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This study proposes a new and improved Lipschitz optimization algorithm to obtain an ε-optimal solution
for solving the transportation fleet maintenance-scheduling problem. It employs a procedure based on
slope-checking and step-size comparison mechanisms to improve the computational efficiency of the
Evtushenko algorithm. Our numerical experiments used 36,000 randomly generated instances to compare
the run time and solution quality of our proposed algorithm with the alternative approach in the literature.
Our results indicate that the run time of the proposed algorithm could be significantly improved by more
than 80% in over 50% of instances in our numerical experiments. We conclude that our proposed algorithm
significantly improves the computational efficiency of the conventional Evtushenko algorithm.

Keywords: Lipschitz programming; optimization; Evtushenko algorithm; maintenance scheduling

1. Introduction

For the past decade, logistics service providers have faced the challenge of low profit margins due
to intensive competition among peers and the skyrocketing price of crude oil. It is well known
that the maintenance cost of their transportation fleet is a major operating cost for most logistics
service providers. An appropriate maintenance schedule may not only lower the total operating
costs, but also ensure a satisfactory utilization rate for the transportation fleet. Therefore, it is
crucial to determine an optimal maintenance schedule for the fleet. The literature refers to this
as ‘the transportation fleet maintenance-scheduling problem’ (the TFMSP). In the TFMSP, the
decision-maker must determine a basic planning period and the frequency of maintenance for
vehicles in each group to minimize the total costs incurred per unit time.

Some studies have dealt with the determination of economic maintenance scheduling in the
fields of management science, operations research, and industrial engineering [5,8,11,12,17].
Many researchers have recently attempted to solve the problems regarding the scheduling of
production facilities or machines [1–3,6,18]. However, few studies have examined the prob-
lem of determining the operating and maintenance schedules for a transportation fleet. The
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Optimization Methods & Software 593

objective functions in these studies, compared with the TFMSP, differ significantly in terms
of their theoretical properties.

Some researchers have studied the aircraft fleet maintenance-scheduling problem (AFMSP).
The AFMSP takes into account unique features such as heterogeneous fleets of aircraft and the
regulations for routine inspections mandated by the Federal Aviation Administration. Flight hours
and the number of take-off and landing cycles [16] are considered constraints. Additionally, the
AFMSP is closely associated with the assignment of aircraft [13], maintenance routing, and crew
scheduling [14]. Thus, the mathematical models for the AFMSP differ significantly from those of
the TFMSP.

Goyal and Gunasekaran [7] designed a mathematical model for the TFMSP. They proposed
a simple heuristic based on two equations that are derived by setting the first derivative of the
objective function (namely, the average total cost) with respect to the decision variables to zero.
Dekker et al. [6] argued that Goyal and Gunasekaran’s heuristic does not guarantee an optimal
solution. Huang and Yao [10] showed the objective function of the TFMSP is Lipschitz and
proposed a dynamic Lipschitz optimization algorithm that finds an ε-optimal solution for this
problem. They first solved the optimal solution for a relaxed problem of the TFMSP. If the
solution was not within an allowance of ε, they located the lower and upper bounds of the
search range using the relaxed solution by some line search methods (e.g. bisection [4]), and then
applied the Evtushenko algorithm [9] as the Lipschitz optimization tool for finding an ε-optimal
solution. Based on numerical results, they claimed their Lipschitz optimization algorithm offers
a significantly better solution than Goyal and Gunasekaran’s method.

However, we observed from the application of the Evtushenko algorithm in Huang and Yao
[10] that the search step-size may become very small as the objective function value available
is lower than the existing one, which leads to many search iterations and a significant run time.
By taking into account some special characteristics of the objective function, we should be able
to improve the run time of Huang and Yao’s algorithm. We therefore propose a more efficient
Lipschitz optimization algorithm for solving the TFMSP.

The rest of the paper is organized as follows. Section 2 presents the mathematical model and
theoretical analysis of the TFMSP. Section 3 briefly reviews the Evtushenko algorithm proposed
in Huang and Yao [10]. Section 4 presents the mechanism for speeding up the search process
and discusses in detail three possible cases that may be encountered during the process. Section 5
presents a numerical example to demonstrate the implementation of the proposed search algorithm.
The effectiveness of the proposed algorithm is verified by comparing the run time and the solution
quality with the other existing solutions for a variety of parameter settings through randomly
generated instances. Finally, Section 6 makes a number of concluding remarks.

2. The mathematical model

The following assumptions and notations have been made to formulate the problem.

2.1 The assumptions and notation

In order to compare our study with the approaches in the literature, we use the same notation and
assumptions as those in Huang and Yao’s paper [10], which are as follows:

Parameters
m number of groups of vehicles
S fixed cost incurred in each maintenance cycle
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594 M-J. Yao and J-Y. Huang

ai fixed operating cost per unit of time for a vehicle of the ith group
bi increased operating cost per unit of time for a vehicle of the ith group
si fixed cost of maintenance for a vehicle of the ith group
ni number of vehicles in the ith group
Xi time required for maintenance work on each vehicle in the ith group
Yi utilization factor of a vehicle of the ith group on the road

Decision variables
T basic maintenance cycle time
ki an integer; kiT gives the maintenance cycle time for the vehicles of the ith group

There are m groups of vehicles, and the number of vehicles is denoted as ni for the ith group.
In the TFMSP, the decision-maker plans the maintenance schedules for vehicle groups in a basic
period, denoted by T (e.g. in days, weeks, or biweekly). The maintenance work of vehicles in a
group is performed at a fixed, equal-time interval referred to as the ‘maintenance cycle’ for that
group of vehicles. The vehicles in the ith group are sent for maintenance once in ki basic periods,
where ki is a positive integer. Thus, kiT is the maintenance cycle for vehicles in the ith group.
We note that the model for the TFMSP is for preventive maintenance, and the model does not
consider unplanned fleet vehicle failures.

