
Deriving Job Completion Reliability and Job Energy Consumption for a General
MapReduce Infrastructure from Single-Job Perspective

Jia-Chun Lin*1, Fang-Yie Leu#2, Ming-Chang Lee*3, Ying-ping Chen*4
*Department of Computer Science, National Chiao Tung University, Taiwan

1kellylin1219@gmail.com, 3mingchang1109@gmail.com, 4ypchen@cs.nctu.edu.tw
#Department of Computer Science, TungHai University, Taiwan

2leufy@thu.edu.tw

Abstract—MapReduce as a master-slave infrastructure consists
of two master-side severs and a large number of slave-side
working nodes. In this paper, we derive a job completion
reliability (JCR for short) model from a single-job perspective
for a general MapReduce infrastructure in which no
redundancy scheme is adopted on the master side, and a cold-
standby scheme is employed on the slave side. Without loss of
generality, the JCR model is derived based on a Poisson
distribution. In addition, we calculate the corresponding job
energy consumption (JEC for short). Through the simulation
and analytical results, MapReduce managers and service
providers can comprehend how this infrastructure behaves
and how to improve the infrastructure so as to achieve a more
reliable and energy-efficient MapReduce environment.

Keywords-MapReduce; master-slave infrastructure; job
completion reliability; job energy consumption; single-job
perspective; Poisson distribution

I. INTRODUCTION
MapReduce [1], a distributed programming framework,

has been widely employed by many organizations/institutes,
such as Apache, Yahoo, Facebook, etc., to solve their
massive data-processing problems. MapReduce as a master-
slave infrastructure comprises two master-side servers, called
JobTracker and NameNode in Hadoop [2], and a lot of slave-
side nodes, called slaves or workers. JobTracker coordinates
the execution of jobs, while NameNode manages the
distributed filesystem namespace of the infrastructure. Upon
receiving a job J submitted by a user, JobTracker requests a
set of slaves to execute J’s tasks in parallel so as to speed up
the execution of J.

Node failures are inevitable in a large-scale computing
environment, such as a cloud system [3]. Google has
experienced the failure of 5 workers per MapReduce job in
average [4]. The study in [5] showed that the probability of
node failure rises when the scale of a system increases. To
prevent the execution of jobs from being interrupted by node
failures, Hadoop [2], one of the most popular open-source
MapReduce implementations, utilized a cold-standby
redundancy scheme on its slave side, i.e., when a slave fails,
the tasks running on it cannot be finished. This scheme re-
performs the task on a cold-standby node. But Hadoop by
default does not provide redundant schemes for JobTracker
and NameNode. This type of infrastructure has been adopted
worldwide, and hence in this paper, we call it a general
MapReduce infrastructure.

To our best knowledge, the job completion reliability
(JCR for short) and job energy consumption (JEC for short)
of a general MapReduce infrastructure have not been studied
where JCR is defined as the probability that the
infrastructure can complete a job, and JEC is defined as the
energy consumed by the infrastructure to finish the job. To
achieve a more reliable and energy-efficient computing
environment, it is required to know how this infrastructure
impacts its JCR and JEC. Therefore, in this study, we
analyze the JCR of this infrastructure, and calculate the
corresponding JEC. Without loss of generality, the JCR
model is derived based on a Poisson distribution, i.e., node
failure rates remain constant during the lifetime of the
infrastructure. The simulation and analytical results show
that this infrastructure is energy-efficient, but its master-side
JCR is low, particularly when long-term jobs are submitted.
It is necessary to utilize master-side redundant schemes to
enhance the overall JCR.

The key contributions of this study are as follows. (1) We
analyze JCR and JEC for the most widely-adopted
MapReduce infrastructure, i.e., the general MapReduce
infrastructure. MapReduce managers can then comprehend
how this infrastructure affects its JCR and JEC. (2) Our
simulation results can help MapReduce managers to
determine an appropriate number of cold-standby nodes
based on their resource limitations and requirements. (3)
Redundant scheme designers can refer to our analytical
results to propose a more reliable and energy-efficient
MapReduce infrastructure.

