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1. Introduction

The number of yearly catastrophe events, including both natu-
ral catastrophes and man-made disasters, has grown steadily from
less than 100 in 1970 to 304 in 2010, with catastrophes claiming
nearly 304,000 victims and costing insurers more than US$43 bil-
lion in 2010 alone.2 During the last four decades, insurance compa-
nies have been seeking solutions other than traditional reinsurance
contracts to increase the capacity for catastrophe coverage and to
diversify their catastrophe risk. The capital markets have developed
alternative risk transfer instruments to provide (re)insurance
companies with vehicles for hedging such catastrophe risk. These
instruments can be broadly classified into three categories from
the point of view of an insurer’s balance sheet: asset instruments
consist of catastrophe-linked derivatives such as catastrophe futures
and catastrophe options3; liability instruments include the most
prominent type of catastrophic-linked security – catastrophe
bonds4; and catastrophe-linked contingent capital contracts are
equity instruments.

The catastrophe bond (CAT bond) is the most successful instru-
ment to date, but its growth seems stagnant and is not as expected.
The literature has proposed some explanations for its less-than-ex-
pected growth such as moral hazard (Lee and Yu (2002)), basis risk
(Cummins et al. (2004)), asymmetric information (Finken and Laux
(2009)), downside risk aversion among investors (Barrieu and Lou-
bergé (2009)), and its fully collateralized feature (Lakdawalla and
Zanjani (2012)). Barrieu and Loubergé (2009), however, suggest
that a hybrid of contingent capital and CAT bonds may help to raise
the volume of CAT bond issues.

Contingent capital has been used by insurance companies since
the 1990s to raise capital in order to hedge against catastrophe
risk. Basel III has recently proposed the design of contingent capital
for banks to hedge against systemic risk and to reduce any exter-
l., 2010).
(2009).
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nalities created by systemically important institutions.5 An in-
surer’s contingent capital can be provided through contingent sur-
plus notes (CSNs)6 or catastrophe equity puts (CatEPuts)7 by
issuing debt or company shares at predetermined terms following
a loss that exceeds a certain threshold. CSNs give the insurer the
right to immediately obtain funds by issuing surplus notes at a pre-
determined interest rate. CatEPuts provide the buyer the option to
issue a certain amount of new shares at a prenegotiated price. Both
instruments supply the buyer with additional equity capital when
funds are needed the most to cover its catastrophe losses.8 The liter-
ature on contingent capital for insurance companies has focused on
CatEPuts, because the contract design of CSNs is relatively simple
and can be considered as a special case of CatEPuts.

Cox et al. (2004) are the first to investigate the pricing model for
CatEPuts. Their model assumes that only the catastrophe event af-
fects the stock price, while the size of the catastrophe is irrelevant.
Jaimungal and Wang (2006) extend the results of Cox et al. (2004)
to analyze the pricing of CatEPuts under stochastic interest rates
with catastrophe losses generated by a compound Poisson process.
Lin et al. (2009) and Chang et al. (2011) focus on the stochastic nat-
ure of catastrophic intensity. Lin et al. (2009) assume catastrophe
losses are generated by a doubly stochastic Poisson process with
lognormal intensity, while Chang et al. (2011) assume a Markov
Modulated Poisson process whose intensity depends on climate
states.

This literature, however, fails to recognize counterparty risk and
price endogeneity in the valuation of CatEPuts. CatEPuts differ
from CSNs and CAT bonds in counterparty performance risk.
Meyers and Kollar (1999) and Cummins (2008) point out that
CatEPut transactions do not form a single purpose reinsurer (SPR)
and are not collateralized. Therefore, CatEPuts expose the buyer
to counterparty risk.9 Particularly, when the CatEPut buyer (e.g. an
insurance company) faces large catastrophic losses and has the right
to exercise the option, the CatEPut seller (e.g. a reinsurance com-
pany) may also assume large reinsurance claim payments and may
not be able to fulfill its obligation to buy the shares at the specified
price. In order to incorporate counterparty risk, this study follows
Merton (1974) and sets up a structural model to value the CatEPuts.

We further point out and overcome an endogenous problem in
the literature – that is, the price paid for acquiring the CatEPut by
the buyer will in turn affect the payoff of the CatEPut and the price
itself. This price endogeneity also exists in other applications of
Merton’s model such as in the deposit insurance literature, for
example, Merton (1977) and Ronn and Verma (1986), and in the
insurance guaranty literature, for example, Cummins (1988) and
Duan and Yu (2005). When valuing the contingent-claim contract,
either for deposit insurance or insurance guaranty, these authors
all ignore the initial acquisition cost of the contract. However,
Ahn et al. (1999) demonstrate that hedging costs play a critical role
in risk management, and an optimal risk management problem
must consider the trade-off between hedging costs and risk expo-
sures. Moreover, a real world CatEPut price charged for LaSalle Re
in 1997 was 2.35% (rate on line), which is not insignificant and thus
the effect of price endogeneity can be considerable. When the con-
5 See also Pennacchi (2010),Hilscher and Raviv (2011), and Glasserman and Nouri
(2012).

6 In the U.S., statutory accounting rules treat CSNs as equity on an insurer’s
statutory balance sheet, allowing an insurer to increase its capacity to write business.

7 A registered trademark of Aon Limited.
8 Nationwide issued the first CSN in 1995 and RLI issued the first CatEPut in 1996.

Following these two, numerous transactions have been executed, such as by LaSalle
Re (1997), Horace Mann (1997), Trenwick (2000), Nationwide (2004), Farmers (2007),
and SCOR (2010).

9 The CatEPut of Trenwick underwritten by European Re in 2000 entitles Trenwick
to sell 55 million shares to European Re, but European Re failed to meet its obligations
and bought only 40 million.
tingent-claim contract is not free, the purchase of the contract will
change the asset value and impact the price. Hence, we propose a
simple method to overcome this endogeneity and measure its
influence on a fairly-priced premium.

In addition to the valuation framework, this study examines
how a CatEPut transaction affects the default probability of its
buyer.10 Since CatEPuts allow the buyer to sell new shares at a
predetermined price when the put is triggered, the change in prob-
ability of default (PD) includes a pure put option effect and a new
equity effect. The new equity effect helps to reduce the buyer’s PD
due to new capital infusion. However, the pure put option effect
on PD is not so clear. We look further into the components of the
pure put option effect and draw a conclusion on the change of the
buyer’s total default probability.

The rest of this study is organized into five sections. Section 2
shows the model assumptions and Section 3 develops a model to
value CatEPuts. Section 4 presents the numerical analysis, justifies
the parameters, and demonstrates the main results. Section 5 pro-
vides further discussions on the change in probability of default,
correlation of catastrophe risk, and interest rate risk. Section 6
concludes the paper.

2. Assumption

Like most CatEPut transactions, we assume the buyer of
CatEPuts is an insurance company (denoted by I) and the writer
is a reinsurance company (denoted by R).

