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ABSTRACT

Group testing is a search paradigm where one is given a population S of n elements and an
unknown subset P � S of defective elements and the goal is to determine P by performing
tests on subsets of S. In classical group testing a test on a subset Q � S receives a YES
response if jQ \ Pj� 1, and a NO response otherwise. In group testing with inhibitors (GTI),
identifying the defective items is more difficult due to the presence of elements called in-
hibitors that interfere with the queries so that the answer to a query is YES if and only if the
queried group contains at least one defective item and no inhibitor. In the present article, we
consider a new generalization of the GTI model in which there are two unknown thresholds
h and g and the response to a test is YES both in the case when the queried subset contains at
least one defective item and less than h inhibitors, and in the case when the queried subset
contains at least g defective items. Moreover, our search model assumes that no knowledge
on the number jPj of defective items is given. We derive lower bounds on the minimum
number of tests required to determine the defective items under this model and present an
algorithm that uses an almost optimal number of tests.
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1. INTRODUCTION

Group testing is a search paradigm where one is given a population S of n elements and an unknown

subset P � S of defective elements and the goal is to determine P by performing tests on subsets of S.

In classical group testing, a test on a subset Q � S receives a YES (positive) response if jQ \ Pj� 1, and a

NO (negative) response otherwise. Group testing origins track back to World War II when it was used to

detect among millions of draftees’ blood samples those infected with syphilis (Dorfman, 1943). Since its

origins, group testing has been fruitfully applied to several areas such as data compression (Hong and Ladner,

2002), efficient access to storage systems (Kautz and Singleton, 1964), conflict resolution algorithms for

multiple-access systems (Berger et al., 1984; Wolf, 1985), quality control in product testing (Sobel and Groll,

1959), data gathering in sensor networks (Hong and Scaglione, 2004), and sequential screening of experi-

mental variables (Li, 1962). Nowadays, some of the most interesting applications of group testing concern the
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field of Computational Molecular Biology where it is primarily employed for screening library of clones with

hybridization probes (Barillot et al., 1991; Bruno et al., 1995), and sequencing by hybridization (Margaritis

and Skiena, 1995; Pevzner and Lipshutz, 1994). We refer readers interested in these issues to the references

(Balding et al., 1996; Du and Hwang, 2000, 2006; Farach et al., 1997; Ngo and Du, 2000).

The classical paradigm of group testing is well studied, and there exist algorithms for this search

model that use a number of tests very close to the information theoretic lower bound dlog n
jPj

� �
e. The

many different contexts in which group testing finds application often involve complex querying models

that call for extensions of the classical paradigm. Motivated by molecular biology applications, Farach

et al. (1997) introduced a variation of group testing known under the name of Group Testing with

Inhibitors (GTI). In this model, the input population consists not only of regular samples and defective

samples, but also of a third category of samples called inhibitors. Inhibitors correspond to spoiled

samples capable to interfere with the tests so as to make their outcomes meaningless. In the GTI model a

subset tests positive if and only if it contains one or more defective items and no inhibitor. Many results

concerning the GTI model have been studied (Chang et al., 2010; De Bonis, 2008; De Bonis et al., 2005;

De Bonis and Vaccaro, 1998; Du and Hwang, 2000, 2006; D’yachkov et al., 2001; Farach et al., 1997;

Hwang and Liu, 2003).

Group testing with inhibitors also finds application in the discovery of new drugs. The pharmaceutical

companies use group testing for screening collections of hundreds of thousands of chemical compounds,

with the purpose of selecting highly active compounds that might lead to the developments of new drugs.

This job is made more complicated by the presence of chemical compounds that block the detection of

active compounds when appear in the tested pool. An analogous situation occurs in blood testing when

different samples of blood are pooled together. Indeed, there might be blood samples that neutralize

positive blood samples thus causing false negative responses. For an account on issues concerning these

applications, see previous studies (Langfeldt et al., 1997; Phatarfod and Sudbury, 1994; Xie et al., 2001).

The common simplified assumption is that a single blocking element is able to mask the presence of any

number of positive elements in the tested pools. In reality, however, more complex situations may arise,

where the blocking action is determined by the combined action of certain samples. Moreover, the blocking

action of these samples can be contrasted by the additive effect of two or more positive samples. In the

present article, we propose a generalization of the GTI model that better accommodates this kind of

applications.

In our generalization of the GTI model, the interaction between defective items and inhibitors is pa-

rameterized by two thresholds g� 1 and h� 1. In this parameterized version of GTI, at least h inhibitors are

needed to neutralize the defective items in the tested subset. Moreover, if the number of defective items in a

given subset is at least g, then the response of the test is YES no matter how many inhibitors are in the

subset. Of particular note is that we assume that the two thresholds g and h, as well as the number jPj of

defective items, be unknown. We will refer to this search model as threshold-GTI. This model is based on

the assumption that in the reality a single inhibitory element might have no effect on the response of the

tests. It is reasonable to assume that the interference of inhibitory elements might be more or less effective

depending on the number of spoiled samples related to the number of positive samples contained in the

tested pool. Therefore, we assume that a test is able to detect the eventual presence of positive elements in

the pool if and only if the number of inhibitors in the tested pool is below a certain threshold. Moreover, no

matter how many inhibitors are in the tested subset, such an interference might be completely neutralized

by a sufficiently large number of positive elements. Our assumption that the two thresholds g and h be

unknown is consistent with the fact that in practice very little might be known on how powerful inhibitors

are and how their action is contrasted by positive samples.

In the literature, other parameterized versions of classical group testing have been considered. The

authors (Chen and Fu, 2009; Damaschke, 2005) studied a generalization of group testing in which there are

two fixed thresholds ‘ and u, with ‘< u, and the response to a test is positive if the tested subset contains at

least u defective samples, negative if it contains at most ‘ defective samples, and the response is arbitrarily

given otherwise. De Bonis and Vaccaro (2003) introduced a parameterized version of the GTI problem. In

that model, a test is positive if and only if it contains at least one defective item and less than d inhibitors.

