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Abstract—MapReduce as a master-slave infrastructure consists 
of two master-side severs and a large number of slave-side 
working nodes. In this paper, we derive a job completion 
reliability (JCR for short) model from a single-job perspective 
for a general MapReduce infrastructure in which no 
redundancy scheme is adopted on the master side, and a cold-
standby scheme is employed on the slave side. Without loss of 
generality, the JCR model is derived based on a Poisson 
distribution. In addition, we calculate the corresponding job 
energy consumption (JEC for short). Through the simulation 
and analytical results, MapReduce managers and service 
providers can comprehend how this infrastructure behaves 
and how to improve the infrastructure so as to achieve a more 
reliable and energy-efficient MapReduce environment. 

Keywords-MapReduce; master-slave infrastructure; job 
completion reliability; job energy consumption; single-job 
perspective; Poisson distribution 

I.  INTRODUCTION 
MapReduce [1], a distributed programming framework, 

has been widely employed by many organizations/institutes, 
such as Apache, Yahoo, Facebook, etc., to solve their 
massive data-processing problems. MapReduce as a master-
slave infrastructure comprises two master-side servers, called 
JobTracker and NameNode in Hadoop [2], and a lot of slave-
side nodes, called slaves or workers. JobTracker coordinates 
the execution of jobs, while NameNode manages the 
distributed filesystem namespace of the infrastructure. Upon 
receiving a job J submitted by a user, JobTracker requests a 
set of slaves to execute J’s tasks in parallel so as to speed up 
the execution of J.  

Node failures are inevitable in a large-scale computing 
environment, such as a cloud system [3]. Google has 
experienced the failure of 5 workers per MapReduce job in 
average [4]. The study in [5] showed that the probability of 
node failure rises when the scale of a system increases. To 
prevent the execution of jobs from being interrupted by node 
failures, Hadoop [2], one of the most popular open-source 
MapReduce implementations, utilized a cold-standby 
redundancy scheme on its slave side, i.e., when a slave fails, 
the tasks running on it cannot be finished. This scheme re-
performs the task on a cold-standby node. But Hadoop by 
default does not provide redundant schemes for JobTracker 
and NameNode. This type of infrastructure has been adopted 
worldwide, and hence in this paper, we call it a general 
MapReduce infrastructure.  

To our best knowledge, the job completion reliability 
(JCR for short) and job energy consumption (JEC for short) 
of a general MapReduce infrastructure have not been studied 
where JCR is defined as the probability that the 
infrastructure can complete a job, and JEC is defined as the 
energy consumed by the infrastructure to finish the job. To 
achieve a more reliable and energy-efficient computing 
environment, it is required to know how this infrastructure 
impacts its JCR and JEC. Therefore, in this study, we 
analyze the JCR of this infrastructure, and calculate the 
corresponding JEC. Without loss of generality, the JCR 
model is derived based on a Poisson distribution, i.e., node 
failure rates remain constant during the lifetime of the 
infrastructure. The simulation and analytical results show 
that this infrastructure is energy-efficient, but its master-side 
JCR is low, particularly when long-term jobs are submitted. 
It is necessary to utilize master-side redundant schemes to 
enhance the overall JCR.  

The key contributions of this study are as follows. (1) We 
analyze JCR and JEC for the most widely-adopted 
MapReduce infrastructure, i.e., the general MapReduce 
infrastructure. MapReduce managers can then comprehend 
how this infrastructure affects its JCR and JEC. (2) Our 
simulation results can help MapReduce managers to 
determine an appropriate number of cold-standby nodes 
based on their resource limitations and requirements. (3) 
Redundant scheme designers can refer to our analytical 
results to propose a more reliable and energy-efficient 
MapReduce infrastructure.  

The rest of this paper is organized as follows. Section 2 
describes the background and related work of this study. 
Sections 3 and 4 introduce how to analyze the JCR and JEC, 
respectively. The simulation results are presented in Section 
5. Section 6 concludes this paper and outlines our future 
studies. 

