whether an
object satisfies the antecedent or the consequent. Thus, a confidence is attached to each rule to
reflect its truth degree. The confidence is simply the membership degree of an object in the lower
approximation, as shown in (15) and (16). Nevertheless, in VC-DFRSA and VP-DFRSA, the
membership degree of an object in the lower approximation does not represent the confidence of
the corresponding rule. Instead, it represents the extent that the confidence reaches the desired
consistency or precision level. In other words, the membership degree represents a kind of second-
order uncertainty about the rule because the confidence can be seen as the first-order uncertainty
(or the degree of certainty) that the rule holds, whereas the membership degree specifies the
uncertainty about the confidence value. Hence, there are two ways to derive decision rules in
VC-DFRSA and VP-DFRSA. The first is to derive universal rules with relative cardinalities as
their confidences, and the second is to derive certainty-quantified rules with membership degrees
as their confidences. To simplify the formulation of these rules, we use ϕ≥

x and ϕ≤
x to denote∧

i∈P(≥i , fi (x)) and
∧

i∈P(≤i , fi (x)), respectively. In addition, we let L denote the consistency
or precision level in the respective models, and let rc≥t

x and rc≤t
x denote the relative cardinality in

the respective lower approximations. For example, in the VP2-DFRSA model, L denotes a fuzzy
number l̃ and rc≥t

x denotes the relative cardinality E S(S≥t
x †S≤t−1

x ).
Let P denote a reduct of a POPIS and let t ∈ Vd . Then, by using the first kind of rule induction

method, for each object x such that P L(Cl≥t )(x) > 0 or P O SL
P(Cl≥t )(x) > 0 (or above some

pre-determined threshold), we can derive the D≥-decision rule

ϕ≥
x −→rc≥t

x
(≥d , t); (53)

and for each object x such that P L(Cl≤t )(x) > 0 or P O SL
P(Cl≤t )(x) > 0 (or above some pre-

determined threshold), we can derive the D≤-decision rule

ϕ≤
x −→rc≤t

x
(≤d , t). (54)

The forms of the rules derived in this way are similar to those derived in DFRSA, so the process of
applying the rules to new decision cases is essentially the same as that described in Section 3.4.
However, because the confidences of these rules (i.e. the relative cardinalities) may be fuzzy
numbers or random variables, we have to defuzzify them before the rules are applied. For example,
a fuzzy number is replaced by its centroid and a random variable is replaced by its expectation.
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On the other hand, by using the second kind of rule induction method, the D≥-decision rule
and the D≤-decision rule take the following forms:

ϕ≥
x −→ L

c (≥d , t) with c = P L(Cl≥t )(x); (55)

ϕ≤
x −→ L

c (≤d , t) with c = P L(Cl≤t )(x), (56)

where P L is replaced with P O SL
P in the VP-DFRSA model, and −→L is a certainty-quantified

implication operation between the antecedent and the consequent of the rules. The certainty-
quantified implication can represent less certain rules as well as universal rules. In the three
models for VC-DFRSA and VP-DFRSA, the intuitive meaning of a rule ϕ −→ Lψ may be

(1) “At least L · 100% of ϕ’s are ψ’s” if L is a scalar;
(2) “Most ϕ’s are ψ’s” if L is a fuzzy number representing the fuzzy quantifier “most”; and
(3) “It is very likely that ϕ’s areψ’s” if L is a random variable corresponding to “very likely.”

Therefore, it is more complicated to apply the certainty-quantified rules to a new decision case,
since it is still unclear how the formal semantics of the rules can be defined. Here, we suggest
a simplified rule application process. First, we defuzzify the parameter L into a scalar and then
merge it with the confidence of the rule to approximately transform the rule into a basic DFRSA
rule. In other words, a rule ϕ −→ L

c ψ in VC-DFRSA or VP-DFRSA is transformed into a basic
rule ϕ −→c⊗l ψ , where l is the result of defuzzifying L . Then, the resultant rule can be applied
to the new decision case in the standard way. However, we note that the approach may be over-
simplified because it does not necessarily reflect the intended semantics of the certainty-quantified
rules. The formal treatment of these rules based on the generalized theory of quantifiers (Glöckner
2004) is left for future research.