This model coincides with ours in the case when jPj5 g and d¼ h. It is remarkable that the algorithm

given in De Bonis and Vaccaro (2003) works under the assumption of the threshold d being known, and

consequently it does not work for our model.
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2. DESCRIPTION OF THE MODEL AND SUMMARY OF RESULTS

Recall that our group testing scenario consists of a set S ¼f1, . . . , ng that contains an unknown subset P
of defective (positive) items and an unknown subset I of inhibitors. A test on a subset Q � S is

positive, if
jQ \ Pj � g,

jQ \ Pj � 1 and jQ \ Ij5 h;

�

negative, if
jQ \ Pj¼ 0,

1 � jQ \ Pj5 g and jQ \ Ij � h:

�

We assume that the two thresholds g and h are unknown positive integers and that no information on the

size of P is given, whereas it is known that jI j � r where r is a positive integer.

The remainder of this article is organized as follows. In the next section, we introduce some definitions

and auxiliary results. In Section 4 we first show that, if no upper bound on the number of inhibitors is given

and the number of defective items jPj is less than g, then in the worst case n tests are necessary to establish

whether the set of the defective items is empty or not. Hence, in this case, the best search strategy would

consist in individually testing all items in S. Under the hypothesis of r being known, we derive a lower

bound on the number of tests required to determine the set P when jPj5 g and jI j � h. This lower bound

holds even in the case when the exact number of inhibitors jI j and the exact values of the two thresholds g

and h are given. If the two thresholds are not given then we show that the minimum number of tests

required to determine whether P ¼; is asymptotically at least as large as that required under the GTI

model. In Section 5, we provide an algorithm for the threshold-GTI problem that proceeds along two

different paths according to whether the given set S tests positive or negative. In Section 6, we analyze the

complexity of our algorithm for the threshold-GTI problem and summarize our main results. Notice that S
tests positive both in the cases when jPj � g and when jPj � 1 and jI j5 h, whereas S tests negative when

P¼; or when jPj5 g and jI j � h. We show that, if jPj� g4 2 and jI j � h, our algorithm attains the

information theoretic lower bound of X( log n
jPj

� �
), and therefore is asymptotically optimal. In this case that

jPj� g4 2 and jI j � h, optimality is achieved even if no upper bound r on the number of inhibitors is

known. In the remaining cases for which S tests positive, the cost of our algorithm differs from the

information theoretic lower bound by an O(log r log n) additive term. However, in these cases, if we

assume that the exact number jI j of inhibitors is given, then it is possible to modify the algorithm so as to

attain the information theoretic lower bound. As far as it concerns the case when S tests negative, the cost

of our algorithm exceeds the lower bound of Section 4 by an O(log r) factor.

3. SOME DEFINITIONS AND AUXILIARY RESULTS

To derive our results, we exploit the well known correspondence between binary codes and group testing

strategies. Denote the items of S with the integers from 1 through n. A binary code C can be represented by

an N · n binary matrix M¼kcj(i)k, i¼ 1, . . . , N and j¼ 1, . . . , n, with codewords as columns. Let

R1, . . . , RN denote the rows ofM. For each j 2 f1, . . . , ng, we associate the j-th column cj ofM with item

j and, for each i 2 1, . . . , N, define the subset TRi
associated with row Ri of M as

TRi
¼fj 2 f1, . . . , ng : cj(i)¼ 1g. The group testing algorithm that tests the sets TR1

, . . . , TRN
is the group

testing algorithm defined by M, or equivalently by C.
Superimposed codes play a crucial role in the design of group testing strategies. In the following we

introduce some definitions and preliminaries concerning superimposed codes. Given m> 1 codewords

(columns) c‘1
, . . . , c‘m

, we denote with (c‘1
_ . . . _ c‘m

) the boolean sum (OR) of c‘1
, . . . , c‘m

. A column ch

is said to be covered by a column cj if for any index i 2 f1, . . . , Ng one has that ch(i)¼ 1 implies cj(i)¼ 1.

Definition 1 (De Bonis and Vaccaro, 2003). Let p, q and d be positive integers with d � q. A binary

code C¼fc1, . . . , cng, with n� p þ q, is called ( p, q, d)-superimposed if for any distinct p þ q indices

h1, . . . , hp, ‘1, . . . , ‘q there exist q � d þ 1 distinct indices j1, . . . , jq� dþ 1 2 f‘1, . . . , ‘qg such that

(ch1
_ . . . _ chp

) is not covered by (cj1 _ . . . _ cjq� dþ 1
). The minimal length of a ( p, q, d)-superimposed code

of size n is denoted by N( p, q, d, n).
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For d¼ 1 the codes in the above definition have the property that the union of any p columns is not covered

by the union of any other q columns. Codes satisfying this property have been introduced in (D’yachkov

and Rykov, 1983) and are known under the name of ( p, q)-superimposed codes. The minimal length of a

( p, q)-superimposed code of size n will be denoted by N( p, q, n).

We will resort to the following upper bound on the minimal length of (1, q, d)-superimposed codes to

estimate the cost of our algorithm.

Theorem 3.1 (De Bonis and Vaccaro, 2003). Let n, q and d be positive integers with d � q � n.

Then N(1, q, d, n)5 24( q
d

)2( log2 nþ 2).

De Bonis and Vaccaro (2006) proved an upper bound on the maximum size of (1, q, d)-superimposed

code in terms of the maximum size of (1, b q/d c )-superimposed codes of the same length. The following

lower bound on the minimum length of (1, q, d)-superimposed code is an immediate consequence of that

result together with the well known X( m2

log m
log n) lower bound on the minimum length N(1, m, n) of (1, m)-

superimposed codes of size n (D’yachkov and Rykov, 1982; Füredi, 1996; Ruszinkó, 1994).

Theorem 3.2 (De Bonis and Vaccaro, 2006). Let n, q and d be positive integers with d � q � n.

Then N(1, q, d, n)¼X( q2

d2 log q
log n).

Theorem 3.2 will be exploited in the next section to derive a lower bound on the number of tests required

to determine the defective items when it holds that jPj5 g and jI j � h.

4. SOME NEGATIVE RESULTS

Solving the threshold-GTI problem is significantly harder when the given set S tests negative. In this

case, it might be either that P ¼; or that 05 jPj5 g and the number jI j of inhibitors is at least h. We

show that if S tests negative and no upper bound r on jI j is given, then at least n tests are necessary in the

worst case to determine whether the set P of the defective items is empty or not. To this aim we prove the

following lemma.

Lemma 4.1. Suppose that S tests negative and that the unknown set I of inhibitors has size at most r.