2.2 The mathematical model

The TFMSP considers two categories of cost: the operating cost and the maintenance cost. A
vehicle’s operating cost depends on the length of the maintenance cycle and it is assumed to
increase linearly with respect to time following the maintenance work on the vehicle. Specifically,
the operating cost at time t after the last maintenance for a vehicle in group i is given by fi(t) =
ai + bit, where ai is the fixed cost and bi indicates the increase in the operating cost per unit of
time. In addition, for each vehicle in group i, we assume it takes Xi units of time for its maintenance
work and Yi is its utilization factor on the road, where Xi and Yi are known constants. Accordingly,
the actual time during which a vehicle can operate is equal to Yi(kiT − Xi), and the total operating
cost for a vehicle in group i is given by∫ Yi(kiT−Xi)

0
fi(t) dt =

∫ Yi(kiT−Xi)

0
(ai + bit) dt

= Yi(ai − biXiYi)kiT + 0.5Y 2
i k2

i T 2 − XiYi(ai − 0.5biXiYi).

The average fixed cost of maintenance for a vehicle in group i is given by si/(kiT).As maintenance
work is carried out at intervals of T , a fixed cost, denoted by S, will be incurred for all vehicle
groups scheduled for maintenance in each basic period. The average total cost is defined as

Z({k1, k2, . . . , km}, T) := S

T
+

m∑
i=1

�i(ki, T) + u,

where �i(ki, T) = niC1i/kiT + niC2ikiT , C1i = si − XiYi(ai − 0.5biXiYi), C2i = 0.5biY 2
i and u =∑m

i=1 niYi(ai − biXiYi). (Note: u is a constant because all the parameters are given in its expres-
sion.) Therefore, the mathematical model for the TFMSP can be expressed as problem (P0):

(P0) inf
T>0, ki∈Z+, i=1,...,m

Z(k1, k2, . . . , km, T) = inf
T>0, ki∈Z+, i=1,...,m

{
S

T
+

m∑
i=1

�i(ki, T) + u

}
. (1)
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Optimization Methods & Software 595

Because the fixed cost for the maintenance of a group of vehicle si is generally greater than
the fixed operating cost ai in practice, it is reasonable to assume that C1i > 0 with si > ai and
Yi < 1 (which is the utilization factor of a vehicle). In addition, it is obvious that C2i > 0. We
define �({k1, k2, . . . , km}, T) := S/T + ∑m

i=1 �i(ki, T) because u is a constant. Then, solving the
problem (P0) is equivalent to finding the optimal solution for the problem (P) as follows.

(P) inf
T>0, ki∈Z+, i=1,...,m

�(k1, k2, . . . , mkm, T) = inf
T>0, ki∈Z+, i=1,...,m

{
S

T
+

m∑
i=1

�i(ki, T)

}
. (2)

In the TFMSP, we determine the basic period T and the frequency of maintenance for vehicles in
each group {ki} to minimize the total costs incurred per unit of time for the decision-maker.

3. Review of Huang and Yao’s [10] algorithm

Recall that this study focuses on improving the effectiveness of the Evtushenko algorithm proposed
in Huang and Yao [10]. Therefore, we briefly review Huang and Yao’s (2007) algorithm before
proposing our alternative.

As presented by Huang and Yao [10], �i(ki, T) is strictly convex, and it has a minimum, for
a given ki ∈ Z+, at T = x∗

i /ki, where x∗
i = √

C1i/C2i. By taking the optimal value of ki at any
value T > 0, i.e. gi(T) := infki∈Z+{�i(ki, T)} for each ith group, Huang and Yao [10] transferred
the objective function of the TFMSP in Equation (2) into an univariate function with respect to
T , and rewrote the problem (P) as

(P1) inf
T>0

�(T) = inf
T>0

{
S

T
+

m∑
i=1

gi(T)

}
, (3)

where the function �(T) is the optimal objective function value curve with a piecewise convex
property of an univariate function with respect to T . They proved that �(T) is Lipschitz on the
search range [Tlow, Tup]. (We will have a further discussion on the search range later.) Therefore,
they can apply the algorithm of Evtushenko [9] as the Lipschitz optimization tool with a dynamic
Lipschitz constant to find an ε-optimal solution for the TFMSP.

Note that a relaxation method of the TFMSP plays an important role in Huang and Yao’s [10]
algorithm. By relaxing the constraints ki ∈ Z+ by ki ≥ 1, we obtain a relaxation of (P1) in (3);
namely (R1), as follows:

(R1) inf
T>0

h(T) = inf
T>0

{
S

T
+

m∑
i=1

g(R)
i (T)

}
. (4)

The following lemma (which is Lemma 2 in [10]) indicates the location of the optimal solution
T (R) for (R1).