2.1. Interest rate

We assume that the insurer and reinsurer operate in an envi-
ronment where interest rates are stochastic and follow the
squared-root process of Cox et al. (1985), the CIR model hereafter,
which avoids the negative interest rate that may appear in Vas-
icek’s model.11 The instantaneous interest rate process under the
risk-neutral pricing measure Q can be written as:

drt ¼ jðlr � rtÞdt þ rr
ffiffiffiffi
rt
p

dZr;t ; ð1Þ

where rt denotes the instantaneous interest rate at time t; j is the
mean-reverting force measurement; lr is the long-run mean of the
interest rate; rr is the volatility parameter for the interest rate; and
Zr,t is a Wiener process under Q.

2.2. Asset value

Following Merton (1977) and Cummins (1988), we assume that
the asset values of the insurer (AI, t) and reinsurer (AR,t) are
governed by geometric Brownian motions. The process under the
risk-neutral measure Q can be written as (at time t):

dAx;t

Ax;t
¼ rt dt þ rA;xdWx;t; x ¼ I or R; ð2Þ

where subscript x = I for insurer, and x = R for reinsurer; rA,x is the
total volatility of x-company’s asset returns, and Wx,t is a Wiener
process under Q. The correlation coefficient between Wx,t and Zr,t

is qx,r.

2.3. Liability and catastrophe

We follow Cummins (1988),Duan and Yu (2005), and Gatzert
and Schmeiser (2008) to assume that the total contractual liabili-
10 In 1997, Horace Mann was upgraded by A.M. Best from A to A+ due to the
completion of its three-year, US$100 million CatEPut with Centre Reinsurance Ltd.

11 Jaimungal and Wang (2006),Lin et al. (2009), and Chang et al. (2011) adopt the
Vasicek’s interest rate model.
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ties of the (re)insurer are the value of all future claims related to
the outstanding policies. The change in liabilities is assumed to
be stochastic and consists of two components. The first one reflects
the normal variation in liabilities, including the effects of interest
rate changes and other day-to-day small shocks, and is modeled
as a continuous diffusion process. The second one reflects the
catastrophe risk that the (re)insurer faces large jumps in liabilities
and is assumed to be governed by a compound Poisson process.
Therefore, the liability dynamics of an insurer (LI,t) and reinsurer
(LR,t) under the risk-neutral measure Q can be described as follows
(at time t)12:

dLx;t

Lx;t�
¼ ðrt � k�lxÞdt þ rL;xdfW x;t þ Yx;t dNt; x ¼ I or R; ð3Þ

where rL,x is the total volatility of x-company’s liabilities and fW x;t is
a Wiener process under Q.13 We denote the correlation coefficient offW x;t and Zr,t by ~qx;r . We assume the Wiener process driving the lia-
bilities to be correlated with the risk-free rate, believing that the
insurer’s liabilities are in general highly interest-rate sensitive. The
insurer’s liabilities are typically valued by the present value of future
claims related to the outstanding policies. The value of the insurer’s
liabilities fluctuates due to the variation of interest rates, insurance
inflation, and the stochastic occurrence of claims. See Staking and
Babbel (1995) and Kuo et al. (2003), among others, for empirical
evidence.

The last term in (3) illustrates the catastrophe risk. Here, Yx,t is a
sequence of independent and identically-distributed positive ran-
dom variables describing the percentage change in liabilities due
to catastrophes, and Nt is a Poisson process with intensity k and
is independent of other variables. We assume that ln (Yx,t) has a
normal distribution with mean lx and standard deviation rx,
which implies that the expected jump size for x-company is
�lx ¼ elxþ1

2r
2
x . This assumption ensures that a catastrophe always

raises x-company’s liabilities even though the magnitude is ran-
dom. Here, we assume the insurer and reinsurer share the same
catastrophe intensity, but endure different impacts. The correlation
coefficient of ln (YI,t) and ln (YR,t) is qY. Due to jumps, the liability
process is right continuous.

2.4. Insurer’s share price

Consider that an insurer, with m1 shares outstanding, intends to
hedge its catastrophe risk by purchasing CatEPuts from a reinsurer.
Here, SI,t denotes the insurer’s share price at time t. The share price
can be valued as follows:

SI;t ¼max
AI;t � LI;t

m1
;0

� �
: ð4Þ
2.5. Exercise style

We assume CatEPuts can be exercised on a periodic basis
(weekly, monthly, etc.) to more closely reflect their American-style
feature in practice and write T1, . . . , Tn � T. This study assumes that
the CatEPut has 3 years to maturity (T = 3) and can be exercised at
the end of every month (n = 36). However, the literature treats
12 For the risk-neutral pricing measure, we follow Merton (1976) and Cummins
(1988) by assuming that the overall economy is only marginally influenced by
localized catastrophes. This assumption implies that Yx,t and Nt pertain to idiosyn-
cratic shocks to the insurer’s liabilities and have zero risk premium. See also Naik and
Lee (1990) and Shimko (1992).

13 For pricing the contingent capital contracts in our structural model, the
underlying liability is not really traded, but is typically assumed to be perfectly
hedged or replicated on a sufficient liquid and transparent market. This assumption
probably can be justified by the fact that there are highly active and transparent
reinsurance markets and emerging insurance-linked securities markets.
CatEPuts as European-style options to derive the closed-form
solution.14

2.6. Probability of default

In order to define the default event, we apply the first passage
model proposed by Black and Cox (1976) through monthly exam-
inations. In other words, the default occurs at the first time sx, such
that x-company’s assets are less than its liabilities:

sx ¼ infft ¼ T1; . . . ; TnjAx;t 6 Lx;tg; x ¼ I or R: ð5Þ

Therefore, the probability of default (PD) for the (re)insurer can be
written as:

PDx ¼ Prðmin
0<t6T

fAx;t � Lx;tg 6 0Þ; x ¼ I or R: ð6Þ
3. Valuation model

A CatEPut is an option in which the buyer has the right to issue
a certain amount of its shares (denoted as m2) at a specified price
(denoted as K) only if the accumulated catastrophic losses exceed a
predetermined amount (denoted as L). In other words, this is a
double trigger put option. The buyer/insurer can issue new shares
of its stock to the seller/reinsurer at K per share if (i) the insurer’s
share price is less than the strike price and (ii) the catastrophic
trigger condition is matched.

3.1. Catastrophic loss

CatEPuts become exercisable when the accumulated cata-
strophic losses faced by the insurer at maturity date T (denoted
as LC

I;T ) are larger than a predetermined amount L.15 This study al-
lows the contract to be exercisable on a monthly basis and examines
the accumulated catastrophic losses LC

I;t at the same time point
accordingly. The catastrophic losses during the period of Ti�1 to Ti

can be described as total liabilities minus non-catastrophic
liabilities:

LC
I;Ti
� LC

I;Ti�1
¼ LI;Ti

� LI;Ti
� exp �

XNTi

j¼1þNTi�1

lnð1þ YI;jÞ

8<:
9=;; ð7Þ

since

LI;Ti
¼LI;Ti�1

exp

R Ti
Ti�1

rðuÞdu� 1
2r

2
L;Iþk�lx

� �
ðTi�Ti�1ÞþrL;I

eW I;Ti
�eW I;Ti�1

� �
þ
XNTi

j¼1þNTi�1

lnð1þYI;jÞ

:

The last term in (7) represents total liabilities, excluding the
catastrophic losses during Ti�1 to Ti. If there is no catastrophe event
ðNTi

¼ NTi�1 Þ, then the right-hand side in (7) is zero, which means no
catastrophic losses during the period.