4.5. The illustrative example

In Section 3.5, we derive the rule (≥ 2, L5)∧(≥ 3, L5) −→1 (≥d , 8) based on the membership of
the object x1 in P(Cl≥8 ). However, we cannot derive a rule (≥ 2, L5)∧ (≥ 3, L5) −→ c(≥ d , 10)
with any c > 0, because there are three objects (x2, x3, and x5) that are partially better (with degree
1
4 ) than x1 with respect to the two criteria but do not belong to Cl≥10 at all (i.e. the membership
degree is 0). On the other hand, since the membership degree of x1 in Cl≥10 is 1, we should
expect that the rule (≥ 2, L5) ∧ (≥ 3, L5) −→ (≥d , 10) is at least plausible to some extent. In
this subsection, we show that VC-DFRSA or VP-DFRSA models can alleviate the problem by

Table 5. The fuzzy sets Cl≥10, Cl≤9 , D+
P (x1), D−

P (x1), S≥10
x1 , and S≤9

x1 .

x14 x2 x3 x4 x5 x6 x7 x8

Cl≥10 1 0 0 0 0 0 0 0

Cl≤9
1
2 1 1 1 1 1 1 1

D+
P (x1) 1 1

4
1
4 0 1

4 0 0 0

D−
P (x1) 1 1 1 1 1 1 1 1

S≥10
x1 1 0 0 0 0 0 0 0

S≤9
x1

1
2

1
4

1
4 0 1

4 0 0 0
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676 T.-F. Fan et al.

inducing the rule with some confidence. To do that, we show in Table 5 the fuzzy sets Cl≥10, Cl≤9 ,
D+

P (x1), D−
P (x1), S≥10

x1
, and S≤9

x1
that are needed in the rule induction process of VC-DFRSA or

VP-DFRSA models.

4.5.1. VC-DFRSA models

For VC-DFRSA models with three kinds of relative cardinalities, instantiating (18), (21), and (25)
with the data in Table 5, we obtain

�
(Cl≥10/D+
P (x1)) = 1

1 + 3 · 1
4

= 4

7
,

E S(Cl≥10/D+
P (x1))(q) =

⎧⎨
⎩

1, if q = 1;
1
4 , if q = 1

4 ;
0, otherwise,

E R(Cl≥10/D+
P (x1))(q) =

⎧⎪⎨
⎪⎩

3
4 , if q = 1;
1
4 , if q = 1

4 ;
0, otherwise.

The relative cardinalities are then applied to the rule generation process based on the three kinds
of VC-DFRSA models. For VC1-DFRSA, if the consistency level is a scalar l ∈

(
1
2 ,

4
7

]
, then

Pl(Cl≥10)(x1) = Cl≥10(x1) = 1. Therefore, by using (53), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→ 4
7
(≥d , 10);

or by using (55), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→ l
1(≥d , 10).

Note that the confidence of the rule is at most 4
7 ≈ 0.57. Thus, these rules are not quite strong.

For VC2-DFRSA, let the consistency level be a fuzzy number l̃ over (0.5, 1] ∩ Q. Then,

π(E S(Cl≥10/D+
P (x1)) ≥ l̃) = max

⎛
⎝sup

1≥x
min(1, μl̃(x)), sup

1
4 ≥x

min

(
1

4
, μl̃(x)

)⎞
⎠ = 1.

Thus, Pl̃(Cl≥10)(x1) = 1, and by using (53), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→c (≥ d , 10),

where c = E S(Cl≥10/D+
P (x1)), or by using (55), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→l̃
1 (≥d , 10).