II. BACKGROUND AND RELATED WORK 
In this section, we briefly describe a MapReduce job 

execution flow of a MapReduce infrastructure, and the 
related work of this study. 

A. MapReduce Job Execution Flow 
Fig. 1 shows the execution flow of a job J. A user U 

requests slave locations from NameNode to store J’s job 
resources in step 1. After that, U submits J to JobTracker in 
step 2. In step 3, JobTracker initiates J and assigns the map 
(reduce) tasks of J to available slaves, called mappers 
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(reducers). Before running the assigned task, a mapper or a 
reducer needs to retrieve J’s job resources from the 
distributed filesystem by consulting NameNode. When a 
mapper finishes its task, it replies to JobTracker with the disk 
location where the generated result resides. When all map 
tasks of J are completed, a reducer can starts running its 
assigned reduce task. After all reducers finish their tasks, 
JobTracker informs U of the completion of J. 

The above flow shows that if JobTracker or NameNode 
fails, J cannot be initiated, performed, and completed. In 
other words, both the two servers must operate normally 
during the execution of J. Besides, each mapper needs to 
work properly during the execution of its assigned map task 
of J. Otherwise, this map task cannot be completed, and J’s 
reduce tasks cannot start. Also, each reducer needs to be 
operational from the moment when it receives the assigned 
reduce task of J to the moment when it completes the task. 
Otherwise, this task, also J, cannot be finished. 

 

 
Fig 1. The execution flow of a MapReduce job J in a MapReduce 

infrastructure. 

B. Related Work 
Mohammad et al. [6] evaluated the reliability of a 

phased-mission system with a k-out-of-n load-sharing 
redundant scheme. Levitin et al. [7] estimated the task 
execution time and reliability of a multi-processing-unit 
hardware system. However, the two systems were not 
organized as a master-slave infrastructure, and the redundant 
schemes they utilized were not cold-standby schemes. 
Hence, their models cannot be directly applied to develop the 
JCR model of a general MapReduce infrastructure. 

Leu et al. [8] introduced a multi-stage fault-tolerant 
platform to enhance the reliability of their grid-based 
intrusion detection system. Zhang et al. [9] estimated the 
downtime and availability of a system employing an active-
standby redundant mechanism for both of its internal and 
external systems. But this model focused on system 
availability, rather than job completion reliability. Dai et al. 
[10] presented a hierarchical reliability model for grid 
services, and evaluated the probability that a program could 
be completed by a grid system. A similar model proposed by 
[11] studied the reliability of a program invoked by a cloud 
system. Other reliability models developed for software, 
hardware, distributed systems, wireless sensor networks, and 
data storage systems can be found in [12][13][14][15]. Since 
the characteristics of these systems are dissimilar with those 
of a general MapReduce infrastructure, their models are 
unable to be applied to this study directly. 

III. JOB COMPLETION RELIABILITY (JCR) 
Assume that J is divided into  map tasks , , …, 
 and  reduce tasks , , …, , where , 1 . Let ,  and ,  be the slave node that JobTracker initially 

assigns to perform  and , respectively, where 1  
and 1 . Let the cold-standby scheme provides  
cold-standby slaves, denoted by , , , , 
…, , }, for , and  cold-standby slaves, denoted by , , , , …, , , for , 1. Let  and  
be the slave nodes prepared for executing  and , 
respectively. Then ,  and , . Assume that a slave can perform at most one 
of J’s tasks during the execution of J, indicating that the 
maximum number of slaves running J is · 1 .  

Since the cold-standby scheme invoked on the slave side 
may affect the length of the time period in which the master 
servers should be operational to finish J, in the following we 
derive the slave-side JCR first and then the master-side JCR 
under the assumption that all master-side servers and slave-
side nodes are homogenous with the same failure rate  
following a Poisson distribution, i.e.,  remains constant 
during the lifetime of the infrastructure. Only node failure is 
considered. Other faults, such as network failures, are not 
addressed. 