Then, in the worst case, gþ r� 1 tests are necessary to establish whether P¼; or not.

Proof. Given an arbitrary algorithmA, let us associate to each test Q � S performed by A the equationP
i2Q xi¼ 0. If A performs less than rþ g� 1 tests, then the number of equations in the above system is

less than rþ g� 1 and the system admits a non trivial solution in which at most rþ g� 1 variables xi have

non-zero value. Let V þ ¼fi 2 S : xi 4 0g and V � ¼fi 2 S : xi 5 0g. For each test Q performed by A
it must hold either that jQ\ (Vþ[V�)j ¼ 0 or that jQ\Vþj� 1 and jQ\V�j� 1. Since g and h are

unknown, a malicious adversary might set jPj¼ jV þ j� g� 1, jI j ¼ jV � j� r and h¼minQ{jQ\V�j :

Q\V�= ;} so that all responses are negative. As a consequence, the algorithm would not distinguish

between the cases P ¼; and P 6¼ ;. &

The following corollary is a consequence of Lemma 4.1.

Corollary 4.2. Suppose that S tests negative and that no upper bound on the cardinality of the

unknown set I of inhibitors is given. Then, in the worst case, at least n tests are needed to establish whether

P ¼; or not.

Corollary 4.2 implies that if S tests negative and we are not given an upper bound on the number of

inhibitors then the best strategy consists in individually testing all items in S. Therefore, in this paper we

assume known an upper bound r on the number of inhibitors. Under this assumption, we derive the

following lower bound on the number of tests required to determine all defective items in S in the case

when jPj5 g and jI j� h.
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Theorem 4.3. Suppose that jPj5 g and h� jIj� r, with r being a known positive integer. Any

algorithm that identifies all defective items in S uses at least N(1, r, h, n) tests.

Proof. Let A be any algorithm that solves the threshold-GTI problem under the hypothesis that S
contains at most g� 1 defective items. Let T1, . . . , Tm be the sets tested by the algorithm and let

M¼kcj(i)k be the m · n matrix whose rows are the characteristic vectors of T1, . . . , Tm, that is cj(i)¼ 1 if

and only if j 2 Ti. In other wordsM represents the binary code associated with the group testing strategy

that tests T1, . . . , Tm.

We will show that in order for the algorithm to identify the set of defective items by m tests,M must be

a (1, jI j, h)-superimposed code. Suppose to the contrary that there exist jI j þ 1 columns c‘1
, c‘2

, . . . , c‘jI jþ 1

such that c‘1
is covered by the boolean sum ck1

_ . . . _ ckjI j� hþ 1
, for any choice of jI j � hþ 1 columns

ck1
, . . . , ckjI j� hþ 1

in fc‘2
, . . . , c‘jI jþ 1

g. It follows that for any row index i 2 [m] such that c‘1
(i)¼ 1, one has

that at least h columns among c‘2
, . . . , c‘jI jþ 1

have the i-th entry equal to 1. As a consequence, ‘1 occurs in

some subset T only if at least h of ‘2, . . . , ‘jI j þ 1 belongs to T. A malicious adversary could make ‘1 the

unique defective item and ‘2, . . . , ‘jIj þ 1 the inhibitory items so that the responses to the m tests are

negative. Hence, the algorithm cannot distinguish between the case when S contains a defective item,

namely item ‘1, and the case when S does not contain any defective item. Since jI j can be as large as r, it

follows that m tests suffices to determine the defective items only ifM form a (1, r, h)-superimposed code

and consequently m�N(1, r, h, n). &

Theorems 3.2 and 4.3, along with the information theoretic lower bound, imply the following lower

bound.

Corollary 4.4. Suppose that jPj5 g and h� jIj� r, with r being a known positive integer. In the

worst case any algorithm that identifies all defective items in S uses at least N(1, r, h, n)þX(jPj log n
jPj)¼

X( r2

h2 log r
log nþ jPj log n

jPj) tests.

We remark that the above bounds hold even if the exact values of the two thresholds g and h are given and

it is known that S contains exactly r inhibitors. If the two thresholds are not given then the following

theorem states that N(1, r, n) tests are needed to discover that P ¼;. This is the same number of tests

required to determine whether P¼; in the GTI model (De Bonis, 2008).

Theorem 4.5. Suppose that S tests negative and that the unknown set I of inhibitors has cardinality

jI j � r, with r being a known positive integer. Then, in the worst case, at least N(1, r, n)¼X(ð r2

log r
log n)

tests are needed to establish whether P ¼;.

Proof. Observe that any algorithm that establishes whether P ¼;, for some fixed unknown value of the

threshold h, is able to establish whether P¼; for any other value of h. Indeed, negative tests provide no

information on the value of h; consequently, a malicious adversary might change the value of h at any stage

of the algorithm, even at the end. The lower bound in the statement of the theorem follows from setting

h¼ 1 in the lower bound of Theorem 4.3. &

5. AN ALMOST OPTIMAL ALGORITHM

The algorithm proceeds along two different paths, namely algorithm A or algorithm B, according to

whether the given set S tests positive or negative, respectively. Recall that S tests positive both in the cases

when jPj � g and when P is non-empty and jI j5 h, whereas S tests negative if P¼; or if jPj5 g and

jI j � h.

Before describing our algorithm, we introduce a procedure that plays a very important role in algo-

rithm A. Given a set A � S, we will denote by Half0(A) and Half1(A) the sets obtained by partitioning A

into two sets of size b jAj/2 c and d jAj/2 e , respectively. Let V and V0 be two disjoint subsets of S such

that V0 tests negative, whereas V[V0 tests positive. The following procedure determines a defective item

of V by performing binary search in such a way to cope with the possible presence of h or more

inhibitors in V.
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Algorithm MBS(V, V0)

1. X/V[V0, A/V

2. while jAj> 1

3. do if XnHalf0(A) tests positive

4. then X  XnHalf0(A), A Half1(A)

5. else A/Half0(A)

6. return A

Theorem 5.1. If V and V0 are two disjoint subsets of S such that V0 tests negative and V[V0 tests

positive, then the singleton A�V returned by MBS(V, V0) consists of a defective item.

Proof. In order to show that the singleton A�V returned at line 6 consists of a defective item, we will

prove that the algorithm preserves the invariant that X tests positive and XnA tests negative, thus implying

that A contains at least one item of V \ P through the entire execution of the algorithm.