The rest of this paper is organized as follows. Section 2
describes the background and related work of this study.
Sections 3 and 4 introduce how to analyze the JCR and JEC,
respectively. The simulation results are presented in Section
5. Section 6 concludes this paper and outlines our future
studies.

II. BACKGROUND AND RELATED WORK
In this section, we briefly describe a MapReduce job

execution flow of a MapReduce infrastructure, and the
related work of this study.

A. MapReduce Job Execution Flow
Fig. 1 shows the execution flow of a job J. A user U

requests slave locations from NameNode to store J’s job
resources in step 1. After that, U submits J to JobTracker in
step 2. In step 3, JobTracker initiates J and assigns the map
(reduce) tasks of J to available slaves, called mappers

2013 27th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4952-1/13 $26.00 © 2013 IEEE

DOI 10.1109/WAINA.2013.10

1642

(reducers). Before running the assigned task, a mapper or a
reducer needs to retrieve J’s job resources from the
distributed filesystem by consulting NameNode. When a
mapper finishes its task, it replies to JobTracker with the disk
location where the generated result resides. When all map
tasks of J are completed, a reducer can starts running its
assigned reduce task. After all reducers finish their tasks,
JobTracker informs U of the completion of J.

The above flow shows that if JobTracker or NameNode
fails, J cannot be initiated, performed, and completed. In
other words, both the two servers must operate normally
during the execution of J. Besides, each mapper needs to
work properly during the execution of its assigned map task
of J. Otherwise, this map task cannot be completed, and J’s
reduce tasks cannot start. Also, each reducer needs to be
operational from the moment when it receives the assigned
reduce task of J to the moment when it completes the task.
Otherwise, this task, also J, cannot be finished.

Fig 1. The execution flow of a MapReduce job J in a MapReduce

infrastructure.

B. Related Work
Mohammad et al. [6] evaluated the reliability of a

phased-mission system with a k-out-of-n load-sharing
redundant scheme. Levitin et al. [7] estimated the task
execution time and reliability of a multi-processing-unit
hardware system. However, the two systems were not
organized as a master-slave infrastructure, and the redundant
schemes they utilized were not cold-standby schemes.
Hence, their models cannot be directly applied to develop the
JCR model of a general MapReduce infrastructure.

Leu et al. [8] introduced a multi-stage fault-tolerant
platform to enhance the reliability of their grid-based
intrusion detection system. Zhang et al. [9] estimated the
downtime and availability of a system employing an active-
standby redundant mechanism for both of its internal and
external systems. But this model focused on system
availability, rather than job completion reliability. Dai et al.
[10] presented a hierarchical reliability model for grid
services, and evaluated the probability that a program could
be completed by a grid system. A similar model proposed by
[11] studied the reliability of a program invoked by a cloud
system. Other reliability models developed for software,
hardware, distributed systems, wireless sensor networks, and
data storage systems can be found in [12][13][14][15]. Since
the characteristics of these systems are dissimilar with those
of a general MapReduce infrastructure, their models are
unable to be applied to this study directly.

III. JOB COMPLETION RELIABILITY (JCR)
Assume that J is divided into map tasks , , …,
 and reduce tasks , , …, , where , 1 . Let , and , be the slave node that JobTracker initially

assigns to perform and , respectively, where 1
and 1 . Let the cold-standby scheme provides
cold-standby slaves, denoted by , , , ,
…, , }, for , and cold-standby slaves, denoted by , , , , …, , , for , 1. Let and
be the slave nodes prepared for executing and ,
respectively. Then , and , . Assume that a slave can perform at most one
of J’s tasks during the execution of J, indicating that the
maximum number of slaves running J is · 1 .

Since the cold-standby scheme invoked on the slave side
may affect the length of the time period in which the master
servers should be operational to finish J, in the following we
derive the slave-side JCR first and then the master-side JCR
under the assumption that all master-side servers and slave-
side nodes are homogenous with the same failure rate
following a Poisson distribution, i.e., remains constant
during the lifetime of the infrastructure. Only node failure is
considered. Other faults, such as network failures, are not
addressed.