Lemma 1 Assume without a loss of generality that x∗
1 ≤ x∗

2 ≤ · · · ≤ x∗
m. If it holds that i∗ :=

max{1 ≤ i ≤ m : h′(x∗
i ) < 0}, then the optimal solution T (R) of (R1) is given by

T (R) =
√

(S + ∑i∗
i=1 niC1i)∑i∗

i=1 niC2i

. (5)

Let v(R) be the optimal objective function value of (R1). Then, v(R) can be obtained by inserting
T (R) into the objective function of the problem (R1). Note that v(R) serves as a lower bound on the
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596 M-J. Yao and J-Y. Huang

optimal objective function value of the problem (P). Next, we denote k(T ) as the set of optimal
maintenance frequencies at a given value of T . Huang and Yao [10] presented (6) for obtaining
the optimal multiplier k∗

i (T) ∈ Z+ in k(T ) as follows:

k∗
i (T) =

⌈
−1

2
+ 1

2

√
1 + 4C1i

C2iT 2

⌉
(6)

with �.	 denoting the upper-entier function.
Let v(FP) be the objective function value of the problem (P) at T (R), i.e. v(FP) =

�(k(T (R)), T (R)). Obviously, v(FP) serves as an upper bound on the optimal objective function
value of the problem (P). If v(FP) is very close to v(R) (e.g. within an allowance of ε), we have
found an acceptable and feasible solution for (P). If it does not satisfy the required allowance
is not good enough, Huang and Yao [10] suggested applying a global-optimization procedure to
solve (P). To this end, we need to determine an interval that contains an optimal solution of (P),
denoted by T (P).

Denote Tlow and Tup as the lower and the upper bounds, respectively, of the search range. They
indicated that the lower and the upper bound on T (P) are given by the two values of T , where
the objective function of (R1) is equal to v(FP). The bounds Tlow and Tup may be easily located
by some line search methods (e.g. bisection [4]). Therefore, if v(R) is not close enough to the
optimal solution, the Lipschitz optimization algorithm will be applied to solve the problem (P)
on the interval [Tlow, Tup]. The algorithm is a global-optimization approach when the objective
functions are univariate [10]. More formally, a real-valued function f defined on a compact set
X ⊆ Rn that is said to be Lipschitz must satisfy the condition [9]

|f (x) − f (y)| ≤ L||x − y||, ∀ x ∈ X, ∀ y ∈ X, (7)

where L is a constant (called Lipschitz constant) and || · || denotes the Euclidean norm, and n = 1
for the univariate. One may notice that a univariate function f is Lipschitz when the absolute
difference of the objective function value for each pair of x and y is less than or equal to the
product of the Lipschitz constant and the absolute difference of x and y. Huang and Yao applied
the algorithm of Evtushenko as the Lipschitz optimization tool with a dynamic Lipschitz constant,
which was first proposed by Wildeman and Dekker [18]. Note that the purpose of the Evtushenko
algorithm is to make use of the information on the current best-known function value fopt to
determine the largest valid step-size for the next iteration, while simultaneously securing an
ε-optimal solution. The step-size of the Evtushenko algorithm is as follows:

δ = (f − fopt + 2ε)

L
. (8)

In this study, the univariate function f is no other than �(T). The Lipschitz constant L can be
obtained on some interval by taking the maximum of its derivative in absolute value; Huang and
Yao [10] showed that the Lipschitz constant L for the problem (P) on [Tlow, Tup] is given by

L = S

T 2
low

+
m∑

i=1

niC2i. (9)

Before presenting our proposed algorithm, we next summarize Huang and Yao’s [10] Lipschitz
optimization algorithm.

Huang and Yao’s [10] algorithm

(1) Use Equation (5) to find the optimal T (R) of the problem (R1). If T (R) ≥ x∗
m, then T (R) is

optimal for the problem (P) and ki = 1, for i = 1, . . ., m; stop.
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Optimization Methods & Software 597

(2) If T (R) < x∗
m, we use (6) in Lemma 1 to derive the set of optimal maintenance frequencies

k(T (R)) = {ki(T (R))}, and (k(T (R)), T (R)) is a feasible solution of (P). If υ(FP) − υ(R) ≤
ευ(R), then we have secured an ε-optimal solution υ(FP) = �(k(T (R)), T (R)); stop.

(3) If the solution available is not ε-optimal, locate the bounds Tlow and Tup of the search range
through a line search method by finding the two values of T where the objective function of
(R1) equals υ(FP).

(4) Apply the Evtushenko algorithm as the Lipschitz optimization tool with a dynamic Lipschitz
constant as shown in (9) on the interval [Tlow, Tup] to solve an ε-optimal solution for the
TFMSP.

Note that in Step (4) we need to evaluate the objection function after each iteration. A larger
lower bound may lead to a smaller Lipschitz constant and consequently, a larger step-size δ.
However, one may observe that in the worst case, the step-size is equal to 2ε/L (the incumbent
evaluation of the optimal objective function value is also the best available) when the function is
either a constant function or a monotonically decreasing function. When passing through some
descending sub-ranges, the application of the Evtushenko algorithm may require one to conduct
many iterations, which could be very time consuming.