By using the center-of-gravity method to defuzzify E S(Cl≥10/D+
P (x1)), the confidence of the first

rule is
(

1 · 1 + 1
4 · 1

4

) / (
1 + 1

4

)
= 17

20 = 0.85, which is stronger than the rules derived by VC1-

DFRSA. We can even have stronger rules by defuzzifying l̃ in the second rule if l̃ is a sufficiently
large fuzzy number. In the extreme case, if μl̃(1) = 1 and μl̃(x) = 0 for x ∈ (0.5, 1) ∩ Q (i.e. l̃
degenerates into the scalar 1), then the confidence of the second rule is 1 and it becomes a fully
certain rule.
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For VC3-DFRSA, the consistency level is a (0.5, 1] ∩ Q-valued random variable l̂. Hence,
Pr(E R(Cl≥10/D+

P (x1)) ≥ l̂) = 3
4 · Pr(l̂ ≤ 1) + 1

4 · Pr
(

l̂ ≤ 1
4

)
= 3

4 and Pl̂(Cl≥10)(x1) = 3
4 .

Therefore, by using (53), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→c (≥d , 10),

where c = E R(Cl≥10/D+
P (x1)); or by using (55), we can derive

(≥2, L5) ∧ (≥ 3, L5) −→l̂
3
4
(≥d , 10).

The expectation of the probability distribution E R(Cl≥10/D+
P (x1)) is 1 · 3

4 + 1
4 · 1

4 = 13
16 ≈ 0.81.

Thus, the first rule has the similar confidence with the first rule of VC2-DFRSA above. On the
other hand, the confidence of the second rule is 3

4 · E(l̂), which is at most 3
4 since the expectation

of a (0.5, 1] ∩ Q-valued random variable l̂) is at most 1. Hence, the second rule is weaker than
the first one, although it is still stronger than the rules derived from VC1-DFRSA.

4.5.2. VP-DFRSA models

For VP-DFRSA models with three kinds of relative cardinalities, instantiating (38), (39), (40)
with the data in Table 5, we have

�

(

S≥10
x1

†S≤9
x1

)
= 1

1
2 + 3 · 1

4

= 4

5
,

E S
(

S≥10
x1

†S≤9
x1

)
(q) =

⎧⎪⎪⎨
⎪⎪⎩

1, if q = 1;
1
2 , if q = 1

2 ;
1
4 , if q = 1

5 ;
0, otherwise,

E R
(

S≥10
x1

†S≤9
x1

)
(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 , if q = 1;
1
4 , if q = 1

2 ;
1
4 , if q = 1

5 ;
0, otherwise.

The relative cardinalities are applied to the rule generation process based on the three kinds
of VP-DFRSA models. For VP1-DFRSA, if the precision level is a scalar l ∈

(
1
2 ,

4
5

]
, then

x1 ∈ P O Sl
P(Cl≥10) since �


(
S≥10

x1
†S≤9

x1

) ≥ l. Thus, by using (53), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→ 4
5
(≥d , 10);

or by using (55), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→l
1 (≥d , 10).

Note that the confidence of the rule is at most 4
5 , which is similar to that of the first rule derived

from VC3-DFRSA.
For VP2-DFRSA, the precision level is a fuzzy number l̃ over (0.5, 1] ∩ Q. Obviously,

P O Sl̃
P (Cl≥10)(x1) = π

(
E S

(
S≥10

x1
†S≤9

x1

) ≥ l̃
)

= 1. Thus, by using (53), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→c (≥d , 10),
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678 T.-F. Fan et al.

where c = E S
(
S≥10

x1
†S≤9

x1

)
; or by using (55), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→l̃
1 (≥d , 10).

By using the center-of-gravity method to defuzzify E S
(
S≥10

x1
†S≤9

x1

)
, the confidence of the first

rule is
(

1 · 1 + 1
2 · 1

2 + 1
4 · 1

5

) / (
1 + 1

2 + 1
4

)
= 26

35 ≈ 0.74, which is near to that of the second
rule derived by VC3-DFRSA. On the other hand, the second rule is completely the same as the
second rule derived by VC2-DFRSA. Thus, we can obtain a fully certain rule as in the case of
VC2-DFRSA.