3.2. Payoff of contingent capital

Consider that the CatEPuts allow the insurer to issue m2 shares
to cover potential losses and the payoffs of CatEPuts without
counterparty risk, POTi

, can be described as:

m2 K � S�I;Ti

� �
; if LC

I;Ti
P L and S�I;Ti

< K;

0; otherwise;

(
ð8Þ
14 For example, Cox et al. (2004), Jaimungal and Wang (2006), Lin et al. (2009), and
Chang et al. (2011).

15 See also Cox et al. (2004), who define their catastrophic trigger as the number of a
specified catastrophic event.
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where S�I;t , the post-exercise share price, is defined by (AI,t � LI,t + m2-

K)/(m1 + m2).16 Note that all previous studies, such as Cox et al.
(2004), Jaimungal and Wang (2006), and Chang et al. (2011), define
the CatEput payoff using the pre-exercise share price, and their mod-
eling implicitly assumes that insurance companies are selling their
existing treasury shares to the CatEPut buyer. However, in the real
world insurance companies in fact issue new shares rather than sell
their existing treasury shares to the CatEPut buyer.17

Payoffs with counterparty risk, POCR
Ti

, can be expressed as:

m2 K�S�I;Ti

� �
; if LC

I;Ti
PL;S�I;Ti

<K; and AR;Ti
�LR;Ti

>m2 K�S�I;Ti

� �
;

aTi
ðAR;Ti

�LR;Ti
Þ; if LC

I;Ti
PL;S�I;Ti

<K; and AR;Ti
�LR;Ti

6m2 K�S�I;Ti

� �
;

0; otherwise;

8>>><>>>:
ð9Þ

where at �
m2 K�S�I;tð Þ

m2 K�S�I;tð ÞþLR;t
2 ð0;1Þ. The first line in (9) shows the CatE-

Put’s payoff when the reinsurer has enough net worth to meet the
claim. The second line shows the payoff when the reinsurer does
not have enough to meet the claim and the CatEPut holders have
to share the remaining assets with other liability claimants of the
reinsurer on a pro rata basis.

3.3. Price of contingent capital

According to the payoff structures, the catastrophic loss process,
and the dynamics for the (re)insurer’s assets and liabilities speci-
fied above, the price of the contingent capital or the rate on line
can be valued as follows:

P ¼ 1
m2K

� EQ e�
R T^s

0
rðuÞdu � PO�T^s

	 

; ð10Þ

where EQ½�� denotes expectations taken on the issuing date under a
risk-neutral pricing measure, PO�T^s is POT^s for CSN and POCR

T^s for
CatEPut, and s denotes the first exercisable time defined as:

s ¼ inf t ¼ T1; . . . ; TnjLC
I;t P L and S�I;t < K

n o
: ð11Þ

Note that the total contingent capital brought in, m2K, is fixed in
spite of the exercise timing. It is composed of the put payoff,

m2 K � S�I;s
� �

, and the new capital infusion, m2S�I;s. Without fur-

ther complicating our model, we assume the buyer prefers
receiving the fixed contingent capital early rather than late.
Alternatively, one can consider the strike price K corresponding
to the critical level of regulatory capital that the buyer must
maintain.

3.4. Price endogeneity

The price of a CatEPut obviously depends on the initial asset
values of the insurer and the reinsurer. When an insurer purchases
CatEPuts from the reinsurer, the insurer’s asset value will decrease.
This reduction leads to a higher exercise probability of the CatEPut
and increases the put’s value. The purchase, however, raises the
reinsurer’s asset value and leads to a lower counterparty risk,
therefore increasing the put’s value. It follows that considering
price endogeneity raises the CatEPut price.18 In order to deal with
this endogeneity, we propose a dynamic model to obtain the equilib-
rium price of a CatEPut. The algorithm of deriving the price is as
follows.
16 Note that when SI;Ti
denotes the surplus notes’ price and K denotes the Treasury

note, it is the same payoffs of CSN as discussed in Lin et al. (2009).
17 The authors thank the referee for pointing out this issue.
18 Note that CSNs and CAT bonds do not have the problem of price endogeneity.
Algorithm 1.
Step 1. For i = 0, given the initial asset values Að0ÞI;0 and Að0ÞR;0,
calculate the initial CatEPut price P(0).

Step 2. For i = i + 1, set AðiÞI;0 ¼ Að0ÞI;0 �m2KPði�1Þ and

AðiÞR;0 ¼ Að0ÞR;0 þm2KPði�1Þ.
Step 3. Calculate the updated CatEPut price P(i).
Step 4. If jP(i) � P(i�1)j > 10�6, then repeat Step 2;

If jP(i) � P(i�1)j 6 10�6, then we define the equilibrium
price P⁄ = P(i).

Note that the equilibrium price does exist, because P(i) is an
increasing function in i and bounded above by Að0ÞI;0 .
4. Numerical analysis

This section estimates the default probabilities and CatEPut
prices using the Monte Carlo method with 250,000 paths. This
section further presents parameters and their values and
demonstrates how price endogeneity and counterparty risk affect
CatEPut prices. We provide the details of simulation procedures
in Appendix A.

4.1. Parameters

As a reference point for the numerical results, Table 1 presents a
base set of parameter values. The initial spot interest rate is set at
2%. The steady long-run rate is 5%, the magnitude of the mean-
reverting force is 20%, the volatility of the interest rate is 3%, and
the coefficient of correlation for random shocks of asset values (lia-
bilities) and the interest rate, qx,r ð~qx;rÞ, is set to be �0.5. These
interest rate parameter values are all within the range typically
used in the previous literature such as Duan and Simonato
(2002) and Jaimungal and Wang (2006). Next, this study assumes
that the coefficient of correlation for random shocks of the asset
values (liabilities) between the insurer and reinsurer, qA (qL), is
0.5, and the coefficient of correlation for the logarithm of catastro-
phe losses of the insurer and reinsurer, qY, is 0.5.

In order to investigate the significance of the counterparty risk,
we consider low-risk and high-risk profiles for both the insurer and
reinsurer in the sense of PD. The low-risk (re)insurer’s rating is
Moody’s-A and S&P-A, and the high-risk (re)insurer’s rating is
Moody’s-BB and S&P-Ba. We assume that the asset/liability ratios
for the low-risk and high-risk companies are 1.3 and 1.2, respec-
tively. The total volatilities of asset returns and liabilities are set
to be 5% and 2%, respectively. These parameter values are from
Cummins (1988),Duan and Yu (2005), and Pennacchi (2010).

When choosing the remaining parameter values, we follow
Härdle and Cabrera (2010) to ensure that our simulated three-year
PDs are in the range of those reported by Moody’s and S&P as
shown in Table 2. This study considers two cases of catastrophe
intensity (k = 0.1 and 0.25) and further assumes the low intensity
comes with a higher impact on expected catastrophe losses, and
vice versa. For the low-risk company, we set the expected jump
size �lx ¼ 4% and 3% for the low- and high-intensity cases, respec-
tively. For the high-risk company, we set the expected jump size
�lx ¼ 9% and 6% for the low- and high-intensity cases, respectively.
The standard deviation of the logarithm of catastrophe losses is
20% for all cases. As a result, the three-year PDs of the low-risk
and high-risk companies are about 0.3% and 6%, respectively.