In this study, we propose an improved version of the Evtushenko algorithm with better compu-
tational efficiency as the search passes through those decreasing sub-ranges. In the next section,
we propose the procedure and discuss the situations in which we may expedite the Evtushenko
algorithm for solving the TFMSP.

4. An improved Lipschitz optimization algorithm

The proposed algorithm makes use of the information of local minimum to expedite the search
process, especially when the Evtushenko algorithm passes through some descending subranges
during the search. The first part of this section focuses on elaborating our idea of utilizing the local
minima. We also highlight the search at the starting point. The second part discusses three possible
cases that one may encounter in the search. Finally, we summarize our proposed algorithm.

4.1 Expedite the search by making use of the local minima

In this section, we first present our idea about the local minima on the function �(T) to expedite
the search. We then discuss three possible conditions as the search approaches a local minimum.

4.1.1 The mechanism for shortening the search procedure

Recall that one may use (6) to obtain a vector of optimal multipliers k(T) =
(k∗

1(T), k∗
2(T), . . . , k∗

m(T)) for a given T̄ . In addition, for a given vector of k = (k1, k2, . . . , km),

one may easily locate its local minimum
�

T(k) by equating the derivative of the �(T) function to

zero where
�

T(k) is given by

�

T(k) =
√

S + ∑m
i=1 (niC1i/ki)∑m

i=1 (niC2iki)
. (10)

Such a local minimum
�

T(k) may serve as a candidate for the optimal solution. Thus, we are

motivated to search
�

T(k) along the T -axis. In addition, as the search passes through some mono-
tonically decreasing subranges, we may keep ‘sliding down’ a series of local minima to reduce
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598 M-J. Yao and J-Y. Huang

Figure 1. The idea of ‘sliding down’ a series of local minima.

the computational efforts and to improve the Evtushenko algorithm. Figure 1 depicts our sug-
gested improvement. Assume that we start our search at Tlow, and its corresponding set of optimal

multipliers is k0, i.e. k0 = k(Tlow). We may obtain the local minimum at
�

T(k0) by (10), and let

T 0 = �

T(k0). Then we apply the same approach to derive the set of optimal multipliers k1 at T 0, and

locate its corresponding local minimum T 1 = �

T(k1). The k set is unique for each local minimum
of �(T). When two consecutive k sets of multipliers are identical, it indicates that the search meets
a local minimum of �(T); that is, one may repeat the procedure until the optimal set of multipliers
becomes invariant. One may observe that in following the above steps, the search will continue
to slide down until it reaches a local minimum of the function �(T). Following this rationale, one
may use such a procedure to improve the computational efficiency of the Evtushenko algorithm
during the search within some descending sub-ranges. Whenever the algorithm reaches a local
minimum of the function �(T), we shall record and compare the objective function value and try
to update the best available solution.

4.1.2 Three conditions approaching a local minimum

When the search reaches the subranges where �(T) is decreasing, one should employ the proposed
‘sliding down’ procedure to locate a local minimum. Three possible conditions arise as the search
approaches a local minimum.
Condition 1: Forward search

Generally, we can apply the proposed algorithm consecutively without missing a local minimum
if only one component of the k set has changed at each jump step. This situation mostly arose
during the search process with a descending curve, and we therefore regarded it as the normal
situation. A demonstration example is given in Figure 2, where step X(6) is the local minimum
�

T(k) corresponding to X(5) with k = {ki(X(5))}. As depicted in Figure 2, by checking the ψ(k, T)

(dashed curve) with the lower envelope �(T) (the bold curve), we found that the optimal k set
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Optimization Methods & Software 599

Figure 2. Normal situation of the proposed algorithm.

Figure 3. Backward search without missing a local minimum.

at X(6) should be different from k = {ki(X(5))}, so we moved forward to the local minimum at
X(7) corresponding to the new k = {ki(X(6))} at X(6).
Condition 2: Backward search without missing a local minimum

Sometimes more than one component in the k set changes during a search from the current step

(a given T ) to its
�

T(k). In this case, a backward search mechanism will be triggered to prevent
the search from missing the local minimum. As demonstrated in Figure 3, when the current step

X(5) jumps to its
�

T(k), the corresponding new k = {ki(X(6))} will in turn lead backward to X(7).
Likewise, the new k = {ki(X(7))} will again move backward to X(8). Thus, no local minimum
will be missed. Note that, in this case, we will start the next step of the search directly from
X(9) = X(6) + (f − fopt + 2ε)/Lc, which will save us the effort of searching from X(8) to X(6).
Condition 3: Missing a local minimum during the search

There were situations in which two (or more) components in the k set were changed during
the search and the local minimum will be missed, as shown in Figure 4, when the search moves

from the current step X(5) to its
�

T(k) (i.e. X(6)). However, unlike the situation shown in Figure 3,
the search moves forward to X(7) because the �(T) is descending; the local minimum located
between X(5) and X(6) was not detected.