For i¼ 0, . . . , dlog jAje, let Xi and Ai denote the sets X and A, respectively, as they appear at the

beginning of the i-th iteration of the while loop. To prove the theorem, it suffices to show that Xi tests

positive and XinAi tests negative for all i, which implies that Ai contains at least one defective item in

V \ P. We show by induction on i that Xi tests positive and XinAi tests negative. It is immediate to verify

that X0¼V[V0 and A0¼V satisfy the above condition because of the hypothesis of the theorem. Let us

assume by induction hypothesis that those relations hold for Xi and Ai. If the test on Xi \ Half0(Ai) yields a

YES response then Xiþ1¼Xi \ Half0(Ai) and Aiþ1¼Half1(Ai). In this case, the subset Xiþ1 obviously tests

positive. To see that Xiþ1 \ Aiþ1 tests negative, observe that Xiþ1 \ Aiþ1¼Xi \ Ai and that, by induction

hypothesis, Xi \ Ai tests negative. If the test on Xi \ Half0(Ai) yields a NO response, then in this case we have

Xiþ1¼Xi and Aiþ1¼Half0(Ai). By induction hypothesis, Xiþ1¼Xi tests positive. Since Xiþ1 \ Aiþ1¼Xi \

Half0(Ai), it is obvious that Xiþ1 \ Aiþ1 tests negative. &

If we have two subsets V and V0 that satisfy the hypothesis of Theorem 5.1, then MBS(V, V0) might be

repeatedly applied to search for several defective items of V. To this aim, MBS(V, V ) is iteratively called to

search for a defective item in V and such a defective item is removed from V and eventually added to V0 to

preserve the condition that V[V0 should test positive. This process continues as long as the condition that

V[V0 should test positive can be preserved without violating the condition that V0 should test negative. The

following procedure exploits the above idea.

Algorithm RMBS(V, V0)

1. B/ ;
2. while V0 [V tests positive

3. do A/MBS(V, V0), B/B[A, V/V \ A

4. if V0 [A tests negative

5. then V0/V0 [A

6. return B

Theorem 5.2. Let V and V0 be two disjoint subsets of S such that V0 tests negative and V[V0 tests

positive, and let B be the subset of V returned by RMBS(V, V0). If it holds that g4 1, jV 0 \ Ij5 h and

j(V [ V 0) \ Ij� h, then B consists of all but g� 1 defective items of V. In the remaining cases, B is the set

of all defective items of V.

Proof. By hypothesis, V[V0 tests positive and V0 tests negative. As a consequence, algorithm

RMBS(V, V0) enters the while loop and it is possible to see that, at each iteration of the while loop, V and V0

satisfy the hypothesis of Theorem 5.1. Indeed, V[V0 tests positive because of the condition of while loop

at line 2, whereas V0 tests negative because of the condition of the if statement at line 4. Therefore, at each

iteration the item in the singleton A returned by the call to MBS(V, V0) at line 3 is a defective item of V.

This item is removed from V and eventually added to V0 as long as it preserves the condition that V0 tests

negative.
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Let us consider the case when g4 1, jV 0 \ Ij5 h and j(V [ V 0) \ Ij� h. If jV 0 \ Ij5 h, then V0 tests

negative if and only if V 0 \ P ¼;, and consequently no defective item of V is ever added to V0 at line 5. In

this case (V [ V 0) \ P ¼V \ P through all iterations of the while loop. Therefore, if in addition we assume

that g > 1 and j(V [ V 0) \ Ij� h, then the while loop terminates as soon as jV \ Pj5 g, that is, as soon as

all but g� 1 defective items of V have been detected and added to B.

Now let us prove that in the remaining cases RMBS(V, V0) determines all defective items of V. If g¼ 1 or

j(V [ V 0) \ Ij5 h then one has that V 0 \ P ¼; through all iterations of the while loop and that V[V0 tests

positive if and only if V \ P 6¼ ;. Consequently, the while loop terminates after all defective items of V

have been detected and added to B. If jV 0 \ Ij� h then V0, as well as V[V0, tests positive if and only if it

contains at least g defective items. Therefore, the algorithm stops adding defective items to V0 at line 5 as

soon as V0 contains exactly g� 1 defective items. From that point on, V[V0 tests positive if and only if V

contains at least one defective item; therefore the while loop terminates when V \ P ¼;, that is, after all

defective items of V have been detected and collected into B. &

Now we are ready to describe our algorithm. As said at the beginning of this section, our algorithm

proceeds along two different paths, namely algorithm A or algorithm B, based on the result of a preliminary

test on S. If the response of this test is YES then our algorithm runs algorithm A, otherwise it runs

algorithm B. We present algorithm A and algorithm B in the following two separate sections. In order to

keep the description of algorithm A as clear and short as possible, we first illustrate its behavior and then

prove its correctness. The correctness of algorithm B follows directly from its description.

5.1. Algorithm A

Step 1. This step makes a call to RMBS(V, V0) with V ¼S and V0 ¼ ;. If jI j5 h or g¼ 1, then

RMBS(S, ;) finds all defective items in S. If g> 1 and jI j � h, then RMBS(S, ;) finds exactly jPj� gþ 1

defective items.

Let S� be the subset consisting of the items of S that have not been classified as defective yet. Notice that

S� tests negative since it either contains no defective item or it contains exactly g� 1 defective items and at

least h inhibitors.

Step 2. The goal of this step is to find a partition (T ,S�nT) of S� such that at least one of the subsets T

and S�nT can be further searched either by exploiting algorithm RMBS(V, V0) or by a competitive strategy

for classical group testing. We recall that a group testing algorithm is said competitive if it has no

knowledge on the number d of defective items and is asymptotically as efficient as the best procedures that

work under the hypothesis that d is known in advance. See Du and Hwang (1992, 2000) for an account on

the design of these procedures. If it is possible to determine the defective items in both subsets T and S�nT
then the algorithm terminates, otherwise it goes to Step 3. If such a partition (T ,S�nT) does not exist then

the algorithm infers that either g¼ 1 or jI j5 h, and consequently all defective items have been determined

in the previous step.

Step 2 makes two attempts to find the above said partition. The first attempt succeeds if g> 2 and

jI j � h, whereas the second one succeeds if g¼ 2 and jI j � h. Both attempts use a testing strategy based on

superimposed codes. In the following we describe these two attempts and illustrate, for each of them, how

the algorithm behaves in case of success.

