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ABSTRACT
This paper presents a multiresolutional brain extraction framework which utilizes graph cuts technique to classify head
magnetic resonance (MR) images into brain and non-brain regions. Starting with an over-extracted brain region, we refine
the segmentation result by trimming non-brain regions in a coarse-to-fine manner. The extracted brain at the coarser level
will be propagated to the finer level to estimate foreground/background seeds as constraints. The short-cut problem of graph
cuts is reduced by the proposed pre-determined foreground from the coarser level. In order to consider the impact of the
intensity inhomogeneities, we estimate the intensity distribution locally by partitioning volume images of each resolution
into different numbers of smaller cubes. The graph cuts method is individually applied for each cube. Compared with
four existing methods, the proposed method performs well in terms of sensitivity and specificity in our experiments for
performance evaluation.

Keywords: MRI, brain extraction, graph cuts

1. INTRODUCTION
Brain extraction is the work of excluding regions of non-brain tissues such as skull, muscle, and fat from the head magnetic
resonance (MR) images. Accurate brain extraction is important to structural analysis procedures, such as intensity inhomo-
geneity correction, tissue segmentation, registration, voxel-based morphology (VBM),1 and cortical thickness analysis,2

for non-invasive and quantitative investigation of human brain structure in vivo.

Many methods have been proposed for the brain extraction problem. These methods can be classified into four cate-
gories: intensity-based, edge-based, deformable, and hybrid approaches. Intensity-based approaches use intensity thresh-
olds to segment brain and non-brain regions and are sensitive to noise or intensity inhomogeneity. Watershed (WAT)
method3 belongs to this category and it may encounter over-segmentation problem. Edge-based approaches use gradi-
ents to locate the boundary between brain and non-brain regions. As an example, Brain Surface Extractor (BSE)4 uses
anisotropic diffusion filtering to smooth noise followed by Marr-Hildreth edge detector for locating closed contours and
mathematical morphology for refinement. Among the deformable approaches, BET5 first finds a brain/non-brain threshold
to initialize a triangular tessellation of a spherical surface and then iteratively deforms the triangular model to the brain
surface. As another example, ISTRIP6 uses Wendland’s radial basis function (RBFs) as the implicit surface model and
iteratively moves the locations of RBFs toward the brain contours. As an example of hybrid approaches, Hybrid Watershed
(HWA) combines pre-flooded WAT and deformable surface model for better accuracy of brain extraction.

The pursuits of high sensitivity and high specificity are generally difficult to achieve simultaneously. Among the brain
extraction algorithms, HWA method has the advantage of high sensitivity, which means that most of the true brain regions
can be extracted. However, its specificity is low, indicating that many non-brain regions are wrongly classified as brain
regions. In this paper, we propose an accurate brain extraction algorithm which uses HWA to obtain the initial brain regions
and then trims non-brain parts from the initials with multiresolutional graph cuts. In graph cuts method, each vertex has an
edge (t-link) connected to the source S, an edge (t-link) connected to the sink T, and an edge (n-link) connected to each of
its neighboring vertices. By assigning the weight of n-link according to the difference of voxel values between neighboring
vertices and assigning the weight of t-link according to the similarity to the foreground/background seed, all the vertices
can be partitioned into foreground and background groups by applying max-flow min-cut theorem. To reduce the memory
requirement, the graph cuts method is applied from coarse to fine level of images in a multiresolution framework.7, 8
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Figure 1. Flowchart of the proposed brain extraction method.

2. METHOD
The proposed brain extraction method is composed of three major steps, as shown in Figure 1. First, we apply the HWA
method to initialize the brain region as the roughly extracted brain. In the image of the roughly extracted brain, we remove
non-WM voxels with high intensities by segmenting the WM tissue with region growing and excluding those voxels
brighter than the segmented WM tissue. This volume is denoted by V L, where V L represents that this volume is at level L.
The deleted voxels are usually non-brain voxels, such as fat. The foreground seeds are determined by intensity distribution,
which may be affected by the voxels with high intensities. Therefore, before application of graph cuts algorithm, we delete
those bright voxels according to the estimated WM intensity distribution. We use 3-D region growing and Otsu’s9 method
to estimate the WM tissue in the way similar to.10 The other reason of removing bright voxels in non-WM regions is that
they may be classified as foreground by graph cuts algorithm, because the intensities in non-WM brain regions should not
be larger than those of WM regions.

The second step is the multiresolutional graph cuts and the advantage of multiresolutional framework to this work is
that we can use the result of coarser levels as constraints to finer levels. We downsample V L image into lower-resolution
ones, and from fine to coarse levels are V L−1, V L−2, . . . , V 0. The eight voxels in L−l level (a 2∗2∗2 cube) are combined
into one voxel in L− (l + 1) level, l = 0, 1, . . . , L − 1. We start the multiresolutional graph cuts from the coarsest level.
The shape of brain in this level is much easier to obtain, because of the brighter voxels not belonging to brain are blurred.
To prevent short-cut problem in graph cut, the best foreground seeds should cover the object as much as possible. Hence,
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we take the WM as our foreground seeds at the level 0. And the estimation of foreground/background seeds at finer levels
are constrained by upper level extraction results.