Another possible situation of a missing local minimum is shown in Figure 5, which depicts how
when the search moves from X(5) to X(6), it turns only backward to X(7), and then goes forward
to X(8) = X(6) + (f − fopt + 2ε)/Lc. In such a case, the search also misses a local minimum.
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600 M-J. Yao and J-Y. Huang

Figure 4. Forward search missing a local minimum.

Figure 5. Backward search missing a local minimum.

Apparently, by starting the search at Tlow, we have to examine if the function �(T) is increasing
or decreasing as T increases.We do this as follows. Denote X(m) as the point located by the mth step
of the Evtushenko algorithm, m = 1, 2, . . .. Recall that the (conventional) Evtushenko algorithm
goes from X(m) to X(m + 1) by a step-length of δ = (f − fopt + 2ε)/Lc; namely, X(m + 1) =
X(m) + δ. For simplicity in notation, we set Tlow ≡ X(0). Obviously, if �(X(0)) < �(X(1)),
�(T) increases, we should proceed with the Evtushenko algorithm until it detects that �(T) no
longer increases as T increases.

In contrast, if �(X(0)) > �(X(1)), then �(T) decreases, and we should therefore seek a local
minimum. We discuss this case further in the next subsection.

4.2 Three possible cases when proceeding with the search

Due to the piecewise convex property feature, the �(T) may increase or decrease as the search
moves from Tlow toward Tup. In general, we may have three possible cases: (1) �(T) increases, (2)
�(T) increases, and its slope at the current step is negative or zero, and (3) �(T) increases, and
its slope at the current step is positive. (Note: The three conditions discussed in Section 4.1 are
manifested only in the latter two cases.) We present the details for these three possible cases next.

Case 1: �(T) increases
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Optimization Methods & Software 601

Figure 6. Two possible situations when a local minimum is located.

As �(T) increases, the search moves with an upward momentum. In such a case, we apply the
conventional Evtushenko algorithm for the search because its step-size δ = (f − fopt + 2ε)/Lc is
large (see Figure 6).
Case 2: �(T) decreases, and its slope at the current step is negative or zero

As discussed in Section 4.1, we may improve the efficiency of the search by ‘sliding down’ to

its local minimum
�

T(k) with a specific k set as �(T) decreases. Recall that we shall perform a
backward search to prevent a missing local minimum between the current and the previous steps,
as discussed in Conditions 2 and 3 in Section 4.1.

Note that �(T) may ‘fluctuate’ frequently if many optimal k sets exist within a short range of
T . Such behavior may trigger many iterations of a backward search to prevent missing the local
minimum. However, a backward search would be unnecessary if the step-size recommended by
the Evtushenko algorithm is larger than the step-size proposed by our improved algorithm. It is
reasonable to adopt the step-size recommended by the Evtushenko algorithm in this case because
the quality of the solution could be guaranteed (within an ε-% error allowance), even if a local
minimum is missed.

We hope to eliminate unnecessary search steps to improve computational efficiency while
retaining the quality of the solution. Therefore, we propose a procedure based on slope and step-
size checking mechanisms. To facilitate our presentation, we name the step-sizes recommended
by the Evtushenko algorithm and our improved algorithm ‘the Evtushenko step-size’ and ‘the
jumping step-size’, respectively. We present our procedure for the two possible situations in
Case 2 as follows:

(a) The Evtushenko step-size is larger than the jumping step-size. We adopt the Evtushenko step-
size as the next step in this case because the Evtushenko algorithm guarantees an ε-optimal
solution.

(b) The Evtushenko step-size is smaller than the jumping step-size. If the jumping step-size (i.e.

the movement from the current location to
�

T(k)) is larger than the Evtushenko step-size, we
use the jumping step-size in our proposed algorithm. Because the jumping step-size is usually
larger than the Evtushenko step-size, our proposed algorithm is able to speed up the search
when it encounters Case 2. This is actually the key to improving the computational efficiency
of our proposed algorithm in comparison to the Evtushenko algorithm.

Case 3: �(T) decreases, and its slope at the current step is positive
We discuss the two possible situations in Case 3 as follows.

(a) The current step is driven by the jumping step-size. Because �(T) decreases, our proposed
algorithm may employ a jumping step-size that is so large that it surpasses local minima in
between. One may refer to Figure 7 for an example where �(T) decreases, but its slope is
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602 M-J. Yao and J-Y. Huang

Figure 7. An example of a backward search situation with a decreasing objective function and a positive current
slope.

Figure 8. An example showing a current step propelled by the Evtushenko algorithm and across a local
minimum.

positive. Here is Condition 2 of Section 4.1.2; we apply a backward search from the current
step until a local minimum is detected. We note that such a backward search mechanism
enables our proposed algorithm to find a better solution than the conventional Evtushenko
algorithm in some instances of our numerical experiments in Section 5.

(b) The current step is driven by the Evtushenko step-size. If �(T) decreases and the slope at
the current step is positive, there is then at least one local minimum in between, as shown in
Figure 8. In such a case, a backward search is unnecessary because the Evtushenko algorithm
guarantees an ε-optimal solution. We will keep applying the Evtushenko algorithm to proceed
with the search.