Attempt 1: LetM denote a (1, 1)-superimposed code of size jS�j � n, and let z be one of the defective

items determined in Step 1. For each row R ofM, the algorithm tests both TR and its complement S�nTR

and if both subsets test negative then it performs an additional pair of tests on the subsets TR[ {z} and

(S�nTR) [ fzg. This testing strategy continues until it finds a row R such that one of the following two cases

occurs: (i) at least one of TR and S�nTR tests positive; (ii) TR and S�nTR, as well as TR[ {z} and

(S�nTR) [ fzg, test negative.

If case (i) occurs then the algorithm determines the defective items in one or both of the subsets TR and

S�nTR by a competitive strategy for classical group testing. Indeed, a subset of S� is positive only if it

contains less than h inhibitors. If both TR and S�nTR are positive, then the algorithm terminates. If one of

the subsets TR and S�nTR tests negative then the algorithm goes to Step 3 and search for the defective items

in this subset. Notice that this subset contains at most g� 2 defective items.

If case (ii) occurs then the algorithm invokes algorithm RMBS(V, V0) once with V¼ TR and

V 0 ¼ (S�nTR) [ fzg, and once with V ¼S�nTR and V0 ¼ TR[ {z}.
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Attempt 2: Let M̂Mi, i¼ 1, 2 . . . , denote a (1, 2iþ 1, 2i� 1)-superimposed code of size jS�j � n. For each

row ~RR of codes M̂M1,M̂M2, . . ., the algorithm tests both T~RR and S�nT~RR and if both of them test negative then

it performs an additional pair of tests on the subsets T~RR [ fzg and (S�nT~RR) [ fzg. This testing strategy

terminates as soon as it discovers a row ~RR such that one of the two following cases occurs: (i0) exactly one

of T~RR and S�nT ~RR tests positive; (ii0) both T~RR and S�nT~RR test negative and exactly one of T~RR [ fzg and

(S�nT~RR) [ fzg tests positive. Notice that we are assuming that g � 2 and jI j � h, and consequently case

(i0) or case (ii0) occurs only if g¼ 2 and jI j � h.

If case (i0) occurs, then the defective item is obviously contained in the one of the two subsets T~RR and

S�nT~RR that tests positive and can be found by binary search.

If case (ii0) occurs then the algorithm invokes MBS(V, V0) either with V ¼ T~RR and V 0 ¼ (S�nT~RR) [ fzg, or

with V ¼S�nT~RR and V 0 ¼ T ~RR [ fzg, according to which one between T~RR [ fzg and (S�nT~RR) [ fzg tests

positive, respectively.

Step 3. The algorithm performs this step if and only if case (i) occurs in Step 2 with exactly one of T and

S�nT being positive. Let G denote the one of T and S�nT that tests negative. Recall that this subset contains

at most g� 2 defective items. Step 3 searches for the defective items eventually contained in G by the

following search algorithm MGT(G) that, at each iteration of the while loop, partitions the search space into

two halves and determines the defective items in at least one of those halves by a competitive algorithm for

classical group testing, here denoted by CGT. If there are undetected defective items left after exiting the

while loop then these will be discovered by exploiting algorithm RMBS(V, V0). In the following, R denotes

the subset of P consisting of all defective items of S� determined by Step 2. Again, we denote by z one of

the defective items determined in Step 1.

Algorithm MGT(G)

1. if G [ fzg tests positive then return ;
2. X  G, C/ ;
3. while X= ; and Halfi(X)[ {z} tests positive for some i 2 f0, 1g
4. do for i/ 0, 1

5. do if Halfi(X)[ {z} tests positive

6. then C/C[CGT(Halfi(X)), X/X \ Halfi(X)

7. for i/ 0, 1

8. do if Halfi(X) [R [ C [ fzg tests negative

9. then C  C [ RMBS(Half1� i(X), Halfi(X) [R [ C [ fzg)
10. return C

5.1.1. Correctness of Algorithm A.
Step 1. The correctness of Step 1 immediately follows from Theorem 5.2.

Step 2. We show that if g� 2 and jI j � h then either Attempt 1 or Attempt 2 succeeds. Therefore, if none

of Attempt 1 and Attempt 2 succeeds then it holds that either g¼ 1 or jI j5 h and the algorithm infers that

all defective items have been detected by Step 1. Moreover, if g� 2 and jI j � h then the algorithm

determines all defective items of S� with the exception of those determined in Step 3.

First we show that if g> 2 and jI j � h then Attempt 1 succeeds. Indeed, by definition of (1, 1)-

superimposed codes, one has that for any choice of two defective items x, y 2 S� \ P, there is a row R in

M such that exactly one of the two entries associated with x and y is equal to 1. Therefore, if g> 2 and

jI j � h, there exists a row R of M such that both TR and S�nTR contain a number of defective items

between 1 and g� 2. If at least one of TR and S�nTR contains less than h inhibitors then case (i) occurs. If

both TR and S�nTR contain at least h inhibitors then case (ii) occurs.

Notice that if g¼ 2 and jI j � h, there might still be a row R ofM such that one of the two subsets TR and

S�nTR tests positive but we are not guaranteed that such a row exists. Accordingly, if Attempt 1 fails to find

a partition of S� such that either case (i) or case (ii) occurs, then the algorithm infers that either g � 2 or

jI j5 h and performs Attempt 2.

Now we show that if g¼ 2 and jI j � h both hold then Attempt 2 succeeds. To this aim we show that the

algorithm is guaranteed to find a row ~RR such that one of cases (i0) and (ii0) occurs by the time it has

examined the pairs of subsets corresponding to the rows of M̂M1, . . . ,M̂Mblog jIjc. Observe that M̂Mblog jI jc is a
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(1, jI j, bjIj=2c)-superimposed code and by Definition 1, for any choice of jI j þ 1 columns c1, . . . , cjI j þ 1,

there exists a row ~RR such that ~RR has a 1 in correspondence of column c1 and at most bjIj=2c� 1 entries

equal to 1 among those corresponding to columns c2, . . . , cjI j þ 1. It follows that the subset T~RR contains the

unique defective item of S� and less than jI j=2 inhibitors, whereas S�nT ~RR contains no defective item and

more than jI j=2 inhibitors. If h� jIj=2 then T ~RR contains less than h inhibitors and consequently tests

positive so that case (i0) occurs. If h5 jI j=2 then S�nT~RR contains at least h inhibitors and consequently one

has either that T~RR tests positive, or that both T~RR and S�nT~RR test negative. In the former case one has that

case (i0) occurs, whereas in the latter case one has that case (ii0) occurs since T~RR [ fzg tests positive and

(S�nT~RR) [ fzg tests negative. Indeed, it holds that g¼ 2 and that T~RR [ fzg contains two defective items,

whereas (S�nT ~RR) [ fzg contains one defective item and at least h inhibitors.