At the final step, we fill holes, which are background areas surrounded by foreground areas in coronal view. Since the
darker voxels in the ventricles might be classified as background by the graph cuts algorithm and the deleted voxels in the
first step might include some voxels of WM, and resulting in scattered holes.

The proposed method constructs a graph at each level and apply the graph cuts algorithm to extract the brain region.
In the constructed graph, neighboring voxels have a connected edge, which is denoted by n-link. Besides, each voxel has
edges, denoted by t-link, connected to two specific vertices: foreground terminal S and background terminal T sas shown
in Figure 2. There are two kinds of n-links that need to be assigned with weights, one is the inter-n-link and the other is
the intra-n-link. Inter-n-link connects voxels in consecutive slices, shown as black lines in Figure 2, and the intra-n-link
connects voxels in the same slice, shown as orange lines in Figure 2. For segmentation of foreground and background,
we need to assign edge weight for each edge in the constructed graph and apply graph cuts algorithm. According to the
weights of t-link and n-link, the graph cuts algorithm will find a global optimal path to classify foreground and background
by minimizing the energy function: E =

∑
(xi,xj)εN

A(xi, xj) +
∑

(xi,S)εN,or(xi,T )εN B(xi) . The xi is a voxel in the
image. N is a set of the neighboring voxels xi and xj in the path of the graph cut, and A(xi, xj)/B(xi) is the function to
assign the weight of n-link/t-link, respectively.

The finest level has different equation of edge weights from other levels. To assign the weight of n-link at coarser

levels, the edge weight is assigned as: A(xi, xj) = wn × exp(− (Ixi
−Ixj

)2

2α2 ) , where wn is a parameter representing the
importance of n-link, Ixi and Ixj are the intensity of two adjacent voxels, xi and xj , connected by this link. If the difference
between Ixi

and Ixj
is large, then the weight of this link becomes small. Thus, the cut path is more likely to go through

this link.

The weight of n-link at the finest level is assigned as: A(xi, xj) = wn × exp(− (Ixi
−Ixj

)2

2α2 ) + wd × (
D(xi)+D(xj)

2 ). In
the finest level, we add a distance term D(x) to Eq. (2). The D(x) is defined as the least-squares distance from x to the
contour of the extracted brain which is upsampled from the coarser level to the finest level. In this work we use a library
which is based on kd-trees and box-decomposition trees for approximate nearest neighbor searching (ANN)11 to estimate
the distance term. The parameter value of wn and wd for inter slice is half of the value in intra slice, in order to keep the
relationship of different slices but not too strong.

For the weight of t-link connected to foreground terminal is defined as: B(xi) = wt× PF (xi)
PF (xi)+PB(xi)

, where wt stands
for the importance of this term in contrast to n-link. For each voxel x, PF (xi) and PB(xi) are its likelihood functions to

foreground and background seeds, respectively: PF (xi) = 1√
2πσf

exp(
−(Ixi

−µf )
2

2σ2
f

), PB(xi) = 1√
2πσb

exp(
−(Ixi

−µb)
2

2σ2
b

).

The σf is the standard deviation of foreground seeds, whereas and σb is set as twice the standard deviation of background
seeds for increasing the separability of foreground and background by increasing the background range. The µf and µb
are the average of foreground seeds and background seeds. If voxel Ixi is more likely a background seed, then the t-link
connected to the foreground terminal is much easier to be cut, then x has more chance to be classified as a background.
The weights of foreground seeds connecting to foreground terminal are set to be infinity and they will be classified as
foreground. Similarly, t-link connected to background terminal is defined as: B(xi) = wt × PB(xi)

PF (xi)+PB(xi)
.

The weights of background seeds connecting to background terminal are set to be infinity and they will be classified
as background. These edge weight calculation functions were modified from those in the work of Boykov and Jolly.12 We
added a distance term at the original resolution level. In this work we use the graph cuts algorithm proposed in the work of
Boykov and Kolmogorov.13

3. RESULTS
We applied three data sets to compare the accuracy of brain region extracted by using the existing methods, HWA,14 BSE,4

BET,5 ISTRIP,6 and the proposed method. The three data sets are the first and the second Internet Brain Segmentation
Repository (IBSR) data set from the Montreal Neurological Institute and the data set acquired at Taipei Veterans General
Hospital (VGHTPE). This work used five coefficients to compare the accuracy of the brain regions extracted from existing
methods, including the Jaccard similarity coefficient (JSC), sensitivity Se, specificity Sp, and two probabilities of miss
rate, pm and pf , as described in our previous work.4
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Figure 2. Demonstration of n-link and t-link. Blue lines are the t-link connecting to background terminal. Green lines are the t-link
connecting to foreground terminal. Orange lines are the intra slice n-link (link in the same slice). Black lines are the inter slice n-link
(link in different slices).

Table 1. Performance evaluation using the first IBSR data set and excluding the failure results of each brain extraction method.