For VP3-DFRSA, the precision level is a (0.5, 1] ∩ Q-valued random variable l̂. Then, we
have P O Sl̂

P

(
Cl≥10

)
(x1) = Pr

(
E R

(
S≥10

x1
†S≤9

x1

) ≥ l̂
)

= 1
2 · Pr(l̂ ≤ 1)+ 1

4 · Pr
(

l̂ ≤ 1
2

)
+ 1

4 ·
Pr

(
l̂ ≤ 1

5

)
= 1

2 and Pl̂
(
Cl≥10

)
(x1) = 1

2 . Thus, by using (53), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→c (≥d , 10),

where c = E R
(
S≥10

x1
†S≤9

x1

)
; or by using (55), we can derive

(≥ 2, L5) ∧ (≥ 3, L5) −→l̂
1
2
(≥d , 10).

The expectation of the probability distribution E R
(
S≥10

x1
†S≤9

x1

)
is 1· 1

2 + 1
2 · 1

4 + 1
5 · 1

4 = 27
40 ≈ 0.675.

On the other hand, the confidence of the second rule is 1
2 · E(l̂), which is the weakest rule and can

almost be dismissed.

4.6. A case study

In this subsection, we present a comparative study of the proposed models based on a small
data-set of student evaluations. In the data-set, every student’s passing status (P S) is determined
by his/her grades on three academic courses mathematics (Math), computer science (C S), and
literature (Lit). Each course is graded according to a grading scale that ranges from 4 (Excellent)
to 1 (Failing) and the passing status is either 1 (pass) or 0 (fail). Thus, the data-set is represented
as a POIS T = (U, A, {(Vi ,�i ) | i ∈ A}, { fi | i ∈ A}), where U is the set of students;
A = {Math,C S, Lit, P S}; Vi = {1, 2, 3, 4} for i = Math,C S, and Lit and Vd = {0, 1} for
d = P S with 4 �i 3 �i 2 �i 1 and 1 �d 0. The POIS is shown in Table 6. For the purpose of
comparison, we intentionally include several noisy data items (i.e. x6, x10, x18, x23) in the table.
Although this POIS is simply an artificially synthetic data-set, its basic characteristics could exist
in many real datasets.

In this example, the set of condition attributes is P = {Math,C S, Lit}. Because T is a POIS,
D+

P (x) and D−
P (x) for every x ∈ U and Cl≥1 and Cl≤0 are all crisp sets. From the POIS, we can

derive
Cl≥1 = {x1, x2, x3, x4, x5, x7, x8, x9, x11, x12, x13, x18, x23}

Cl≤0 = {x6, x10, x14, x15, x16, x17, x19, x20, x21, x22, x24, x25}
and the P-dominating and P-dominated sets of every x ∈ U are specified in Table 7. By Lemmas
4.1 and 4.3, the functions �
, E S, and E R depend only on the cardinalities of D+

P (x), D−
P (x),

D+
P (x) ∩ Cl≥1 , D−

P (x) ∩ Cl≤0 , S≤0
x = D+

P (x) ∩ Cl≤0 , and S≥1
x = D−

P (x) ∩ Cl≥1 . The cardinalities
of these sets are shown in Table 8. Since |D+

P (x)| = |D+
P (x) ∩ Cl≥1 | + |D+

P (x) ∩ Cl≤0 | and
|D−

P (x)| = |D−
P (x)∩Cl≤0 |+|D−

P (x)∩Cl≥1 |, we do not explicitly specify them in the table. Then,
we can derive the lower and upper approximations of the decision classes according to different
models. For the simplicity of the presentation, we only consider the lower approximation since
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Table 6. A POIS of student evaluation.