To conclude the proof of the correctness of Step 2, we need to show that if Attempt 1 succeeds then the

algorithm determines all defective items of S� with the exception of those determined in Step 3, whereas if

Attempt 2 succeeds then the algorithm determines the unique defective item contained in S�. This is quite

obvious if case (i) or case (i0) occurs. Indeed, in both cases the search space is restricted to a subset

containing less than h inhibitors that is searched by exploiting a competitive algorithm for classical group

testing in case (i), and by binary search in case (i0). We have to show that if case (ii) of Attempt 1 occurs

then the two calls to algorithm RMBS(V, V0) determine all defective items in S�, whereas if case (ii0) of

Attempt 2 occurs then the call to MBS(V, V0) determines the unique defective item of S�.
If case (ii) of Attempt 1 occurs, then the algorithm invokes RMBS(V, V0) once with V¼ TR and

V 0 ¼ (S�nTR) [ fzg, and once with V ¼S�nTR and V0 ¼ TR[ {z}. Notice that both pairs of subsets V and V0

satisfy the hypothesis of Theorem 5.2, in view of the fact that V0 test negative, whereas the union

V [ V 0 ¼ S� [ fzg contains exactly g defective items and consequently tests positive. Moreover, both

TR[ {z} and (S�nTR) [ fzg test negative and therefore contain at least h inhibitors. Hence, Theorem 5.2

implies that the calls to RMBS(TR, (S�nTR) [ fzg) and to RMBS(S�nTR, TR [ fzg) determine all defective

items in TR and S�nTR, respectively.

If case (ii0) of Attempt 2 occurs then the algorithm makes a call to MBS(V, V0) either with V ¼ T~RR and

V 0 ¼ (S�nT~RR) [ fzg, or with V ¼S�nT ~RR and V 0 ¼ T ~RR [ fzg, according to which one between T~RR [ fzg
and (S�nT~RR) [ fzg tests positive. Indeed, the defective item of S� is contained in the one of T~RR [ fzg and

(S�nT~RR) [ fzg that tests positive, in view of the fact that g¼ 2 and consequently the one of the two sets that

tests negative contains no defective item in addition to z. The sets V and V0 satisfy the hypothesis of

Theorem 5.1, since V0 tests negative and V [ V 0 ¼ S� [ fzg contains exactly two defective items

and consequently tests positive. Therefore, Theorem 5.1 implies that MBS(V, V0) determines the defective

item in V.

Step 3. We need to prove that algorithm MGT(G) determines all defective items of G. First we show that

the algorithm terminates at line 1 if and only if G contains no defective item. Recall that G tests negative

and as a consequence jG \ Ij5 h implies that G contains no defective item. To see whether this is the case,

the algorithm tests G [ fzg. Since G [ fzg contains at most g� 1 defective items then it tests positive if and

only if it contains less than h inhibitors. Therefore, if G [ fzg tests positive then G contains no defective

item and the algorithm returns the empty set.

Notice that at each step of algorithm MGT(G), the set C � P consists of the defective items determined

so far by MGT(G), whereas X � G denotes the current search space. Notice also that X [ R [ C [ fzg
contains exactly g defective items.

Each iteration of the while loop in algorithm MGT(G) either cuts the search space X by a half or

determines all defective items in X. Indeed, Halfi(X)[ {z}, i 2 f0, 1g, contains at most g� 1 defective

items and consequently tests positive if and only if Halfi(X) contains less than h inhibitors. Therefore, a call

to CGT(Halfi(X)) determines all defective items in Halfi(X). The while loop terminates either in the case

when X¼; or in the case when both Half0(X)[ {z} and Half1(X)[ {z} test negative. In the former case, it

is obvious that all defective items of G have been detected. In the latter case, the algorithm executes the for

loop at lines 7-9. It is possible to see that if X \ P 6¼ ; then at least one of Half0(X) [R [ C [ fzg and

Half1(X) [R [ C [ fzg tests negative. To see this, observe that if for some i 2 f0, 1g tests positive, then

Halfi(X) contains all defective items of X. Indeed, for i¼ 0, 1, the subset Halfi(X) [R [ C [ fzg �
X [R [ C [ fzg contains at most g defective items and at least h inhibitors, and consequently tests positive

only if it contains exactly g defective items, that is, only if Halfi(X) contains all defective items of X.

Therefore, it is not possible that both Half0(X) [ R [ C [ fzg and Half1(X) [R [ C [ fzg test

positive unless X \ P ¼;. If for some i 2 f0, 1g, Halfi(X) [R [ C [ fzg tests positive and
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Half1� i(X) [R [ C [ fzg tests negative, then all defective items of X are contained in Halfi(X) and are

determined by a call to RMBS(Halfi(X), Half1� i(X) [R [ C [ fzg). Indeed, V¼Halfi(X) and V 0 ¼
Half1� i(X) [R [ C [ fzg satisfy the hypothesis of Theorem 5.2, given that V [ V 0 ¼ X [R [ C [ fzg
contains g defective items and consequently tests positive, whereas V0 test negative. Moreover, V0 contains

at least h inhibitors and consequently Theorem 5.2 implies that RMBS(V, V0) determines all defective items

of Halfi(X). If both Half0(X) [R [ C [ fzg and Half1(X) [R [ C [ fzg tests negative, the algorithm

determines all defective items in X by a call to RMBS(Half0(X), Half1(X) [ R [ C [ fzg) and a call to

RMBS(Half1(X), Half0(X) [R [ C [ fzg). By the same argument as above, we conclude that those two

calls determine all defective items in Half0(X) and Half1(X), respectively.

5.2. Algorithm B

Step 1. The goal of this step is to determine a subset Q � S that tests positive. If such a subset cannot be

found then the algorithm infers that S contains no defective item.