Deviations from the base values provide insights into how
changes in the characteristics of the insurer, reinsurer, and



Table 1
Parameters, definitions, and base values.

Values

Interest rate parameters
rt Instantaneous interest rate r0 = 2%
j Magnitude of mean-reverting force 20%
lr Long-run mean of the interest rate 5%
rr Volatility of the interest rate 3%

Asset and liability parameters
LI,t Insurer’s liabilities 1
AI,t Insurer’s assets AI,0/LI,0 = 1.2 or

1.3
AR,t Reinsurer’s assets AR,0/AI,0 = 1
LR,t Reinsurer’s liabilities AR,0/LR,0 = 1.2 or

1.3
rA,x Total volatility of (re)insurer’s asset return 5%
rL,x Total volatility of (re)insurer’s liability 2%

Catastrophe loss parameters
k Catastrophe intensity 0.1 or 0.25
�lx Expected jump size for the (re)insurer 9% or 4% if

k = 0.1.
6% or 3% if
k = 0.25.

rx Standard deviation of the logarithm of catastrophe
losses

20%

Correlations
qA Correlation coefficient of credit shocks between the

insurer and the reinsurer
0.5

qL Correlation coefficient of pure liability risk between
the insurer and the reinsurer

0.5

qY Correlation coefficient of the logarithms of
catastrophe losses between the insurer and the
reinsurer

0.5

qx,r Correlation coefficient between the interest rate and
assets

�0.5

~qx;r Correlation coefficient between the interest rate and
liabilities

�0.5

Other parameters
T Time to maturity 3
Ti Examination dates, i = 1, . . . , n. Ti = i/12, n = 36.
sx First passage time of x-company’s default
s First exercisable time
SI,0 Insurer’s initial share price � (AI,0 � LI,0)/m1

K Strike price 0.8SI,0 (out of
the money)

L Trigger level 0.1LI,0

m1 Shares outstanding 1
m2 Underlying shares of CatEPut as % of m1 20% and 50%

Table 2
Three-year probability of default (%) rating agencies vs. simulation values. Simulation
values are calculated assuming the first passage model proposed by Black and Cox
(1976) with monthly examinations, the volatility of asset rA,x = 5%, the volatility of
liability rL,x = 2%, and Ax;0

Lx;0
¼ 1:2ð1:3Þ for the high (low)-risk company. Case k = 0.1

exhibits a scenario of low intensity and large expected losses, where lx ¼ 9%ð4%Þ for
the high (low)-risk company. Case k = 0.25 exhibits a scenario of high intensity and
small expected losses, where lx ¼ 6%ð3%Þ for the high (low)-risk company. All values
are estimated using the Monte Carlo simulation with 250,000 runs.

Risk profile Moody’s rating S&P rating Simulation

A BB A Ba k = 0.1 k = 0.25

Low-risk 0.25 0.31 0.28 0.31
High-risk 6.20 5.61 5.89 6.18
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catastrophe events affect the CatEPut price. We consider the rela-
tive ratio of the asset size of the reinsurer/insurer to be 1. For sim-
plicity, we let the insurer’s shares outstanding, m1, be 1, and the
underlying shares of the put, m2, are set at 20% or 50% of m1. The
strike price K is set to be out-of-the-money and at 0.8SI,0. The catas-
trophe trigger level is set at 0.1LI,0.
4.2. CatEPut price with price endogeneity

Table 3 reports CatEPut prices in basis points under four scenar-
ios: two risk profiles for the buyer across two levels of catastrophe
intensity. In this table we do not consider the counterparty risk,
and so the seller’s risk profile is irrelevant. For each scenario, we
further report CatEPut prices for m2 at 20% and 50%. CatEPut price
P(0) stands for the price without considering the purchasing cost,
and it is decreasing in m2, because a larger m2 implies a higher

post-exercise share price S�I;t
� �

, and therefore a smaller payoff as

indicated in (8). For the high-risk buyer, the prices are
407.35, 334.76, 553.26, and 450.17 basis points for cases
(k,m2) = (0.1,0.2), (0.1,0.5), (0.25,0.2), and (0.25,0.5), respectively;
and the corresponding prices for the low-risk buyer are 14.54,
11.65, 30.79, and 24.70 basis points, respectively.

When incorporating the purchasing cost, prices are endoge-
nously determined and will rise to P(⁄). We demonstrate the
convergence of CatEPut prices, and all prices converge within 4
steps of iterations. The difference between P(⁄) and P(0) is exhibited
at the bottom line of the table, indicating that the higher the ratio
of the insurer’s shares covered by the CatEPut (m2) is, the stronger
the impact of price endogeneity. The price underestimation due to
the endogeneity is significant and ranges from 5.18 to 18.11 basis
points for the high-risk buyer; on the contrary, it is insignificant for
the low-risk buyer, because the purchasing cost of the CatEPut is
too small in this case.
4.3. CatEPut price with counterparty risk

Table 4 shows the effect of counterparty risk on the CatEPut
price under the consideration of price endogeneity. Panel (a) re-
ports the prices without counterparty risk, and panels (b) and (c)
report the prices with counterparty risk. We consider low- and
high-risk profiles for the CatEPut seller (i.e. reinsurer), and the sell-
er’s asset scale to the buyer’s, AR;0

AI;0
, is either 5 or 1.

We set the case without counterparty risk as the benchmark
and define the difference from the benchmark price as the count-
erparty risk premium (CRP). Since counterparty risk decreases
the value of the CatEPut, prices in panels (b) and (c) are lower than
their corresponding prices in (a). Moreover, CatEPut prices for the
high-risk seller in panel (c) are lower than their corresponding val-
ues in panel (b) with low counterparty risk. A higher ratio of shares
covered by the put, m2, means the more sensitive the price is to
counterparty risk. Hence, counterparty risk lowers the price more
for the case of m2 = 50% than it does for m2 = 20%.

For the high-risk seller, the counterparty risk becomes more
substantial. It may decrease the price by 80.80–166.01 basis points
for the high-risk buyer and 9.07–20.98 basis points for the low-risk
buyer. For the low-risk seller, the counterparty risk is relatively
small, but significant when the seller’s asset scale is close to the
buyer’s, and it still can decrease the price by more than 11 basis
points for some cases. In addition, we note that prices increase
with the asset scale ratio when it rises from 1 to 5, but this effect
is not as significant as that due to the change in the seller’s risk
profile.

Since counterparty risk and the price endogeneity affect the
prices in different directions, the joint effect is undetermined.
Fig. 1 exhibits the CatEPut prices with and without considering
these two effects and demonstrates the relation between CatEPut
prices and the coverage ratio. For a high-risk seller, the CRP dom-
inates the price endogeneity effect and the CatEPut price is much
lower than that without considering counterparty risk and the
price endogeneity. For a low-risk seller, the price endogeneity be-
comes more substantial and may offset the counterparty risk, and
consequently the CatEPut price is insignificantly different from



Table 3
CatEPut prices in basis points with vs. without price endogeneity. All values are calculated assuming option term T = 3, monthly exercisable, without counterparty risk, strike price
K = 0.8 SI,0, trigger level L ¼ 0:1LI;0, shares outstanding m1 = 1, the volatility of asset rA,I = 5%, the volatility of liability rL,I = 2%, and AI;0

LI;0
¼ 1:2ð1:3Þ for the high (low)-risk insurer.