U \ A Math CS Lit PS

x1 4 4 4 1
x2 4 4 4 1
x3 4 4 4 1
x4 4 3 4 1
x5 4 4 3 1
x6 4 4 3 0
x7 4 3 4 1
x8 4 4 3 1
x9 3 4 4 1
x10 4 3 3 0
x11 4 3 3 1
x12 3 4 4 1
x13 3 3 3 1
x14 3 3 2 0
x15 2 3 2 0
x16 2 2 3 0
x17 2 3 3 0
x18 2 2 2 1
x19 2 1 2 0
x20 1 2 2 0
x21 1 1 3 0
x22 1 3 1 0
x23 1 1 2 1
x24 1 2 1 0
x25 1 1 1 0

it is more important for the process of rule induction. To calculate the lower approximations in
different models, we need the following four quantities for every x ∈ U :

q1(x) = |D+
P (x)|

|D+
P (x) ∩ Cl≥1 | , q2(x) = |D−

P (x)|
|D−

P (x) ∩ Cl≤0 | ,

q3(x) = |S≥1
x | + |S≤0

x |
|S≥1

x | , q4(x) = |S≥1
x | + |S≤0

x |
|S≤0

x | .

Note that q3(x)+q4(x) = 1 for any x ∈ U . The values of qi (x) for 1 ≤ i ≤ 4 are shown in
Table 9.

As the baseline of the comparison, we start with the DRSA model. By using Table 9, we can
find that

P(Cl≥1 ) = {x1, x2, x3, x4, x7, x9, x12} and P(Cl≤0 ) = {x22}.
That is, x ∈ P(Cl≥1 ) iff q1(x) = 1 and x ∈ P(Cl≤0 ) iff q2(x) = 1. Each object in the lower
approximations can induce a decision rule. For example, x7 can induce the rule

(≥Math, 4) ∧ (≥C S, 3) ∧ (≥Lit , 4) −→ (≥P S, 1),

which means that if a student’s grade of mathematics is excellent, grade of computer science is at
least good, and grade of literature is excellent, then his/her passing status is “pass.” As expected,
the noisy items block many useful rules. For examples, the D≥ decision rules based on x5, x8, x11
or D≤ decision rules based on x19, x20, x21, x24, x25 cannot be derived by using the DRSA model.
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Table 7. The dominating and dominated sets.

U D+
P (x) D−

P (x)

x1 {x1, x2, x3} U
x2 {x1, x2, x3} U
x3 {x1, x2, x3} U
x4 {x1, x2, x3, x4, x7} {x4, x7, x10, x11, x13, . . . , x25}
x5 {x1, x2, x3, x5, x6, x8} {x5, x6, x8, x10, x11, x13, . . . , x25}
x6 {x1, x2, x3, x5, x6, x8} {x5, x6, x8, x10, x11, x13, . . . , x25}
x7 {x1, x2, x3, x4, x7} {x4, x7, x10, x11, x13, . . . , x25}
x8 {x1, x2, x3, x5, x6, x8} {x5, x6, x8, x10, x11, x13, . . . , x25}
x9 {x1, x2, x3, x9, x12} {x9, x12, . . . , x25}
x10 {x1, . . . , x8, x10, x11} {x10, x11, x13, . . . , x25}
x11 {x1, . . . , x8, x10, x11} {x10, x11, x13, . . . , x25}
x12 {x1, x2, x3, x9, x12} {x9, x12, . . . , x25}
x13 {x1, . . . , x13} {x13, . . . , x25}
x14 {x1, . . . , x14} {x14, x15, x18, x19, x20, x22, x23, x24, x25}
x15 {x1, . . . , x15, x17} {x15, x18, x19, x20, x22, x23, x24, x25}
x16 {x1, . . . , x13, x16, x17} {x16, x18, x19, x20, x21, x23, x24, x25}
x17 {x1, . . . , x13, x17} {x15, . . . , x25}
x18 {x1, . . . , x18} {x18, x19, x20, x23, x24, x25}
x19 {x1, . . . , x19} {x19, x23, x25}
x20 {x1, . . . , x18, x20} {x20, x23, x24, x25}
x21 {x1, . . . , x13, x16, x17, x21} {x21, x23, x25}
x22 {x1, . . . , x15, x17, x22} {x22, x24, x25}
x23 {x1, . . . , x21, x23} {x23, x25}
x24 {x1, . . . , x18, x20, x22, x24} {x24, x25}
x25 U {x25}