Let ~MM‘, for ‘¼ 0, 1, . . ., denote a (1, r, b r/2‘ c )-superimposed code of size n. Step 1 tests the subsets

corresponding to the rows of ~MM0, ~MM1, . . . , until it finds a subset Q that tests positive. If jPj � 1 then we are

guaranteed to find such a subset by the time we have tested the subsets corresponding to the rows of
~MM0, ~MM1, . . . , ~MMdlog (r=h)e. Indeed, by Definition 1, there exists at least one row R of ~MMdlog (r=h)e whose

associated subset TR contains at least one defective item and no more than h� 1 inhibitors. If P¼; then the

algorithm does not get any positive response and becomes aware that P ¼; only after testing all subsets

associated with the rows of ~MM1, . . . , ~MMblog rc. If P ¼; then the algorithm terminates, otherwise it goes to the

next step.

Step 2. The algorithm performs this step if and only if P 6¼ ; and jI j � h. The goal of this step is to

partition S into a certain number of subsets, and each of which contains at most h� 1 inhibitors so that

the defective items in each subset can be detected by a competitive algorithm for classical group

testing.

Let W and W0 be two subsets of S such that W0 contains at least one defective item and no more than

h� 1 inhibitors, and such that W[W0 contains at least h inhibitors. Notice that W[W0 is a subset of S and

therefore contains no more than g� 1 defective items. The following algorithm, which is a slightly

modified version of that given in De Bonis and Vaccaro (2003), is used to determine a subset of W[W0

with exactly h� 1 inhibitors.

Algorithm Find(W, W0)

1. C/W, D/W0

2. while jCj> 1

3. do T/D[Half0(C)

4. if T tests negative

5. then C/Half0(C)

6. else D/ T, C/Half1(C)

7. return D

If W and W0 are as described above, then Find(W, W0) returns a subset D of W[W0 such that W0 �D and

jD \ Ij¼ h� 1. Indeed, Find(W, W0) preserves the invariant that D tests positive, implying that it contains

at most h� 1 inhibitors, and that D[C tests negative, indicating that it contains at least h inhibitors. Since

the algorithm terminates as soon as jCj becomes equal to 1, then the set D returned by the procedure

contains exactly h� 1 inhibitors.

Let Q be the positive subset determined in Step 1. Since jQ \ Ij5 h, it is possible to determine all

defective items in Q by a competitive algorithm for classical group testing. Let x be one of the defective

items in Q \ P. If Find(W, W0) is invoked with W being any subset of Snx such that jW \ Ij� h and with

W0 ¼ {x}, then it returns a subset of W[ {x} with exactly h� 1 inhibitors. The following algorithm finds the

desired partition of S by iteratively invoking Find(W, {x}) with the sets W’s being pairwise disjoint subsets

of Snx with at least h inhibitors.
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Algorithm RFind

1. A SnQ
2. F  fQg
3. while A[ {x} tests negative

4. do B/Find(A, {x})

5. A AnB,F  F [ fBnfxgg
6. return F [ fAg

The subsets in the collection F returned by RFind form the desired partition of S since each of them

contains at most h� 1 inhibitors.

6. ANALYSIS OF THE ALGORITHM

To analyze the cost of algorithm A, we need to estimate the number of tests performed by algorithm

RMBS(V, V0). Observe that the while loop of RMBS(V, V0) is iterated jBj times, where B is the set of

defective items returned by the algorithm. Each iteration performs two tests in addition to those performed

by the call to MBS(V, V0) (actually RMBS(V, V0) can be implemented in such a way that the test at line 4 is

no longer performed after the first YES response). Since each call to MBS(V, V0) performs d log

jVj e¼O(log n) tests, then the overall cost of RMBS(V, V0) is O(jBj log n).

6.1. Analysis of Algorithm A

Step 1. This step makes a call to RMBS(S�, ;). If g> 1 and jI j � h then the set of defective items

returned by RMBS(S�, ;) has size jBj ¼ jPj� gþ 1, and consequently the cost of Step 1 is

O((jPj� gþ 1) log n). If g¼ 1 or jI j5 h then jBj ¼ jPj and the cost of Step 1 is O(jPj log n).

Step 2. If g> 2 and jI j � h then Attempt 1 succeeds, and thus the number of tests performed to

determine a suitable partition (TR,S�nTR) of S� is equal to at most four times the minimal length of a (1, 1)-

superimposed code of size jS�j. Notice that (1, 1)-superimposed codes correspond to Sperner families and it

is a very well known result (Spener 1928) that the largest size of such a family of subsets of f1, . . . , tg is

t
bt=2c

� �
. Hence, if g> 2 and jI j � h, then O( log jS�j)¼O( log n) tests are sufficient to determine a suitable

partition (TR,S�nTR) of S�. Let b1� 0 and b2� 0 be the number of defective items detected in TR and in

S�nTR, respectively, and let b¼ b1þ b2. The number of tests performed to find bi defective items is

O(bi log jS�j)¼O(bi log n). Indeed, these items are discovered either by a competitive strategy for classical

group testing, or by exploiting algorithm RMBS(V, V0). Therefore, if g> 2 and jI j � h, the overall cost of

this step is O(b1 log n)þO(b2 log n) – O(log n)¼O(b log n).

Let us estimate the cost of Step 2 in the case g � 2 or jIj< h. To find a suitable partition (TR,S�nTR),

Attempt 2 performs at most 4 �
Pblog rc

i¼ 1 N(1, 2iþ 1, 2i� 1, jS�j) tests, in addition to the O(log n) tests

performed by Attempt 1. The upper bound of Theorem 3.1 implies that
Pblog rc

i¼ 1 N(1, 2iþ 1, 2i� 1, jS�j)¼Pblog rc
i¼ 1 O( log jS�j)¼O( log r log jS�j):. Attempt 2 succeeds if and only if g¼ 2 and jI j � h, and in this case

O( log jS�j) tests are used to search for the unique defective item of S�, either by binary search or

by algorithm MBS(V, V0). Therefore, if g � 2 or jI j5 h then the overall cost of Step 2 is

O( log r log jS�j)¼O( log r log n).