4.3 A summary of our proposed algorithm

Following the above discussion, we propose a new algorithm for improving the computational
efficiency of the conventional Evtushenko algorithm. We present a flow chart of our proposed
algorithm and summarize the pseudo-code as follows (see Figure 9).
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Optimization Methods & Software 603

Figure 9. A flow chart of our proposed algorithm.

Notation definition:
TCbest the best-known solution available
TC current optimal objective function value
TCpre optimal objective function value of previous step
TC∗ the optimal objective function value
T∗ the optimal T
k∗ the optimal k set
X(m) search step at m iteration
Tcur the current search step
Lc dynamic Lipschitz constant
TE Evtushenko step
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604 M-J. Yao and J-Y. Huang

�

T the step of our proposed algorithm (it will end with a local minimum)
Scur slope at current search step

set ϒE to true if the current step is driven by the Evtushenko algorithm, otherwise set ϒE to false
Our proposed algorithm

Set TCbest = v(FP), TC∗ = v(FP), T∗ = T (R), k∗ = {ki(T (R))}, start the search from the lower
bound Tlow. Set Tcur = Tlow. Obtain k = {ki(Tcur)}, get TC = TC(k, Tcur), set TCpre = TC.

Set m = 1, compute Lc at Tcur, set X(1) = Tcur + ε/Lc, obtain k = {ki(X(1))}, get TC =
TC(k, X(1)).
While TC > TCpre

set Tcur = X(m), Compute Lc at current search step Tcur, set m = m + 1,
X(m) = Tcur + (TC − TCbest + 2ε)/Lc

If X(m) > Tup

stop
else

set Tcur = X(m), TCpre = TC, obtain k = {ki(Tcur)}, get TC = TC(k, Tcur)

Endif
EndWhile

While X(m) ≤ Tup

set Tcur = X(m), obtain k = {ki(Tcur)}, get TC = TC(k, Tcur)

If TC < TC∗, set TC∗ = TC, T∗ = Tcur, k∗ = {ki(Tcur)}, Endif

Compute Scur, obtain
�

T by Equation (10), obtain Evtushenko step
TE = Tcur + (TC − TCbest + 2ε)/Lc

If Tcur = �

T
get TC = TC(k, Tcur)

If TC < TC∗, set TC∗ = TC, T∗ = Tcur, k∗ = {ki(Tcur)}, Endif
Initialize ϒE to false

Endif
If Tcur= max(X(m)),

Set TCpre = TC, compute Lc, set m = m + 1,
X(m) = Tcur + (TC − TCbest + 2ε)/Lc

if X(m) > Tup

stop
else

set Tcur = X(m), obtain k = {ki(Tcur)}, get TC = TC(k, Tcur), set ϒE = 1
Endif
While TC > TCpre

set Tcur = X(m), Compute Lc at current search step Tcur, set m = m + 1,
X(m) = Tcur + (TC − TCbest + 2ε)/Lc

If X(m) > Tup

stop
else

set Tcur = X(m), TCpre = TC, obtain k = {ki(Tcur)}, get TC = TC(k, Tcur)

Endif
EndWhile

else
set Xmax = max(X(m)), Tcur = Xmax, compute Lc, get TC = TC(k, Tcur),
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Optimization Methods & Software 605

set TCpre = TC, set m = m + 1, X(m) = Tcur + (TC − TCbest + 2ε)/Lc

if X(m) > Tup

stop
else
set Tcur = X(m), obtain k = {ki(Tcur)}, get TC = TC(k, Tcur), set ϒE to true

Endif
While TC > TCpre

set Tcur = X(m), Compute Lc at current search step Tcur,
set m = m + 1, X(m) = Tcur + (TC − TCbest + 2ε)/Lc

If X(m) > Tup

stop
else

set Tcur = X(m), TCpre = TC, obtain k = {ki(Tcur)}, get TC = TC(k, Tcur).
Endif

EndWhile
Endif.
If TE <

�

T and Scur < 0

set m = m + 1, X(m) = �

T , set ϒE to false

elseif TE ≥ �

T and Scur < 0
set m = m+1, X(m) = TE, set ϒE to true

elseif TE ≥ �

T and Scur > 0 and ϒE to true
set m = m+1, X(m) = TE

else
set m = m + 1, X(m) = �

T
Endif

EndWhile

5. Numerical experiments

In the first part of this chapter, we employ a numerical example to demonstrate the implementation
of our proposed algorithm. We then use randomly generated instances to show that our proposed
algorithm significantly improves the computational efficiency of the conventional Evtushenko
algorithm.

5.1 A demonstration example

In this subsection, we use a five-group example in Goyal and Gunasekaran [7] to demonstrate the
implementation of our proposed algorithm. The error allowance is set as ε = 0.01%. The data set
of this five-group example is shown in Table 1.

In this example, we start by locating the optimal T (R) of the problem (R1) at T (R) = 12.5349 and
set the v(R) at $2020.66. Because T (R) < x∗

m = 21.20637, we use Equation (6) to obtain the set
of optimal maintenance frequencies k(T (R)) = {1, 1, 2, 1, 1} and to obtain a feasible solution for
the problem (P) at T (R). We have v(FP) = �(k(T (R)), T (R)) = $2034.87. Because the error of the
feasible solution (v(FP) − v(R))/v(R) = 0.7028% is larger than ε = 0.01%, it is not ε-optimal.