VC-DRSA and VP-DRSA are two proposal that can alleviate the problem to some extent.
We have seen that VC1-DFRSA and VP1-DFRSA are, respectively, equivalent to VC-DRSA and
VP-DRSA in the case of crisp information systems. In these two models, we have to specify a
scalar parameter l as the level of consistency or precision. If l = 0.8, then for VC1-DFRSA (i.e.
VC-DRSA), we have x ∈ P0.8(Cl≥1 ) iff q1(x) ≥ 0.8 and x ∈ P0.8(Cl≤0 ) iff q2(x) ≥ 0.8, thus

P0.8(Cl≥1 ) = {x1, · · · , x5, x7, x8, x9, x11, x12, x13} and P0.8(Cl≤0 ) = {x17, x22};
and for VP1-DFRSA (i.e. VP-DRSA), we have x ∈ P O S0.8

P (Cl≥1 ) iff q3(x) ≥ 0.8 and x ∈
P O S0.8

P (Cl≤0 ) iff q4(x) ≥ 0.8, thus

P O S0.8
P (Cl≥1 ) = {x1, · · · , x9, x12} and P O S0.8

P (Cl≤0 ) = {x19, · · · , x25}.
Now, several rules blocked by noisy data in DRSAare derivable in VC1-DFRSAand VP1-DFRSA.
For example, by using x5, we have the D≥ decision rule

(≥Math, 4) ∧ (≥C S, 4) ∧ (≥Lit , 3) −→0.8 (≥P S, 1),

which means that at least 80% of students who satisfy the antecedent of the rule will pass.
We can see that there is little difference between P0.8(Cl≥1 ) and P O S0.8

P (Cl≥1 ) and it seems
that all expected D≥ decision rules can be induced in this case. However, it seems that VP-DRSA
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Table 8. The cardinalities of D+
P (x) ∩ Cl≥1 , S≤0

x , D−
P (x) ∩ Cl≤0 , and S≥1

x .

U |D+
P (x) ∩ Cl≥1 | |D+

P (x) ∩ Cl≤0 | |D−
P (x) ∩ Cl≤0 | |D−

P (x) ∩ Cl≥1 |

x1 3 0 12 13
x2 3 0 12 13
x3 3 0 12 13
x4 5 0 11 6
x5 5 1 12 6
x6 5 1 12 6
x7 5 0 11 6
x8 5 1 12 6
x9 5 0 10 5
x10 8 2 11 4
x11 8 2 11 4
x12 5 0 10 5
x13 11 2 10 3
x14 11 3 7 2
x15 11 5 6 2
x16 11 4 6 2
x17 11 3 9 2
x18 12 6 4 2
x19 12 7 2 1
x20 12 7 3 1
x21 11 8 2 1
x22 11 6 3 0
x23 13 9 1 1
x24 12 9 1 1
x25 13 12 1 1

significantly outperforms VC-DRSA in the derivation of D≤ decision rules since P O S0.8
P (Cl≤0 )

include all expected objects, whereas P0.8(Cl≤0 ) has only one more element (i.e. x17) than P(Cl≤0 )
above. In addition, x17 seems a boundary case. Hence, it is not a definite advantage to include x17
in the lower approximation.