Step 3. The while loop of algorithm MGT(G) is iterated at most dlog jGje times. Each iteration

performs at most two tests in addition to those performed to eventually search for the defective items

either in one of Half0(G) and Half1(G), or in both of them. Therefore, the total number of tests performed

by the while loop is O(c1 log jGj)þO( log jGj)¼O(c1 log n), where c1 denotes the number of defective

items detected by the while loop. If the algorithm exits the while loop with X= ; then the algorithm

executes the for loop at lines 7–9 and determines the defective items in X by exploiting algorithm

RMBS(V, V0). The total number of tests needed to search for the defective items in X is therefore O(c2

log jXj), where c2 denotes the number of defective item in X. It follows that the total number of tests

performed by Step 3 is O(c log jGj)þO( log jGj)¼O(c log n), where c denotes the number of defective

items in G.
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The following theorem summarizes the conclusions of the above analysis.

Theorem 6.1. If the given set of items S tests positive then our algorithm successfully identifies all

defective items in S by O(jPj log n) tests when g> 2 and jI j � h, and by O(jPj log nþ log r log n) tests,

otherwise. Moreover, if g> 2 and jI j � h, then our algorithm attains the same complexity as above even if

no upper bound r on the number of inhibitors is given.

If g> 2 and jI j � h then the upper bound of Theorem 6.1 asymptotically matches the information

theoretic lower bound thus implying that the algorithm is asymptotically optimal. If g � 2 or jI j5 h, the

cost of algorithm A exceeds the information theoretic lower bound by an O(log r log n) additive term. For

log log r¼O(jPj) this upper bound asymptotically matches the information theoretic lower bound and

consequently is asymptotically optimal. Intuitively, the O(log r log n) additional term corresponds to the

cost of determining the exact number jI j of inhibitors, given that 0� jIj� r. In the analysis of algorithm A,

this additional term represents the cost incurred by Step 2 when testing the subsets associated with the rows

of ~MM1, . . . , ~MMblog rc. If we assume known the exact number jI j of inhibitors, then in Step 2 it suffices to test

the subsets corresponding to the rows of a (1, jI j, bjI j=2c)-superimposed code, instead of those associated

with the rows of ~MM1, . . . , ~MMblog rc. Hence, we have that the following theorem holds.

Theorem 6.2. If the given set of items S tests positive and the exact number jI j of inhibitors is known,

then there exists an asymptotically optimal algorithm that successfully identifies all defective items in S by

O(jPj log n) tests.

Proof. We will show that if the exact number jI j of inhibitors is known, then in Attempt 2 of Step 2 it

suffices to consider the subsets corresponding to the rows of a (1, jI j, bjIj=2c)-superimposed code, instead

of those associated with the rows of ~MM1, . . . , ~MMblog rc. Recall that Attempt 2 is performed only if g � 2 or

jI j5 h.

Let z denote one of the defective item determined in Step 1. For each row R of the (1, jI j, bjIj=2c)-
superimposed code, the algorithm tests both TR and S�nTR and if both of them test negative then it

performs an additional pair of tests on TR[ {z} and (S�nTR) [ fzg. We will show that if g¼ 2 and jI j � h

both hold, then one of cases (i0) and (ii0) of Attempt 2 occurs, and consequently Step 2 is able to detect the

unique defective item of S� either by binary search or by algorithm MBS(V, V0) as explained in Step 2. To

this aim, we observe that by Definition 1 there exists a row R of the (1, jI j, bjI j=2c)-superimposed code

such that TR contains the unique defective item of S� and less than bjIj=2c inhibitors, whereas S�nTR

contains no defective item and more than djIj=2e inhibitors. Therefore, if h�bjIj=2c then TR contains at

most h� 1 inhibitors and consequently tests positive, whereas if h5 bjIj=2c then S�nTR contains at least h

inhibitors. and consequently tests negative even after adding the defective item z to it. Notice that TR[ {z}

contains two defective items and consequently tests positive even if it contains h or more inhibitors. If TR

tests positive then case (i0) occurs, whereas if TR tests negative then by the above argument we have that

h5 bjIj=2c and consequently (S�nTR) [ fzg tests negative and we have that case (ii0) occurs.

If none of cases (i0) and (ii0) occurs, then the algorithm concludes that g¼ 1 or jI j5 h and consequently

all defective items have been determined in Step 1.

By Theorem 3.1, we obtain an O(log n) upper bound on the minimum length of (1, jI j, bjIj=2c)-
superimposed codes of size n. For each row of the (1, jI j, bjIj=2c)-superimposed code, the above testing

strategy performs at most four tests. Moreover O(log n) tests are used to determine the unique defective

item either by binary search or by algorithm MBS(V, V0). Therefore, the overall number of tests performed

by this modified version of Attempt 2 is O(log n). The upper bound stated in the theorem follows from the

analysis of algorithm A by replacing the O(log r log n) cost of Attempt 2 with the O(log n) cost of the above

testing strategy. &

6.2. Analysis of Algorithm B

Step 1. This step performs at most
Pblog rc

i¼ 1 N(1, r, br=2ic, n) tests, if P ¼;, and at mostPdlog r=he
i¼ 1 N(1, r, br=2ic, n) tests, otherwise. Theorem 3.1 implies N(1, r, b r/2i c , n)¼O(22i log n), and

consequently the cost of this step is O(r2 log n), if P ¼;, and O(r2/h2 log n), otherwise.
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Step 2. Algorithm Find(W, W0) performs O(log jWj) tests. The while loop in algorithm RFind(S, x) is

iterated at most
jInQj
h� 1

l m
times and at each iteration Find(B, {x}) performs O(log jBj)¼O(log n) tests.

Therefore, the overall number of tests executed by RFind(S, x) is O(jI j=(h� 1) log n). Finding all defective

items in Q and in each of the subsets of F requires O(jPj log n) tests. Hence, the following theorem holds.

Theorem 6.3. If the given set of items S tests negative then our algorithm successfully identifies all

defective items in S by O((r=h)2 log nþ jIj=(h� 1) log nþ jPj log n) tests when P 6¼ ;, and by O(r2 log n)

tests otherwise.

The upper bounds of Theorem 6.3 exceed by an O(log r) factor the lower bounds of Corollary 4.4 and

Theorem 4.5, respectively. This gap is a consequence of the log r gap between the known upper and lower

bounds on the minimal length of superimposed codes, thus closing this gap would correspond to solving a

crucial question in extremal combinatorics.
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