Next, using a bisection search method, we may set the search range at Tlow = 9.8418 and
Tup = 14.9888. Note that the Tup is exactly the same value of TCC by the common cycle approach
in this example. We set �(k(T (R)), T (R)) = $2034.87 at the initial TCbest to expedite the search.
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606 M-J. Yao and J-Y. Huang

Table 1. The data set of the five-group example.

m = 5, S = 800

ni Xi Yi ai bi si

10 0.8 0.90 80 3 198
24 0.6 0.95 50 2 192
30 0.4 0.85 90 1 193
16 0.6 0.95 85 1.5 205
12 0.5 0.94 95 2.5 204

Figure 10. The optimal function value curve of the demonstration example.

The search starts from X(1) = Tlow + ε/Lc = 9.8444 (by the traditional Evtushenko algorithm),
and we have �(k(X(1)), X(1)) = $2083.52 (without considering the constant u). Because the
objective function value at X(1) is less than that at Tlow, i.e. �(k(Tlow), Tlow) = $2083.61, it is
suitable to apply our proposed algorithm to predict the next step.

It is worth noting that it takes our proposed algorithm 74 steps to complete the search, and
the optimal solution located at T∗ = 12.7843 with k∗ = {1, 1, 2, 1, 1}. Taking the constant u into
account, we derive the optimal average total cost by Z = TCbest + u = $2034.47 + $6438.25 =
$8472.72. The optimal function value curve of the example demonstration is shown in Figure 10.

By using Huang and Yao’s [10] search algorithm, we located the optimal solution at T∗ =
12.7818 after 85 iterations and finished the complete search in 157 steps. It is clearly evident that
our proposed algorithm is more efficient than Huang and Yao’s [10] algorithm.

Our proposed algorithm can obtain the real optimal solution if we did not miss the global
minimum, because the local minima will be located during the descending search range. In
contrast, Huang and Yao’s [10] search algorithm can only find an ε-optimal solution because the
search is driven by a small step-size and it may sometimes surpass a local minimum.

5.2 Numerical results from random instances

Here, we use randomly generated scenarios to show that our proposed algorithm significantly
improves the computational efficiency of the conventional Evtushenko algorithm. Again, one may
compare our experimental settings to that of Goyal and Gunasekaran [7]. Six different numbers
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Optimization Methods & Software 607

Table 2. The settings of the parameters in
our random experiments.

m 3, 5, 7, 10, 25, 50
S 50, 100, 200, 500, 750, 1000
ni U [10–30]
Xi U [0.4–0.8]
Yi U [0.9–0.95]
ai U [5–10]
bi U [1–3]
si U [25–40]

Table 3. Experimental results for the smaller-size (m = 3, 5 and 7) problems.

Huang and Yao’s [10]
search algorithm Our proposed algorithm

Objective function value

Avg. Avg. Avg. Avg. Run time Error more Max. Avg.
m S iterations run time iterations run time improving rate (%) than 0.01% error (%) error (%)

3 50 243 0.0206 33 0.0043 79.13 0/1000 −7.50E−06 −2.20E−06
100 219 0.0230 21 0.0044 81.04 0/1000 −7.10E−06 −2.20E−06
200 221 0.0225 14 0.0038 83.04 0/1000 −6.80E−06 −2.10E−06
500 267 0.0248 7 0.0028 88.57 0/1000 −5.90E−06 −1.80E−06
750 326 0.0286 5 0.0025 91.36 0/1000 −5.20E−06 −1.70E−06

1000 385 0.0344 4 0.0025 92.72 0/1000 −4.70E−06 −1.50E−06
5 50 330 0.0317 68 0.0080 74.74 0/1000 −9.90E−06 −2.40E−06

100 293 0.0256 41 0.0051 79.93 0/1000 −7.50E−06 −2.10E−06
200 261 0.0230 26 0.0041 82.21 0/1000 −7.10E−06 −2.10E−06
500 263 0.0232 13 0.0031 86.65 0/1000 −6.50E−06 −1.80E−06
750 283 0.0235 8 0.0025 89.36 0/1000 −5.70E−06 −1.70E−06

1000 305 0.0288 5 0.0027 90.59 0/1000 −5.30E−06 −1.70E−06
7 50 413 0.0363 105 0.0102 71.96 0/1000 −1.30E−05 −2.60E−06

100 359 0.0320 63 0.0070 78.13 0/1000 −8.10E−06 −2.10E−06
200 313 0.0281 36 0.0050 82.37 0/1000 −7.20E−06 −2.00E−06
500 286 0.0256 19 0.0037 85.48 0/1000 −6.70E−06 −2.00E−06
750 285 0.0260 11 0.0031 88.08 0/1000 −6.10E−06 −1.90E−06

1000 293 0.0270 7 0.0029 89.26 0/1000 −5.90E−06 −1.80E−06

of groups of vehicles (m = 3, 5, 7, 10, 25, 50) and six different values for the fixed cost in each
basic period T (S = 50, 100, 200, 500, 750, 1000) are selected. This yields 36 combinations from
these parameter settings. Then, for each combination, we randomly generate 1000 instances by
randomly choosing the values for Xi, Yi, ai, bi, and si using uniform distribution functions. Table 2
shows the ranges of these uniform-distributed random variables.