Although VC-DRSA and VP-DRSA can alleviate the effect of noisy data, it is not clear how
to choose the parameter l appropriately. In the current case, l = 0.8 seems an optimal choice.
However, it is not clear why we should not choose l = 0.85 or l = 0.9. Moreover, a small
perturbation on l may cause abrupt change on the results. For example, if l = 0.9, then P0.9(Cl≥1 )
collapses into P(Cl≥1 ). The situation has been observed in Slezak (2005) and Slezak and Ziarko
(2005) in the context of VPRS and the Bayesian rough set (BRS) model is proposed to address
the issue. Instead of using a fixed but arbitrarily given parameter, BRS sets the consistency or
precision level as the prior probability of the occurrence of the decision class in the general
population. In the current case, the prior probabilities of Cl≥1 and Cl≤0 are 13

25 and 12
25 , respectively,

which seems too loose for the rule induction process.
On the other hand, VC2-DRSA and VP2-DRSA do not completely free the users from the

burden of choosing the parameters. However, these models allow a more flexible way to specify
their consistency or precision levels with soft parameters. Instead of a precise parameter, it is
allowed to use a linguistic term like “moderately possible,” “highly possible,” “about 0.8,” etc.
For instance, let the parameter be vaguely specified as l̃ = “about 0.9” and assume that l̃ is
characterized by the bell-shaped membership function:
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Table 9. The values of q1(x), q2(x), q3(x), q4(x).

U q1(x)4 q2(x) q3(x) q4(x)

x1 1 12
25 1 0

x2 1 12
25 1 0

x3 1 12
25 1 0

x4 1 11
17 1 0

x5
5
6

2
3

6
7

1
7

x6
5
6

2
3

6
7

1
7

x7 1 11
17 1 0

x8
5
6

2
3

6
7

1
7

x9 1 2
3 1 0

x10
4
5

11
15

2
3

1
3

x11
4
5

11
15

2
3

1
3

x12 1 2
3 1 0

x13
11
13

10
13

3
5

2
5

x14
11
14

7
9

2
5

3
5

x15
11
16

3
4

2
7

5
7

x16
11
15

3
4

1
3

2
3

x17
11
14

9
11

2
5

3
5

x18
2
3

2
3

1
4

3
4

x19
12
19

2
3

1
8

7
8

x20
12
19

3
4

1
8

7
8

x21
11
19

2
3

1
9

8
9

x22
11
17 1 0 1

x23
13
22

1
2

1
10

9
10

x24
12
21

1
2

1
10

9
10

x25
13
25

1
2

1
13

12
13

μl̃(v) = 1

1 + 2|v − 0.9| .

Then, according to the definition, for 1 ≤ i ≤ 4,

π(qi (x) ≥ l̃) = sup
0.5<v≤qi (x)

μl̃(v) =
{

1, if qi (x) ≥ 0.9,
1

1+2|qi (x)−0.9| , if qi (x) < 0.9.

Hence, the lower approximations in VC2-DFRSA and the positive regions in VP2-DFRSA can be
computed by using (30),(31),(45), and (46). For example, for any x ∈ Cl≥1 , we have Pl̃(Cl≥1 )(x) =
1 if q1(x) ≥ 0.9 and Pl̃(Cl≥1 )(x) = μl̃(q1(x)) if q1(x) < 0.9. Hence, although the core5 of

Pl̃(Cl≥1 ) still collapses into P(Cl≥1 ), it contains other elements of P0.8(Cl≥1 ) to some extent. For
example, x5 and x8 belong to P(Cl≥1 ) with membership degree 15

17 ≈ 0.88. By using (55) with
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these two objects, we can derive a rule

(≥Math, 4) ∧ (≥C S, 4) ∧ (≥Lit , 3) −→about 0.9
0.88 (≥P S, 1),

which means that it is 88% certain that nearly 90% of students who satisfy the antecedent of the
rule will pass.