When a node , receives the assignment of from
JobTracker, if it completely executes and generates the
intermediate results , then the time period in which ,
has to be available, denoted by , , is illustrated in Fig. 2, 0 . Similarly, on receiving the assignment of from
JobTracker, if , can obtain the required intermediate
results to execute and complete , then the time period in
which , has to work properly, denoted by , , is shown
in Fig. 3, 0 .

Fig. 2. The time period , in which , has to be available to

complete , 1 and 0 .

Fig. 3. The time period , in which , needs to work normally to

finish , 1 and 0 .

When the cold-standby scheme is employed on the slave

side, JobTracker reassigns () to , (,) when

... ...

3. Initiate J and assign
tasks of J to slaves

user U

instruction flow data flow

Slave side

slave

1. Store J's job
resources

 2. Submit job J JobTracker

NameNode

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Master side

XXXC

receives mi
from JobTracker completes mi

time

dmi
N ,

dimNt ,

dmi
N ,

XXXx

 receives rj
from JobTracker completes rj

time

erj
N ,

ejrNt ,

erj
N ,

1643

, (,) crashes in , (,), reassigns () to , (,) when , (,) fails in , (,), and
so on. Thus, if is completed by , , implying that ,
works normally in , , but , , , , …, and ,
fail in , , , , …, and , , respectively. The
corresponding reliability of completing by , , denoted
by , , is

, 1 exp · , · exp · , (1)

where ∏ 1 exp · , is the probability that , , , , …, and , cannot finish . Let be
the reliability that members can complete , i.e.,

, exp · ,

 1 exp · , · exp · ,
(2)

Note that ∏ 1 exp · , 1 in

which ∏ 1 exp · , is the probability that
all members of cannot finish . Let , be time
period in , during which , is operational where 1 and 0 , implying that , , .
Then in the worst case, the time period starting when
JobTracker sends the assignment of to , and ending
when is completed, denoted by , is

, , , (3)

in which , , means that , fails when it
almost completes , 0 1.

Similarly, the reliability of finishing by , , denoted
by , , is,

, 1 exp · , · exp · , (4)

Let be the reliability that members can complete ,
i.e.,

, exp · ,

 1 exp · , · exp · ,
(5)

Note that ∏ 1 exp · , 1 in which ∏ 1 exp · , is the probability that all

members of cannot complete . Let , be a time
period in , during which , is operational where

1 and 0 , implying that , , .
Hence, in the worst case, the time period starting when
JobTracker sends the assignment of to , and ending
when is completed, denoted by , is

, , , (6)

where , , represents that , fails when it
almost finishes , 0 1.

Consequently, the reliability that the slave side with
 initially-assigned slaves and · cold-standby

slaves can finish J’s all map and reduce tasks, denoted by
, is · (7)

Let the execution time of J be a time period starting from
the moment when JobTracker receives the submission of J
from a user U to the moment when J’s reduce tasks are all
finished. During this execution time, JobTracker and
NameNode must operate normally to make sure all tasks of J
can be successfully assigned and performed. Otherwise, J
cannot be completed. Assume that on receiving J,
JobTracker can immediately and simultaneously assign and
send J’s map tasks to slave nodes, and finish the assignment
in a very short period of time, e.g., several milliseconds.
Also, when all map tasks of J are completed, JobTracker can
immediately and simultaneously assign J’s reduce tasks to
slave nodes. We further assume that a task assignment can be
instantly delivered from JobTracker to a slave, implying that
in the worst case the execution time of J, denoted by , is max , , … , max , , … , (8)
Let () be the reliability that
JobTracker (NameNode) operates normally during the
execution of J, i.e., the probability that JobTracker
(NameNode) works normally in . Then, exp · (9)
Hence, the JCR that the slave side and the master side can
finish J’s all map and reduce tasks, denoted by , is · · (10)