After randomly generating 36,000 instances, we solve each of them using our proposed
algorithm, along with Huang and Yao’s [10] search algorithm, on a PC with a Core 2 Duo pro-
cessor P8600 with 4 GB RAM. The error allowance in each algorithm is set by ε = 0.01%. The
experimental results for the smaller size (with m = 3, 5, 7) and larger size (with m = 10, 25, 50)
are summarized in Tables 3 and 4, respectively.

One may observe that our proposed algorithm solves the TFMSP within an extremely short run
time. It has an average reduction of 71.79% in its run time compared with Huang and Yao’s [10]
search algorithm. Regarding solution quality, we set the error allowance equal to 0.01% for both
approaches.As mentioned in Condition 3 of Section 4.1.2, our proposed algorithm may sometimes
miss the local minimum, so we compare the outcome and indicate the number of instances out of
the 1000 instances for each m and S combination where the difference is greater than 0.01% in
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608 M-J. Yao and J-Y. Huang

Table 4. Experimental results for the larger-size (m = 10, 25 and 50) problems.

Huang and Yao’s [10]
search algorithm Our proposed algorithm

Objective function value

Avg. Avg. Avg. Avg. Run time Error more Max. Avg.
m S iterations run time iterations run time improving rate (%) than 0.01% error (%) error (%)

10 50 511 0.0469 156 0.0151 67.78 0/1000 −1.80E−05 −2.90E−06
100 442 0.0414 100 0.0105 74.67 0/1000 −9.30E−05 −2.10E−06
200 373 0.0341 53 0.0064 81.37 0/1000 −7.50E−06 −2.00E−06
500 320 0.0294 27 0.0042 85.53 0/1000 −6.80E−06 −2.00E−06
750 308 0.028 17 0.0035 87.44 0/1000 −6.60E−06 −2.10E−06

1000 301 0.0283 12 0.0032 88.71 0/1000 −6.20E−06 −1.90E−06
25 50 642 0.064 266 0.0311 51.43 0/1000 2.70E−07 −5.90E−06

100 646 0.0684 217 0.0253 62.99 0/1000 −1.70E−05 −3.00E−06
200 580 0.0586 154 0.0168 71.33 0/1000 −1.00E−05 −1.90E−06
500 413 0.0428 58 0.0078 81.86 0/1000 −7.40E−06 −1.40E−06
750 380 0.0371 41 0.0058 84.27 0/1000 −7.20E−06 −1.60E−06

1000 361 0.0352 33 0.0052 85.19 0/1000 −7.00E−06 −1.60E−06
50 50 653 0.0676 358 0.0481 28.85 0/1000 4.45E−05 −1.00E−05

100 688 0.0721 291 0.0374 48.06 0/1000 1.49E−05 −6.40E−06
200 711 0.0763 237 0.0289 62.06 0/1000 −1.30E−05 −3.10E−06
500 615 0.0657 143 0.0166 74.77 0/1000 −8.40E−06 −1.20E−06
750 504 0.0552 89 0.0113 79.46 0/1000 −7.40E−06 −1.20E−06

1000 435 0.0478 58 0.0081 82.98 0/1000 −7.30E−06 −1.10E−06

the last third column. Our results show that the differences of the solutions obtained by the two
approaches are all within 0.01%.

In the last two columns of Tables 3 and 4, we present the maximum (relative) error and average
(relative) error of our proposed algorithm in percentages.An interesting finding is that 37 out of 42
combinations have a negative maximum error value, which means our proposed algorithm in these
instances can mostly obtain better solutions than the traditional dynamic Lipschitz optimization
algorithm (i.e. the Evtushenko algorithm). Although five combinations (when m = 25 and 50)
have a positive maximum error, the largest is only 0.000129%, and all these five problems have
a negative average error value. It is thus obvious that our proposed algorithm is better than the
traditional one in terms of the quality of the solution.

6. Conclusion and future research

In this study, we propose a new Lipschitz optimization algorithm for solving the TFMSP. Our pro-
posed algorithm employs slope-checking and step-size comparison mechanisms to significantly
reduce the number of iterations in Huang and Yao’s Evtushenko algorithm [10] as the search
passes through decreasing subranges of the objective function. Our numerical experiments show
that our proposed algorithm solves the TFMSP with an average reduction of 71.79% in its run
time compared with Huang and Yao’s [10] Evtushenko algorithm. Therefore, we conclude that
our proposed algorithm significantly improves computational efficiency.

Note that our proposed algorithm may sometimes miss the local minimum, although it still
guarantees an ε-% error allowance. The quality of the solution of our proposed algorithm is even
better than the conventional Evtushenko algorithm because we incorporate the mechanism of a
backward search for a local minimum in our proposed algorithm.

We note that both Huang and Yao [10] and this study apply the Evtushenko algorithm as Lips-
chitz optimization algorithms for solving the TFMSP. One may apply other global-optimization
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Optimization Methods & Software 609

approaches, such as the Piyavskii [15] algorithm, to solve the TFMSP and to propose fine-tuned
mechanisms (similar to those in Section 4 in this study) following the characteristics of the
objective function. These applications may serve as a future extension of this study.
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