Case k = 0.1 exhibits a scenario of low intensity and large expected losses, where lI ¼ 9%ð4%Þ for the high (low)-risk insurer. Case k = 0.25 exhibits a scenario of high intensity and
small expected losses, where lI ¼ 6%ð3%Þ for the high (low)-risk insurer. All values are estimated using the Monte Carlo simulation with 250,000 runs, and standard errors are
reported in brackets.

High-risk buyer Low-risk buyer

k = 0.1 k = 0.25 k = 0.1 k = 0.25

m2= 20% 50% 20% 50% 20% 50% 20% 50%

P(0) 407.35 334.76 553.26 450.17 14.54 11.65 30.79 24.70
[3.097] [2.593] [3.475] [2.867] [0.510] [0.410] [0.718] [0.578]

P(1) 412.47 343.72 563.60 467.59 14.55 11.67 30.84 24.79
P(2) 412.53 343.97 563.74 468.27 14.55 11.67 30.84 24.79
P(3) 412.53 343.98 563.74 468.28
P(4) 343.98 468.28
P(*) 412.53 343.98 563.74 468.28 14.55 11.67 30.84 24.79

[3.123] [2.641] [3.518] [2.945] [0.511] [0.410] [0.718] [0.579]
P(⁄) � P(0) 5.18 9.22 10.48 18.11 0.01 0.02 0.05 0.09

[0.078] [0.096] [0.124] [0.157] [0.002] [0.002] [0.005] [0.005]

Table 4
CatEPut prices in basis points with vs. without counterparty risk. All values are
calculated assuming option term T = 3, monthly exercisable, strike price K = 0.8SI,0,
trigger level L ¼ 0:1LI;0, shares outstanding m1 = 1, the volatility of asset rA,x = 5%, the
volatility of liability rL,x = 2%, and Ax;0

Lx;0
¼ 1:2ð1:3Þ for the high (low)-risk company. Case

k = 0.1 exhibits a scenario of low intensity and large expected losses, where
lx ¼ 9%ð4%Þ for the high (low)-risk company. Case k = 0.25 exhibits a scenario of
high intensity and small expected losses, where lx ¼ 6%ð3%Þ for the high (low)-risk
company. CRP denotes the counterparty risk premium. All values are estimated using
the Monte Carlo simulation with 250,000 runs, and standard errors are reported in
brackets.

High-risk buyer Low-risk buyer

k = 0.1 k = 0.25 k = 0.1 k = 0.25
m2 = 20% 50% 20% 50% 20% 50% 20% 50%

(a) Without counterparty risk
412.53 343.98 563.74 468.28 14.55 11.67 30.84 24.79

(b) With counterparty risk: low-risk seller
AR;0
AI;0
¼ 5 410.36 341.20 561.38 465.27 13.82 10.95 29.91 23.73

CRP 2.17 2.78 2.36 3.01 0.74 0.72 0.93 1.06
[0.28] [0.31] [0.29] [0.31] [0.14] [0.13] [0.16] [0.16]

AR;0
AI;0
¼ 1 407.24 332.43 557.37 455.35 13.39 10.23 28.84 21.70

CRP 5.29 11.55 6.37 12.93 1.16 1.44 2.00 3.09
[0.44] [0.63] [0.48] [0.64] [0.18] [0.18] [0.23] [0.26]

(c) With counterparty risk: high-risk seller
AR;0
AI;0
¼ 5 331.73 260.02 480.61 380.71 3.62 2.60 13.08 9.61

CRP 80.80 83.96 83.13 87.57 10.93 9.07 17.76 15.17
[1.60] [1.54] [1.57] [1.50] [0.46] [0.38] [0.58] [0.48]

AR;0
AI;0
¼ 1 287.57 201.63 424.82 302.27 2.63 1.62 9.86 5.91

CRP 126.96 142.34 138.92 166.01 11.92 10.05 20.98 18.88
[1.99] [1.96] [2.03] [2.03] [0.48] [0.39] [0.63] [0.53]

19 Similar arguments can be applied to the seller/reinsurer to define its change in PD
as DPDR ¼ PDpo

R þ PDpe
R . We decompose the reinsurer’s change in PD (DPDR) into two

parts: the increase in PD due to the loss coverage of the insurance put PDpo
I

� �
and the

reduction in PD due to the revenue for acquiring the put PDpe
I

� �
. However, this study’s

discussion focuses on the buyer.
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that without considering counterparty risk and the price
endogeneity.

5. Further discussions

5.1. CatEPut transaction and credit rating

In this section we examine how CatEPuts affect the insurer’s
default risk. Since CatEPuts ensure that the buyer can issue new
shares when the put is exercised, the total change in PD (DPDI) in-
cludes a pure put option effect DPDp

I

� �
and a new equity effect

DPDn
I

� �
:

DPDI ¼ DPDp
I þ DPDn

I : ð12Þ

By looking only into the pure put option effect, one cannot tell
whether its change is positive or negative. CatEPuts cover part of
the insurer’s catastrophic losses and decrease its PD, but purchasing
CatEPuts decreases the insurer’s future cash flows and increases its
PD.

In order to precisely measure the change in PD, we further
decompose the pure put option effect into three parts: a reduction
of PD due to the payoff of the CatEPut PDpo

I

� �
, an increase in PD

coming from counterparty risk PDcr
I

� �
, and another increase due

to the expenses of acquiring the option PDpe
I

� �
. The decomposition

is as follows:

DPDp
I ¼ PDpo

I þ PDcr
I þ PDpe

I ; ð13Þ

and

PDpo
I � Pr min

0<t6T
A0

I;t þ POs^T � LI;t

n o
6 0

� �
� Pr min

0<t6T
A0

I;t � LI;t

n o
6 0

� �
; ð14Þ

PDcr
I � Pr min

0<t6T
A0

I;t þ POCR
s^T � LI;t

n o
6 0

� �
� Pr min

0<t6T
A0

I;t þ POs^T � LI;t

n o
6 0

� �
; ð15Þ

PDpe
I �Pr min

0<t6T
A�I;tþPOCR

s^T�LI;t

n o
60

� �
�Pr min

0<t6T
A0

I;tþPOCR
s^T�LI;t

n o
60

� �
;

ð16Þ

where A0
I;t and A�I;t denote the insurer’s asset value at time t with ini-

tial value AI,0 and (AI,0 � P⁄), respectively. Terms POt and POCR
t repre-

sent the corresponding payoffs brought in by the put as defined in
(8) and (9). It is worth noting that PDpo

I is positive, PDcr
I and PDpe

I are
negative, and the sign of DPDp

I is undetermined.19

The new equity effect on PD is surely negative since it brings in
new capital. It can be expressed as:

DPDn
I � Pr min

0<t6T
A�I;t þ CIs^T � LI;t

n o
6 0

� �
� Pr min

0<t6T
A�I;t þ POCR

s^T � LI;t

n o
6 0

� �
;

where CIt � POCR
t þm2S�I;t1fs6Tg is the total capital infusion at the

trigger point. Note that the new equity effect is defined as improve-



Fig. 1. The joint effect of counterparty risk and price endogeneity. All values are estimated using the Monte Carlo simulation with 250,000 runs and assuming option term
T = 3, monthly exercisable, a high-risk buyer, strike price K = 0.8SI,0, the trigger level L ¼ 0:1LI;0, and the catastrophe intensity k = 0.1. Notations CR and PE denote the
counterparty risk effect and price endogeneity effect, respectively.
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ments in PD contributed by the capital infusion beyond the put pay-
off effect.