When a node ,  receives the assignment of  from 
JobTracker, if it completely executes  and generates the 
intermediate results , then the time period in which ,  
has to be available, denoted by , , is illustrated in Fig. 2, 0 . Similarly, on receiving the assignment of  from 
JobTracker, if ,  can obtain the required intermediate 
results to execute and complete , then the time period in 
which ,  has to work properly, denoted by , , is shown 
in Fig. 3, 0 . 

 

 
Fig. 2. The time period ,  in which ,  has to be available to 

complete , 1  and 0 . 
 

 
Fig. 3. The time period ,  in which ,  needs to work normally to 

finish , 1  and 0 . 
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,  ( , ) crashes in ,  ( , ), reassigns  ( ) to ,  ( , ) when ,  ( , ) fails in ,  ( , ), and 
so on. Thus, if  is completed by , , implying that ,  
works normally in , , but , , , , …, and ,  
fail in , , , , …, and , , respectively. The 
corresponding reliability of completing  by , , denoted 
by , , is 

, 1 exp · , · exp · ,  (1) 

where ∏ 1 exp · ,  is the probability that , , , , …, and ,  cannot finish . Let  be 
the reliability that  members can complete , i.e.,  

, exp · ,  

         1 exp · , · exp · ,  
(2) 

Note that ∏ 1 exp · , 1  in 

which ∏ 1 exp · ,  is the probability that 
all members of  cannot finish . Let ,  be time 
period in ,  during which ,  is operational where 1   and 0 , implying that , , . 
Then in the worst case, the time period starting when 
JobTracker sends the assignment of  to ,  and ending 
when  is completed, denoted by , is  

, , ,  (3) 

in which , ,  means that ,  fails when it 
almost completes ,  0 1. 

Similarly, the reliability of finishing  by , , denoted 
by , , is,  

, 1 exp · , · exp · ,  (4) 

Let  be the reliability that  members can complete , 
i.e.,  

, exp · ,  

         1 exp · , · exp · ,  
(5) 

Note that ∏ 1 exp · , 1 in which ∏ 1 exp · ,  is the probability that all 

members of  cannot complete . Let ,  be a time 
period in ,  during which ,  is operational where 

1   and 0 , implying that , , . 
Hence, in the worst case, the time period starting when 
JobTracker sends the assignment of  to ,  and ending 
when  is completed, denoted by , is  

, , ,  (6) 

where , ,  represents that ,  fails when it 
almost finishes ,  0 1. 

Consequently, the reliability that the slave side with 
 initially-assigned slaves and ·  cold-standby 

slaves can finish J’s all map and reduce tasks, denoted by 
, is ·  (7) 

Let the execution time of J be a time period starting from 
the moment when JobTracker receives the submission of J 
from a user U to the moment when J’s reduce tasks are all 
finished. During this execution time, JobTracker and 
NameNode must operate normally to make sure all tasks of J 
can be successfully assigned and performed. Otherwise, J 
cannot be completed. Assume that on receiving J, 
JobTracker can immediately and simultaneously assign and 
send J’s map tasks to slave nodes, and finish the assignment 
in a very short period of time, e.g., several milliseconds. 
Also, when all map tasks of J are completed, JobTracker can 
immediately and simultaneously assign J’s reduce tasks to 
slave nodes. We further assume that a task assignment can be 
instantly delivered from JobTracker to a slave, implying that 
in the worst case the execution time of J, denoted by , is  max , , … , max , , … ,  (8) 
Let  ( ) be the reliability that 
JobTracker (NameNode) operates normally during the 
execution of J, i.e., the probability that JobTracker 
(NameNode) works normally in . Then,  exp ·  (9) 
Hence, the JCR that the slave side and the master side can 
finish J’s all map and reduce tasks, denoted by , is · ·  (10) 

IV. JOB ENERGY CONSUMPTION (JEC) 
Let  be the energy that a general MapReduce 

infrastructure consumes to finish J. Assume that all slaves’ 
(master servers’) power consumption rates, denoted by  
( ), are the same. Hence,  · ·  (11) 
where  ( ) is the cumulative time consumed by the 
slave-side nodes (master servers) during the execution of J. 
If ,  is the member of  that finishes , and ,  is 
the member of  that completes ,  0 , , then 
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(1) 0 , ,  and 0 , ,  where 0,1, … , 1, and 0,1, … , 1;  
(2) , ,  (see Fig. 2) and , ,  (see 

Fig. 3);  
(3) , , , 0  and ,, , 0 . The reason is that when , ~ ,  ( , ~ , ) perform  ( ), , ~ ,  ( , ~ , ) staying in their cold-

standby modes are not operational and of course do not 
consume time to execute  ( ).  