IV. JOB ENERGY CONSUMPTION (JEC)
Let be the energy that a general MapReduce

infrastructure consumes to finish J. Assume that all slaves’
(master servers’) power consumption rates, denoted by
(), are the same. Hence, · · (11)
where () is the cumulative time consumed by the
slave-side nodes (master servers) during the execution of J.
If , is the member of that finishes , and , is
the member of that completes , 0 , , then

1644

(1) 0 , , and 0 , , where 0,1, … , 1, and 0,1, … , 1;
(2) , , (see Fig. 2) and , , (see

Fig. 3);
(3) , , , 0 and ,, , 0 . The reason is that when , ~ , (, ~ ,) perform (), , ~ , (, ~ ,) staying in their cold-

standby modes are not operational and of course do not
consume time to execute ().

Therefore, is

, ,

 , , , ,

(12)

In the worst case,

, , (13)

On the other hand, the cumulative time consumed by the
master side to finish J, i.e., , comprises the times that

JobTracker and NameNode spend during the execution of J.
That is, 2 (14)
Hence, based on Eqs. (11), (13), and (14), in the worst case,

 is · 2 · , , (15)

V. SIMULATION AND COMPARSION
We simulated job execution in a general MapReduce

infrastructure and analyzed the corresponding JCRs and
JECs. Let 0.0001 per hour for all master-side and
slave-side nodes. Let 0.3 kW, and 0.5 kW. To
further show how different numbers of cold-standby nodes
influence the JCR and JEC, this infrastructure was tested on
five settings of , including < >, 1,2, … ,5. Fifteen
jobs with different lengths of task execution time, i.e., , ,
were simulated (see Table 1), and each of them was divided
into 256 map tasks (i.e., 256) and 128 reduce task (i.e., 128). To reduce the simulation complexity, we further
assumed that , of a job is equal to , of the job, 1 256, 1 128, and 0 , .

TABLE I. The fifteen jobs tested in this study. Note that the task execution time represents , (also ,)

Job No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task execution time (hour) 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048

 256
 128

TABLE II. The number of times that a job was finished in its thirty submissions

Job No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 30 30 30 30 30 30 30 30 30 29 27 27 19 12 2
 30 30 30 30 30 30 30 30 30 29 29 26 20 11 2
 30 30 30 30 30 30 30 30 30 27 28 26 21 12 3
 30 30 30 30 30 30 30 30 30 28 29 25 21 12 4
 30 30 30 30 30 30 30 30 30 28 28 27 22 11 4

TABLE III. Average job execution times of the fifteen tested jobs (Unit: hour)

Job No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0.25 0.5 1.0 2.0 4.0 8.2 17.9 35.2 79.2 177.1 427.7 900.9 1932.6 3974.6 8059.1
 0.25 0.5 1.0 2.0 4.1 8.3 18.1 38.5 81.9 171.0 433.5 898.5 2005.1 4478.0 10232.8
 0.25 0.5 1.0 2.0 4.1 8.2 18.9 36.7 75.3 177.8 409.8 911.6 1983.9 4463.1 10923.9
 0.25 0.5 1.0 2.0 4.0 8.4 18.2 35.8 78.7 179.4 424.2 933.9 1997.5 4486.5 10772.1
 0.25 0.5 1.0 2.0 4.1 8.5 18.2 37.0 76.5 180.1 422.5 931.1 1988.5 4595.7 11346.5

Each job J was submitted thirty times, in which the

number of times that J was finished is listed in Table II. On 1 , jobs 1~9 were all finished in their thirty-time
submissions, implying that 1 (i.e., one cold-standby
slave for each task) was sufficient for each of these 9 jobs.
But this was not true for jobs 10~15 since their tasks were
longer so that the probability that a slave could not finish its
assigned task was higher. Table II also shows that
increasing still cannot effectively enhance the probability
of completing jobs 10~15. This is because the master side

had low JCRs on these six jobs, even though their slave
sides could finish the assigned tasks.