Table 5 demonstrates the change in PD before PD0
I

� �
and after

PD�I
� �

the insurer buys the CatEPut. First, we note that the total ef-
fect of changes in PDs are all negative without exception. For the
high-risk buyer, we observe a significant credit enhancement with
a reduction in PD in the range of 0.76–2.48%; however, for the low-
risk buyer the changes in panels (c) and (d) are all close to zero,
implying a limited credit enhancement. Next, we further decom-
pose the credit enhancement into the pure put option effect and
Table 5
Change in insurer’s probability of default with CatEPuts (%). Simulation values are calculat
basis, option term T = 3, strike price K = 0.8SI,0, trigger level L ¼ 0:1LI;0, shares outstand
Ax;0
Lx;0
¼ 1:2ð1:3Þ for the high (low)-risk company. Case k = 0.1 exhibits a scenario of low inten

Case k = 0.25 exhibits a scenario of high intensity and small expected losses, where lx ¼ 6%

payoff effect, the counterparty risk effect, the price endogeneity effect, the new equity effe
default probability before and after the CatEPut transaction, respectively. All values are es

(k,m2) Pure put option effect +

DPDpo
I þ DPDcr

I þ DPDpe
I D

(a) High-risk buyer, low-risk seller
(0.10,20%) �0.71 0.00 0.13
(0.10,50%) �1.38 0.03 0.23
(0.25,20%) �0.98 0.01 0.17
(0.25,50%) �1.81 0.04 0.29

(b) High-risk buyer, high-risk seller
(0.10,20%) �0.71 0.21 0.09
(0.10,50%) �1.38 0.64 0.13
(0.25,20%) �0.98 0.28 0.12
(0.25,50%) �1.81 0.75 0.19

(c) Low-risk buyer, low-risk seller
(0.10,20%) �0.02 0.00 0.00
(0.10,50%) �0.02 0.01 0.00
(0.25,20%) �0.03 0.00 0.00
(0.25,50%) �0.05 0.01 0.00

(d) Low-risk buyer, high-risk seller
(0.10,20%) �0.02 0.02 0.00
(0.10,50%) �0.02 0.02 0.00
(0.25,20%) �0.03 0.03 0.00
(0.25,50%) �0.05 0.04 0.00
the new equity effect. Our results indicate that both effects alone
can lower the insurer’s PD.

If the counterparty risk and price endogeneity are ignored, then
the credit enhancement of the high-risk buyer will further grow to
1.05–2.98%. Particularly for the cases of (0.10%,50%) and
(0.25%,50%) in panel (b), the credit enhancement effect will be sig-
nificantly overestimated by 0.77% and 0.94%, respectively. These
findings further support our concerns that counterparty risk and
price endogeneity should be included in the valuation of contin-
gent capital.
ed assuming the first passage model proposed by Black and Cox (1976) on a monthly
ing m1 = 1, the volatility of asset rA,x = 5%, the volatility of liability rL,x = 2%, and
sity and large expected losses, where lx ¼ 9%ð4%Þ for the high (low)-risk company.
ð3%Þ for the high (low)-risk company. DPDpo

I ;DPDcr
I ;DPDpe

I ;DPDn
I , and D PDI denote the

ct, and the total effect on probability of default, respectively. PD0
I and PD�I denote the

timated using the Monte Carlo simulation with 250,000 runs.

New equity effect = Total effect

PDn
I DPDI ¼ PD�I � PD0

I

�0.34 �0.91 4.97 5.89
�0.76 �1.88 4.00 5.89
�0.48 �1.29 4.89 6.18
�1.00 �2.48 3.70 6.18

�0.35 �0.76 5.12 5.89
�0.86 �1.47 4.42 5.89
�0.50 �1.09 5.09 6.18
�1.16 �2.04 4.14 6.18

�0.00 �0.02 0.26 0.28
�0.01 �0.02 0.25 0.28
�0.01 �0.04 0.27 0.31
�0.02 �0.05 0.26 0.31

�0.01 �0.01 0.27 0.28
�0.02 �0.02 0.26 0.28
�0.02 �0.02 0.29 0.31
�0.04 �0.04 0.27 0.31



Table 6
CatEPut prices in basis points correlation of catastrophe risk. All values are calculated assuming option term T = 3, monthly exercisable, strike price K = 0.8SI,0, trigger level
L ¼ 0:1LI;0, shares outstanding m1 = 1, the volatility of asset rA,x = 5%, the volatility of liability rL,x = 2%, and Ax;0

Lx;0
¼ 1:2ð1:3Þ for the high (low)-risk company. Case k = 0.1 exhibits a

scenario of low intensity and large expected losses, where lx ¼ 9%ð4%Þ for the high (low)-risk company. Case k = 0.25 exhibits a scenario of high intensity and small expected
losses, where lx ¼ 6%ð3%Þ for the high (low)-risk company. All values are estimated using the Monte Carlo simulation with 250,000 runs, and standard errors are reported in
brackets.

High-risk buyer Low-risk buyer

k = 0.1 k = 0.25 k = 0.1 k = 0.25

m2 = 20% 50% 20% 50% 20% 50% 20% 50%

(a) With counterparty risk: low-risk seller
qY = 0 407.42 332.27 557.57 455.76 13.40 10.28 29.01 21.87
qY = 1 407.28 331.97 557.52 454.41 13.36 10.08 28.80 21.52
difference 0.14 0.30 0.06 1.35 0.04 0.20 0.21 0.35

[0.26] [0.31] [0.25] [0.30] [0.07] [0.08] [0.12] [0.11]

(b) With counterparty risk: high-risk seller
qY = 0 292.77 209.74 428.80 306.58 3.41 2.12 10.88 6.93
qY = 1 279.49 194.14 420.12 296.70 1.94 1.10 8.73 5.18
difference 13.27 15.60 8.68 9.87 1.47 1.02 2.15 1.75

[1.14] [0.88] [1.19] [0.97] [0.16] [0.11] [0.23] [0.17]

Fig. 2. Stochastic interest rate and stochastic duration. In this example, the initial instantaneous interest rate is r0 = 2%, magnitude of mean-reverting force j = 20%, long-run
mean of interest rate lr = 5%, volatility of interest rate rr = 3%, and correlation coefficient between interest rate and assets qA,r = �0.5.