Therefore,  is  

, ,  

       , , , ,  

(12) 

In the worst case,   

, ,   (13) 

On the other hand, the cumulative time consumed by the 
master side to finish J, i.e., , comprises the times that 

JobTracker and NameNode spend during the execution of J. 
That is,  2  (14) 
Hence, based on Eqs. (11), (13), and (14), in the worst case, 

 is  · 2  · , ,  (15) 

V. SIMULATION AND COMPARSION 
We simulated job execution in a general MapReduce 

infrastructure and analyzed the corresponding JCRs and 
JECs. Let 0.0001  per hour for all master-side and 
slave-side nodes. Let 0.3 kW, and 0.5 kW. To 
further show how different numbers of cold-standby nodes 
influence the JCR and JEC, this infrastructure was tested on 
five settings of , including < >, 1,2, … ,5. Fifteen 
jobs with different lengths of task execution time, i.e., , , 
were simulated (see Table 1), and each of them was divided 
into 256 map tasks (i.e., 256) and 128 reduce task (i.e., 128). To reduce the simulation complexity, we further 
assumed that ,  of a job is equal to ,  of the job, 1 256, 1 128, and 0 , .  

 
TABLE I. The fifteen jobs tested in this study. Note that the task execution time represents ,  (also , ) 

Job No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Task execution time (hour) 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 

 256 
 128 

 
TABLE II. The number of times that a job was finished in its thirty submissions 

Job No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 30 30 30 30 30 30 30 30 30 29 27 27 19 12 2 
 30 30 30 30 30 30 30 30 30 29 29 26 20 11 2 
 30 30 30 30 30 30 30 30 30 27 28 26 21 12 3 
 30 30 30 30 30 30 30 30 30 28 29 25 21 12 4 
 30 30 30 30 30 30 30 30 30 28 28 27 22 11 4 

 
TABLE III. Average job execution times of the fifteen tested jobs (Unit: hour) 

Job No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 0.25 0.5 1.0 2.0 4.0 8.2 17.9 35.2 79.2 177.1 427.7 900.9 1932.6 3974.6 8059.1 
 0.25 0.5 1.0 2.0 4.1 8.3 18.1 38.5 81.9 171.0 433.5 898.5 2005.1 4478.0 10232.8 
 0.25 0.5 1.0 2.0 4.1 8.2 18.9 36.7 75.3 177.8 409.8 911.6 1983.9 4463.1 10923.9 
 0.25 0.5 1.0 2.0 4.0 8.4 18.2 35.8 78.7 179.4 424.2 933.9 1997.5 4486.5 10772.1 
 0.25 0.5 1.0 2.0 4.1 8.5 18.2 37.0 76.5 180.1 422.5 931.1 1988.5 4595.7 11346.5 

 
Each job J was submitted thirty times, in which the 

number of times that J was finished is listed in Table II. On 1 , jobs 1~9 were all finished in their thirty-time 
submissions, implying that 1  (i.e., one cold-standby 
slave for each task) was sufficient for each of these 9 jobs. 
But this was not true for jobs 10~15 since their tasks were 
longer so that the probability that a slave could not finish its 
assigned task was higher. Table II also shows that 
increasing  still cannot effectively enhance the probability 
of completing jobs 10~15. This is because the master side 

had low JCRs on these six jobs, even though their slave 
sides could finish the assigned tasks. 