Table III lists the average execution times of these jobs.
When was higher, the execution time of a job (excluding
job 15) did not monotonously increase, and the differences
of the execution times of a short-term job (e.g., one of jobs
1~7) on different s were insignificant. This is because
most tasks of a short-term job were completed by their
initially-assigned slaves, i.e., , and , , 1 256, 1 128. But when a long-term job (e.g., one of jobs

1645

8~15) was tested, most tasks of the job needed to be
reexecuted several times, e.g., k times, by their first k cold-
standby slaves. Hence, its execution-time differences on
different s were evident.

Figs. 4a and 4b respectively illustrate the JCRs and JCR
increments of the general MapReduce infrastructure. The
JCRs shown in Fig. 4a decreased slowly when task
execution time extended from 0.125 hour to 16 hours. But
when task execution time further increased, due to the
decrease of slave-side and master-side JCRs, the overall
JCRs declined sharply. When task execution time is
between 32 hours and 1024 hours, the JCRs on 2 were
higher than those on 1 (see Fig. 4a), implying that
increasing from 1 to 2 can dramatically raise the JCR.
This phenomenon can also be observed in Fig. 4b. But when

 was further raised, the JCR increments were reduced. Fig.
4b shows that increasing to 3, 4, and 5 did not bring any
JCR increment since the master-side did not employ
redundant schemes, and hence the overall JCR was not
further enhanced. When task execution time was 2048
hours, the JCRs on all s were low. The reason is the same.

(a) JCRs

(b) JCR increments

Fig. 4. The JCRs and JCR increments of the MapReduce infrastructure on
five settings of .

Figs. 5a and 5b illustrate the average JECs and JEC

increments, respectively. When task execution time
increased doubly on a specific , the corresponding JECs
raised almost proportionally. Fig. 5a also shows that when
task execution time was shorter than 512 hours, the five JEC
curves were almost overlapped, implying that increasing
did not notably boost the JECs. Fig. 5b also reflects this. The
key reason is that most tasks of these jobs (i.e., jobs 1~13)

were finished by their initially-assigned slaves or their first
cold-standby slaves. Other cold-standby slaves did not
consume time to perform these tasks.

When task execution time further grew to 2048 hours
(i.e., job 15 was submitted), increasing from 1 to 2 resulted
in an evident JEC increment (see Fig. 5b), but further
increasing to 3, 4, or 5 caused a decreasing JEC increment.
The key reason is that most tasks of this job were completed
by their second cold-standby slaves, and some were
completed by their third cold-standby slaves. Only one or
two were finished by their first cold-standby slaves. Hence,
if the job is completed on 1, the corresponding JEC will
be much lower than the JEC on 2.

(a) JECs

(b) JEC increments

Fig. 5. The average JECs and JEC increments of the MapReduce
infrastructure on five settings of .

VI. CONCLUSIONS AND FUTURE WORK
In this study, we have derived JCR and JEC for a general

MapReduce infrastructure. We also presented and discussed
our simulation results on fifteen jobs and different numbers
of cold-standby slaves. The results show that the slave side
of the general MapReduce infrastructure was reliable, but the
master side of the infrastructure was not. Hence, establishing
a master-side redundant scheme for this infrastructure is
required, especially when users often submit long-term jobs
to this infrastructure. In addition, due to adopting the cold-
standby scheme on the slave side, this infrastructure was
very energy-efficient since increasing the number of cold-
standby slaves for each task did not considerably raise the
JEC. In fact, from our simulation results, MapReduce
managers can comprehend the impact of the general
MapReduce infrastructure on its JCR and JEC, and the
shortcomings of this infrastructure.

0

0.2

0.4

0.6

0.8

1

0.
…

0.
25 0.

5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

JC
R

Task execution time (hour)

C=1
C=2
C=3
C=4
C=5

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.
12

5
0.

25 0.
5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

JC
R

 in
cr

em
en

t

Task execution time (hour)

from C=1 to C=2
from C=2 to C=3
from C=3 to C=4
from C=4 to C=5

0
50000

100000
150000
200000
250000
300000

0.
12

5
0.