20 The justification and details can be found in Appendix A.
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5.2. Correlation of catastrophe risk

Table 6 examines the correlation of catastrophe losses between
the insurer and reinsurer in order to look further into the impact of
counterparty risk. Intuitively, a higher correlation implies a higher
default risk for the reinsurer since the reinsurer also suffers catas-
trophe losses when the insurer’s CatEPut is triggered. Table 6 dem-
onstrates two extreme levels of correlation: uncorrelated (qY = 0)
and perfectly correlated (qY = 1), for the low-risk seller and the
high-risk seller. Consistent with the conjecture, CatEPut prices
are negatively related to the correlation of catastrophe risk. The
impact due to the catastrophe correlation risk is insignificant for
the low-risk seller as in panel (a), but it is significant and could
be as large as 15.60 basis points for the high-risk seller as in panel
(b) under our reasonable scenarios. For example, for the case of the
high-risk buyer, k = 0.1, and the high-risk seller, the difference be-
tween qY = 0 and qY = 1 is 13.27 basis points when m2 = 20% and is
15.60 basis points when m2 = 50%, both values are statistically
significant.
5.3. Interest rate risk

There is no doubt that the interest rate is a major source of risk
for both the insurer and reinsurer. In order to explicitly examine
the interest rate risk exposure of the two, we apply the model in
Duan et al. (1995) to rewrite the typical asset dynamics (2) and
the liability dynamics (3) of x-company as follows20:

dAx;t

Ax;t
¼ ðrt � /x;tjðlr � rtÞÞdt þ /x;tdrt þ wx dZx;t; ð17Þ

dLx;t

Lx;t�
¼ rt� ~/x;tjðlr�rtÞ�kelxþ1

2r
2
x

� �
dtþ ~/x;tdrtþ ~wxdeZx;tþYx;t dNt;

ð18Þ

where /x,t ð~/x;tÞ is the instantaneous interest rate elasticity of x-
company’s assets (liabilities); wx is the volatility of the credit risk;



Table 7
CatEPut prices in basis points interest rate risk. All values are calculated assuming option term T = 3, monthly exercisable, without counterparty risk, strike price K = 0.8SI,0, trigger
level L ¼ 0:1LI;0, shares outstanding m1 = 1, the volatility of the credit risk wA,x = 4.330%, the volatility of the pure liability risk wL,x = 1.732%, and Ax;0

Lx;0
¼ 1:2ð1:3Þ for the high (low)-

risk company. Case k = 0.1 exhibits a scenario of low intensity and large expected losses, where lx ¼ 9%ð4%Þ for the high (low)-risk company. Case k = 0.25 exhibits a scenario of
high intensity and small expected losses, where lx ¼ 6%ð3%Þ for the high (low)-risk company. /I,0 and ~/I;0 denote the instantaneous interest rate elasticity of the insurer’s assets
and liabilities, respectively. All values are estimated using the Monte Carlo simulation with 250,000 runs, and standard errors are reported in brackets.

High-risk buyer Low-risk buyer

k = 0.1 k = 0.25 k = 0.1 k = 0.25

m2 = 20% 50% 20% 50% 20% 50% 20% 50%

(a) With interest rate risk

ð/I;0;
~/I;0Þ ¼ ð�5:892;�2:357Þ

412.53 343.98 563.74 468.28 14.55 11.67 30.84 24.79

(b) Without interest rate risk

ð/I;0;
~/I;0Þ ¼ ð0;0Þ

424.44 355.58 581.64 486.69 15.62 12.55 34.26 27.57
(b)–(a) 11.91 11.60 17.90 18.41 1.07 0.88 3.42 2.78

[0.86] [0.72] [0.97] [0.81] [0.17] [0.14] [0.28] [0.23]
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~wx is the volatility of the pure liability risk of x-company; Zx,t is a
Wiener process under Q that denotes the credit risk on the assets
of x-company that is orthogonal to the interest rate risk; eZx;t is a
Wiener process under Q that summarizes all continuous shocks
that are not related to the interest rate or asset risk of x-company,
or in other words, Zx,t, eZx;t , and Zr,t are independent. The correlation
coefficient of ZI,t and ZR,t is qA, and the correlation coefficient of eZI;t

and eZR;t is qL.
Note that the instantaneous interest rate elasticity, /x,t, in Duan

et al. (1995) is a constant due to their Vasicek interest rate assump-
tion. Under the CIR model, the elasticity depends on the interest
rate level, /x;t ¼

rA;x
rr
ffiffiffi
rt
p qx;r , and captures the stochastic modified

duration. Fig. 2 compares the Vasicek and the CIR interest rate
models using an example. It shows the well-known property of
the Vasicek model in which the model may generate a negative
interest rate value. It then demonstrates that the instantaneous
interest rate elasticity is stochastic for the CIR model, but constant
for the Vasicek model.

In order to measure the interest rate risk, we consider the
price difference from the interest rate-sensitive and -insensitive
scenarios.21 Table 7 compares the insurer’s interest rate risk and
demonstrates how the interest rate risk affects the CatEPut prices.
Panel (a) exhibits the case with initial elasticities
ð/I;0;

~/I;0Þ ¼ ð�5:892; �2:357Þ, which are derived from the base
set of parameter values, and panel (b) exhibits the interest rate-
insensitive case, ð/I;t;

~/I;tÞ ¼ ð0;0Þ, for all t. The numerical results
show that the decrease due to the interest rate risk is economi-
cally and statistically significant in general, and the interest rate
risk may decrease CatEPut prices by 11–18 basis points in some
cases. In short, our model indeed provides a platform to evaluate
the interest rate risk and to depict the stochastic modified dura-
tion. We also expect that the interest rate risk will be greater
for contracts with longer maturity.
6. Summary remarks

This study has developed a dynamic structural framework to
value contingent capital with counterparty risk and price endoge-
neity. Our analysis focuses on the CatEPut, which is the major and
more complex instrument of contingent capital. The structural
model allows the default risk to be determined endogenously,
depending on the asset-liability structure of the insurer and the
reinsurer. Our model also improves upon the literature by allowing
21 Duan et al. (1995) consider the difference in the interest rate elasticities of assets
and liabilities.
insurance companies to raise contingent capital through issuing
new shares rather than selling their existing treasury shares to
the CatEPut buyer, which is in accordance with the real world prac-
tices of CatEPut transactions. In addition, it provides a platform to
evaluate critical parameters, such as interest rate risk and correla-
tion risk, and to analyze how contingent capital affects the proba-
bility of default for the buyer and seller. These interesting issues
cannot be addressed in the reduced-form literature.

Our results show that counterparty risk significantly decreases
the CatEPut price and the extent of the decrease can easily exceed
80 basis points. The price endogeneity increases the CatEPut price;
and the higher the price is, the stronger the impact. The increase in
price due to price endogeneity can reach 5–18 basis points under
some scenarios. These two factors are both substantial, but have
not been considered in previous studies. Under reasonable scenar-
ios, counterparty risk dominates the price endogeneity and CatE-
Put prices will be lower after considering these two factors. This
study also improves upon the literature that has valued CatEPuts
as a European-style contingent claim by allowing monthly
exercises.