VC3-DRSA and VP3-DRSA are similar to VC2-DRSA and VP2-DRSA on the aspect of
flexibility. The main difference is that in VC3-DRSA and VP3-DRSA, the parameters have a
probabilistic interpretation, whereas in VC2-DRSA and VP2-DRSA, they are interpreted in a
possibilistic way. For instance, let the parameter be specified as l̂ =“likely” and assume that l̂
is a uniform random variable on (0.5, 1], i.e. its cumulative distribution function is defined as
Fl̂(v) = 2v − 1. Then, the membership functions of the lower approximations in VC3-DFRSA
and the positive regions in VP3-DFRSA can be determined by Pr(qi (x) ≥ l̂) = 2qi (x) − 1
for 1 ≤ i ≤ 4. Let us take Pl̂(Cl≥1 ) as an example. Its core is still equal to P(Cl≥1 ). However,
it also contains other elements to some extent. For example, x5 and x8 belong to P(Cl≥1 ) with
membership degree 2 ∗ 5

6 − 1 ≈ 0.67. By using (55) with these two objects, we can derive a rule

(≥Math, 4) ∧ (≥C S, 4) ∧ (≥Lit , 3) −→likely
0.67 (≥P S, 1),

which means that it is 67% certain that students who satisfy the antecedent of the rule are likely
to pass. Apparently, the rules derived from the probabilistic interpretation are more conservative
than those derived from the possibilistic interpretation.

From the examples above, it may be considered that the membership degrees of x in a lower
approximation or a positive region is simply the rescaling of the corresponding quantity qi (x).
However, this viewpoint may be misleading because it only holds for the special case of POIS. In a
proper POPIS, the relative cardinalities in VC2-DRSA, VC3-DRSA, VP2-DRSA, and VP3-DRSA
are no longer single-point distributions and cannot be reduced to a quantity like qi (x).

5. Concluding remarks

In this paper, we review the dominance-based fuzzy rough set approach (DFRSA) framework,
which can be applied to the reduction of criteria and the induction of rules for decision analysis
in a POPIS. We show that the generation of some intuitively justified rules may be blocked by the
partial violation of the rules caused by the fuzzy dominance relation. To cope with the problem,
we propose the variable consistency models and the variable precision models of the DFRSA
framework based on fuzzy cardinalities.

In contrast to other approaches that deal with imprecise evaluations and assignments, DFRSA
induces fuzzy rules instead of qualitative rules. Thus, it would be worthwhile comparing DFRSA
with other extensions of DRSA for handling uncertain information systems, e.g. those proposed
by Greco et al. (2007) and Sakai et al. (2011).

Since DFRSA is a general framework, we do not specify the t-norm operations used in the
aggregation of consistency degrees or the implication operations used in the definition of adherence
to the dominance principle. Hence, we do not present detailed algorithms for the computation of
reducts. The computational aspects of DFRSA for specialized t-norm and implication operations
will also be addressed in a future work.

As shown in Fan (2011a), the computational complexity of the naive implementation of
DFRSA prevents us from applying it to any real data at this stage. Consequently, no empirical
study or statistical analysis is included in the work. While the work would definitely benefit from
empirical validation, we reiterate that the focus of the work is a theoretical framework to deal with
rough set analysis of possibilistic data. Our purpose is to determine what rules can be reasonably
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684 T.-F. Fan et al.

induced from the data, instead of how they can be induced efficiently. Thus, the framework is
primarily declarative instead of procedural. However, although large-scale empirical validation
of the proposed framework is still lacking, we have used real examples to illustrate how the
rules can be induced and how the notions of fuzzy cardinalities are used to alleviate the problem
of the partial violation of rules. Furthermore, the complexity of the naive implementation does
not exclude the possibility of more efficient implementations of the approach. The performance
improvement and empirical analysis of the framework will be addressed in a future work.
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Notes
1. Also called knowledge representation systems, data tables, or attribute-value systems
2. For the properties of these operations, see a standard reference on fuzzy logic, such as Hájek (1998)
3. That is, a → b = 1 if a ≤ b and a → b = b if a > b for any a, b ∈ [0, 1].
4. In this section, we use the notations E, E S, E R, and E D introduced in Delgado et al. (2002) to denote

fuzzy cardinalities. Unfortunately, it is not explicitly mentioned in Delgado et al. (2002) what the acronyms
stand for.

5. A core of a fuzzy set F is defined as {x ∈ U | μF (x) = 1}.
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