25 0.
5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

JE
C

Task execution time (hour)

C=1
C=2
C=3
C=4
C=5

-2000
0

2000
4000
6000
8000

10000
12000

0.
12

5
0.

25 0.
5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

JE
C

 in
cr

em
en

t

Task execution time (hour)

from C=1 to C=2
from C=2 to C=3
from C=3 to C=4
from C=4 to C=5

1646

In the future, we would like to extend the analyses of
JCR and JEC from a multi-job perspective by considering
the queueing delays of the master side and slave side. We
also plan to further analyze the JCRs and JECs of other
MapReduce infrastructures that employ different redundant
schemes, and compare their performances.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for

their helpful comments. The work was supported in part by
the GREENs project of TungHai University and the National
Science Council, Taiwan under Grants NSC 101-2221-E-
009-003-MY3 and NSC 101-2628-E-009 -024 -MY3.

REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communication of the ACM, Vol. 51, Issue 1, pp.
107–113, 2008.

[2] Apache Hadoop, http://hadoop.apache.org (16.09.12)
[3] S. Y. Ko, I. Hoque, b. Cho, and I. Gupta, “Making Cloud

Intermediate Data Fault-Tolerant,” Proc. of the 1st ACM symposium
on Cloud computing, 2010, pp. 181–192.

[4] J. Dean, “Experiences with MapReduce, an Abstraction for Large-
Scale Computation,” In Keynote I: PACT, 2006.

[5] B. Schroeder and G. Gibson, “A Large-Scale Study of Failures in
High-Performance Computing Systems,” IEEE Transactions on
Dependable and Secure Computing, Vol. 7, Issue 4, pp. 337–350,
2010.

[6] R. Mohamman, A. Kalam, and S.V. Amari, “Reliability Evaluation of
Phased-Mission Systems with Load-Sharing Components,” Proc. of

the Annual Reliability and Maintainability Symposium (RAMS), Jan.
2012, pp. 1–6.

[7] G. Levitin, M. Xie, and T.L. Zhang, “Reliability of Fault-tolerant
Systems with Parallel Task Processing,” European Journal of
Operational Research, Vol. 177, Issue 1, pp. 420–430, 2007.

[8] F.Y. Leu, C.T. Yang, F.C. Jiang, “Improving Reliability of a
Heterogeneous Grid-based Intrusion Detection Platform using Levels
of Redundancies,” Future Generation Computer Systems, Vol. 26,
Issue 4, pp. 554–568, 2010.

[9] X. Zhang, H. Pham, and C. R. Johnson, “Reliability Models for
Systems with Internal and External Redundancy,” International
Journal of Systems Assurance Engineering and Management, Vol. 1,
No. 4, pp. 362–369, 2010.

[10] Y.-S. Dai, Y. Pan, and X. Zou, “A Hierarchical Modeling and
Analysis for Grid Service Reliability,” IEEE Transactions on
Computers, Vol. 56, Issue 5, pp.681–691, 2007.

[11] Y.-S. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud Service
Reliability: Modeling and Analysis,” 15th IEEE Pacific Rim
International Symposium on Dependable Computing. 2009.

[12] F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, “Hadoop High
Availability through Metadata Replication,” Proc. of the first
international workshop on Cloud data management, New York, NY,
USA: ACM, 2009, pp. 37–44.

[13] Y. Xiang, T. Chantem, R. P. Dick, X.S. Hu, and L. Shang, “System-
Level Reliability Modeling for MPSoCs,” Proc. of the eighth
IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, 2010, pp. 297–306.

[14] K. M. Greenan, J. S. Plank, and J. J. Wylie, “Mean time to
meaningless: MTTDL, Markov models, and storage system
reliability,” Proc. of the USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage), 2010, pp. 1–5.

[15] V. Venkatesan and I. Iliadis, “A General Reliability Model for Data
Storage Systems,” IBM Research - Zurich, Tech. Rep. RZ 3817, 2012.

1647