Method JSC Se Sp Pm Pf

BET 0.878 (0.017) 0.983 (0.023) 0.987 (0.004) 0.016 (0.022) 0.107 (0.021)
BSE4 0.900 (0.025) 0.954 (0.035) 0.993 (0.003) 0.044 (0.034) 0.055 (0.017)
ISTRIP 0.910 (0.018) 0.986 (0.013) 0.991 (0.005) 0.013 (0.013) 0.077 (0.027)
HWA3 0.752 (0.037) 0.974 (0.068) 0.970 (0.008) 0.022 (0.056) 0.226 (0.026)
Our method5 0.910 (0.021) 0.989 (0.012) 0.991 (0.003) 0.010 (0.011) 0.079 (0.020)

The superscripts in the first column indicate the excluded cases.

Tables 1, 2, and 3 list the performance evaluation results of BET, BSE, HWA, ISTRIP and the proposed method for
different data sets. In addition to Table 1, in other cases, although HWA has the highest Se, its poor performance of Sp
results in its worse performance of JSC. Since some of the brain volumes in the first IBSR data set has apparent intensity
inhomogeneity and artifacts, therefore, not all brain volumes have the satisfied result. Table 1 excludes the extracted brains
which the JSC value is below 0.6 or the result is blank. The number of excluded brains are four, three, and five for the
BSE, HWA, and the proposed method, respectively.

The proposed method outperforms others for the second IBSR set, in terms of JSC, Se, and Sp. As listed in Table 2,
compared to HWA, our method maintains the high sensitivity of HWA as much as possible and improves the low specificity
of HWA to the highest one. Our method achieves the highest JSC, the second highest Se, and the highest Sp. In this data
set, the total amount of voxels in an MR volume is 8388168, and the brain region is about one-eighth of the total voxels.
Therefore, 0.01 voxels Se of the value means there are about 10000 of the extracted brains overlapped with the ground
truth. The 0.01 voxels Sp of the value means there are about 70000 of the extracted non-brain regions overlapped with the
non-brain regions of the ground truth. The 0.01 voxels JSC of the value means there are more than 10000 of the extracted
brains overlapped with the ground truth.

When using the VGHTPE data set, although BSE has the highest Sp and JSC values, it has the lowest Se. This means
BSE may exclude many brain voxles. Comparison of BET, ISTRIP, and the proposed method, BET has the highest Sp and
the lowest Se. On the contrary, ISTRIP has the highest Se and the lowest Sp. The proposed method has the intermediate
values of Sp and Se. The results of performance evaluation for VGHTPE data set are listed in Table 3. The performance
evaluation using the BrainWeb phantom data set and only considering WM and GM is listed in Table ??. Although BSE
has the highest Sp, but has the lowest Se. The proposed method has the best performance compared with BET and ISTRIP,
in terms of JSC, Se, and Sp.

4. CONCLUSION
We have proposed an automatic method based on multiresolutional graph cuts technique to segment the head MR images
into brain and non-brain regions. The contributions of this work are 1) using distance term at the highest level to constrain
the brain contour, 2) using pre-determined foreground from the coarser level to avoid excluding the brain voxels, 3) and
applying graph cuts algorithm individually for smaller cubes to tackle the intensity inhomogeneity problem. We have
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Table 2. Performance evaluation using the second IBSR data set.

Method JSC Se Sp Pm Pf

BET 0.891 (0.052) 0.959 (0.042) 0.989 (0.005) 0.038 (0.038) 0.071 (0.031)
BSE 0.838 (0.083) 0.957 (0.042) 0.973 (0.030) 0.041 (0.041) 0.119 (0.104)
ISTRIP 0.915 (0.018) 0.978 (0.011) 0.990 (0.003) 0.021 (0.011) 0.064 (0.022)
HWA 0.814 (0.040) 0.9997 (0.0003) 0.965 (0.016) 0.0002 (0.0002) 0.186 (0.040)
Our method 0.930 (0.011) 0.981 (0.016) 0.991 (0.005) 0.018 (0.015) 0.052 (0.017)

Table 3. Performance evaluation using the VGHTPE data set.

Method JSC Se Sp Pm Pf

BET 0.921 (0.009) 0.971 (0.013) 0.994 (0.001) 0.028 (0.012) 0.051 (0.011)
BSE 0.933 (0.008) 0.958 (0.011) 0.997 (0.001) 0.041 (0.011) 0.026 (0.008)
ISTRIP 0.915 (0.011) 0.984 (0.012) 0.991 (0.002) 0.015 (0.011) 0.07 (0.015)
HWA 0.847 (0.019) 0.998 (0.002) 0.979 (0.003) 0.002 (0.002) 0.151 (0.019)
Our method 0.920 (0.010) 0.982 (0.009) 0.992 (0.002) 0.017 (0.009) 0.063 (0.017)

compared to the existing methods and compared with our method by using four data sets. Regarding the performance
evaluation for brain extraction, our method outperforms others for the first/second IBSR data set and BrainWeb phantom
data set, and comparably with the BET and ISTRIP methods for the VGHTPE data sets.
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