Table III lists the average execution times of these jobs. 
When  was higher, the execution time of a job (excluding 
job 15) did not monotonously increase, and the differences 
of the execution times of a short-term job (e.g., one of jobs 
1~7) on different s were insignificant. This is because 
most tasks of a short-term job were completed by their 
initially-assigned slaves, i.e., ,  and , , 1 256, 1 128. But when a long-term job (e.g., one of jobs 
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8~15) was tested, most tasks of the job needed to be 
reexecuted several times, e.g., k times, by their first k cold-
standby slaves. Hence, its execution-time differences on 
different s were evident. 

Figs. 4a and 4b respectively illustrate the JCRs and JCR 
increments of the general MapReduce infrastructure. The 
JCRs shown in Fig. 4a decreased slowly when task 
execution time extended from 0.125 hour to 16 hours. But 
when task execution time further increased, due to the 
decrease of slave-side and master-side JCRs, the overall 
JCRs declined sharply. When task execution time is 
between 32 hours and 1024 hours, the JCRs on 2 were 
higher than those on 1  (see Fig. 4a), implying that 
increasing  from 1 to 2 can dramatically raise the JCR. 
This phenomenon can also be observed in Fig. 4b. But when 

 was further raised, the JCR increments were reduced. Fig. 
4b shows that increasing  to 3, 4, and 5 did not bring any 
JCR increment since the master-side did not employ 
redundant schemes, and hence the overall JCR was not 
further enhanced. When task execution time was 2048 
hours, the JCRs on all s were low. The reason is the same. 
 

 
(a) JCRs 

 

 
(b) JCR increments 

Fig. 4. The JCRs and JCR increments of the MapReduce infrastructure on 
five settings of . 

 
Figs. 5a and 5b illustrate the average JECs and JEC 

increments, respectively. When task execution time 
increased doubly on a specific , the corresponding JECs 
raised almost proportionally. Fig. 5a also shows that when 
task execution time was shorter than 512 hours, the five JEC 
curves were almost overlapped, implying that increasing  
did not notably boost the JECs. Fig. 5b also reflects this. The 
key reason is that most tasks of these jobs (i.e., jobs 1~13) 

were finished by their initially-assigned slaves or their first 
cold-standby slaves. Other cold-standby slaves did not 
consume time to perform these tasks.  

When task execution time further grew to 2048 hours 
(i.e., job 15 was submitted), increasing  from 1 to 2 resulted 
in an evident JEC increment (see Fig. 5b), but further 
increasing  to 3, 4, or 5 caused a decreasing JEC increment. 
The key reason is that most tasks of this job were completed 
by their second cold-standby slaves, and some were 
completed by their third cold-standby slaves. Only one or 
two were finished by their first cold-standby slaves. Hence, 
if the job is completed on 1, the corresponding JEC will 
be much lower than the JEC on 2.  
 

 
(a) JECs 

 

 
(b) JEC increments 

Fig. 5. The average JECs and JEC increments of the MapReduce 
infrastructure on five settings of . 

 

VI. CONCLUSIONS AND FUTURE WORK 
In this study, we have derived JCR and JEC for a general 

MapReduce infrastructure. We also presented and discussed 
our simulation results on fifteen jobs and different numbers 
of cold-standby slaves. The results show that the slave side 
of the general MapReduce infrastructure was reliable, but the 
master side of the infrastructure was not. Hence, establishing 
a master-side redundant scheme for this infrastructure is 
required, especially when users often submit long-term jobs 
to this infrastructure. In addition, due to adopting the cold-
standby scheme on the slave side, this infrastructure was 
very energy-efficient since increasing the number of cold-
standby slaves for each task did not considerably raise the 
JEC. In fact, from our simulation results, MapReduce 
managers can comprehend the impact of the general 
MapReduce infrastructure on its JCR and JEC, and the 
shortcomings of this infrastructure.  
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In the future, we would like to extend the analyses of 
JCR and JEC from a multi-job perspective by considering 
the queueing delays of the master side and slave side. We 
also plan to further analyze the JCRs and JECs of other 
MapReduce infrastructures that employ different redundant 
schemes, and compare their performances.  
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