This study also finds that buying CatEPut can significantly de-
crease the PD for a high-risk insurer by 0.76–2.48% (no matter
the risk-profile of its counterparty), but it may not significantly de-
crease the PD for a low-risk insurer under our reasonable scenarios.
However, without taking the counterparty risk and price endoge-
neity into account, one may significantly overestimate the credit
enhancement provided by the CatEPuts and underestimate the in-
surer’s credit risk. These findings further support our concerns that
counterparty risk and price endogeneity should be included in the
valuation of contingent capital.
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Appendix A. Simulation procedures

We generate the interest rate process (1) by applying the Euler
discretization at each Ti as



Fig. 3. Distributions of simulated interest rate. A comparison of exact distribution
(solid) by generating the noncentral chi-square random numbers and the Euler
approximation (dashed) by generating the normal random numbers as Eq. (A.1) for
interest rate model (1) with parameters r0 = 2%, j = 0.2, lr = 0.05, rr = 0.03,
(Ti � Ti�1) = 1/12, and 250,000 paths.

5034 C.-L. Lo et al. / Journal of Banking & Finance 37 (2013) 5025–5035
rTi
¼ rTi�1

þ jðlr � rTi�1
ÞðTi � Ti�1Þ þ rr

ffiffiffiffiffiffiffiffiffi
rþTi�1

q
ðZr;Ti

� Zr;Ti�1
Þ; i

¼ 1;2; . . . ;n; ðA:1Þ

where Zr,s � Zr,t is normally distributed with mean zero and variance
s � t, and rþt �maxfrt; 0g is the positive part of rt.22 Comparing with
the conditional density approach of Cox et al. (1985), the mean and
the standard deviation of both approaches in our 250,000 simula-
tions are less than 10�4 for all Ti.23 In addition, the skewness and
the kurtosis of both approaches are on average 0.015 and 0.033,
respectively, and the whole distribution of both approaches are very
closed as shown in Fig. 3. Therefore, we claim that the discretization
errors in this study can be neglected due to the small time period
(Ti � Ti�1) = 1/12.

After generating the paths of the interest rate, we then simulate
the dynamics of assets and liabilities. Applying Ito’s lemma, we can
rewrite (2) and (3) into the following equations.

Ax;Ti
¼ Ax;Ti�1

� exp
Z Ti

Ti�1

rs ds� 1
2
r2

A;xðTi � Ti�1Þ þ rA;xðWx;Ti
�Wx;Ti�1

Þ
 !

;

ðA:2Þ
22 We take rþt inside the square root, because the Euler discretization may generate
a negative value of rt. However, in our numerical analysis there is no negative rt for all
paths.

23 Cox et al. (1985) show that the conditional interest rate under the CIR model (1)
follows a non-central chi-square distribution. Given the initial value r0, the interest
rate at the end of each period can be generated by:

rTi
¼ v2

mðnðTi�1; TiÞÞ
2cðTi�1; TiÞ

; i ¼ 1;2; . . . ;n;

where v2
mðnÞ is a random number chosen from the non-central chi-square distribu-

tion with the degrees of freedom in m and the non-centrality n. In particular,

cðt; sÞ � 2j
r2

r ð1� e�jðs�tÞÞ ; nðt; sÞ � 2cðt; sÞrte�jðs�tÞ; and m � 4jlr

r2
r
:

In this study we use the Matlab function ‘‘ncx2rnd’’ to generate the random
numbers.
Lx;Ti
¼ Lx;Ti�1

exp
Z Ti

Ti�1

rs ds� k�lx þ
1
2
r2

L;x

� �
ðTi � Ti�1Þ

 !

� exp rL;xðfW x;Ti
� fW x;Ti�1

Þ þ
XNTi

j¼1þNTi�1

lnð1þ YI;jÞ

0@ 1A; ðA:3Þ

where ðNTi
� NTi�1

Þ can be generated by a Poisson distribution with
intensity k and jump size YI,j. As the random sources of asset and lia-
bility processes, dWx,t and dfW x;t , are assumed to be correlated with
that of the interest rate process, dZr,t, we set:

Wx;Ti
�Wx;Ti�1

¼ qx;rðZr;Ti
� Zr;Ti�1

Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

x;r

q
ðZx;Ti

� Zx;Ti�1
Þ ðA:4Þ

fW x;Ti
� fW x;Ti�1

¼ ~qx;rðZr;Ti
� Zr;Ti�1

Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~q2

x;r

q
ðeZx;Ti

� eZx;Ti�1
Þ; ðA:5Þ

and construct ðZx;Ti
� Zx;Ti�1 Þ and ðeZx;Ti

� eZx;Ti�1 Þ by normal random
numbers.

Finally, the price of contingent capital (10) can be calculated via
averaging over the simulated values of payoff (8) or (9).

Appendix B. Specification of asset dynamics

The term Zx,t is constructed, as a result of the projection, to be
orthogonal to Zr,t, and we now present the credit risk as in Duan
et al. (1995):

dWx;t ¼ qx;r dZr;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

x;r

q
dZx;t ; ðB:1Þ

where qx;r ¼
CovðdWx;t ;dZr;t Þ

dt . Substituting (B.1) into (2) yields:

dAx;t

Ax;t
¼ rt dt þ rA;xqx;r dZr;t þ rA;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

x;r

q
dZx;t: ðB:2Þ

Using Eqs. (1) and (B.2) can be rearranged to yield:

dAx;t

Ax;t
¼ rt dt þ rA;x

rr
ffiffiffiffi
rt
p qx;rðdrt � jðlr � rtÞdtÞ þ rA;x

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

x;r

q
dZx;t : ðB:3Þ

Defining /x;t �
rA;x

rr
ffiffiffi
rt
p qx;r and wx � rA;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

x;r

q
, (B.3) can then be

simplified as:

dAx;t

Ax;t
¼ ðrt � /x;tjðlr � rtÞÞdt þ /x;tdrt þ wx dZx;t; ðB:4Þ

where /x,t demonstrates the instantaneous interest rate elasticity of
x-company’s assets that represents the stochastic modified
duration.

The term eZx;t is similarly constructed to be orthogonal to Zr,t.
Projecting dfW x;t onto dZr,t yields:

dfW x;t ¼ ~qx;r dZr;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~q2

x;r

q
deZx;t ; ðB:5Þ

where ~qx;r ¼ CovðdeW x;t ;dZr;t Þ
dt . In this study we assume that the random

shocks of assets and liabilities are independent, and therefore eZx;t

represents the pure liability risk that summarizes all continuous
shocks that are not related to the interest rate or asset risk of x-
company. Defining ~/x;t � rL;x

rr
ffiffiffi
rt
p ~qx;r and ~wx � rL;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~q2

x;r

q
and substi-

tuting (B.5) into Eq. (3) yield:

dLx;t

Lx;t�
¼ rt � kelxþ1

2r
2
x

� �
dt þ rL;x ~qx;r dZr;t þ rL;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~q2

x;r

q
deZx;t

þ Yx;t dNt

¼ rt � kelxþ1
2r

2
x

� �
dt þ ~/x;trr

ffiffiffiffi
rt
p

dZr;t þ ~wxdeZx;t þ Yx;t dNt

¼ rt � ~/x;tjðlr � rtÞ � kelxþ1
2r

2
x

� �
dt þ ~/x;tdrt þ ~wxdeZx;t

þ Yx;t dNt : ðB:6Þ
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