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Pumping Flow in a Channel
With a Peristaltic Wall
Simplified models were widely used for analysis of peristaltic transport caused by contrac-
tion and expansion of an extensible tube. Each of these models has its own assumptions,
and therefore, weakness. To get rid of the limitations imposed by the assumptions, a nu-
merical procedure is employed to simulate this pumping flow in the present study. In ear-
lier studies, the frame of reference adopted moves with the peristaltic speed of the
vibrating wall so that the flow becomes steady. The flow characteristics in a wavelength
were the main concern. In our calculations, a channel of finite length with a flexible wall
is considered. Pressures are prescribed at the inlet and outlet boundaries. The computa-
tional grid is allowed to move according to the oscillation of the wall. Another state-of-
the-art technique employed is to construct the grid in an unstructured manner to deal with
the variable geometry of the duct. The effects of dimensionless parameters, such as ampli-
tude ratio, wave number, Reynolds number, and back pressure on the pumping perform-
ance are examined. Details of the peristaltic flow structure are revealed. Also conducted
is the comparison of numerical results with the theoretical predictions obtained from the
lubrication model to determine the suitability of this theory. [DOI: 10.1115/1.4026077]

1 Introduction

Peristalsis is a form of pumping transport by means of progres-
sive waves propagating along the flexible wall of a channel. Phys-
iologically, it is a phenomenon of muscle contraction/expansion
to move the contents within muscular tubes. It is responsible for
the vasomotion of small blood vessels, urine flow from kidney to
bladder, chyme movement in the gastro-intestinal tract, ovum
movement in the fallopian tube, among others. This principle has
been realized in industries to develop roller and finger pumps for
transport of materials, such as foods, slurries, corrosive fluids, etc.
to prevent them from being in contact to the mechanical parts of
the pump. Especially in biomedical applications, it is desired not
to cause drastic changes in the properties of the fluid being
handled because blood, proteins, enzymes, etc., are sensitive to
the shear rates. Peristaltic flow is preferred owing to its lower
shear stresses.

For analysis of fluid mechanics involved in the peristaltic trans-
port, simplified mathematical models have been proposed. Sha-
piro et al. [1] assumed that the wave length-to-channel height
ratio is infinite and the Reynolds number is so small that the flow
becomes a creeping motion in a narrow duct. The problem can be
further simplified by adopting a frame of reference moving at the
speed of wave. The flow then becomes steady because the wavy
wall is stationary in this frame. The results of their analysis
showed that under certain conditions an internally circulating
bolus of fluid, i.e., a phenomenon of trapping, was found in the
centerline region and transported with the wave speed. The find-
ings were confirmed by the experiments of Weinberg et al. [2].
This model then becomes the most widely adopted of the methods
used for analysis of this kind of flow.

Mishra and Rao [3] examined the peristaltic flow in an asym-
metric channel with the traveling waves of different phase and
amplitude propagating along the walls. Hayat and Ali [4]
extended the model to investigate the effect of variable viscosity.
The influence of lateral walls on peristaltic flow was discussed by
Reddy et al. [5]. Ravi Kumar et al. [6] employed the slip boundary
condition to model the permeable wall. Heat transfer was
considered by Srinivas and Kothandapani [7]. Bifurcations of

streamline patterns in planar and axisymmetric peristaltic flows
were investigated in the study of Jim�enez-Lozano and Sen [8].

The flow of various fluids in medical, chemical, and biotechno-
logical engineering shows a complex rheological behavior. In the
case of blood, such phenomenon mainly owes to the presence of
erythrocytes. In order to model this behavior, various non-
Newtonian models were employed. In the study of Misra and Pan-
dey [9], the peristaltic flow of blood in small vessels was investi-
gated using a two-layer fluid model in which the core region of
the channel is described by Casson fluid and the peripheral region
is taken to be Newtonian. The peristalsis of blood motion in a
tapered channel was under investigation by Misra and Maiti [10]
in which blood was treated as a Herschel-Bulkley fluid. The flow
of a power-low fluid in a porous tube was considered by Rao and
Mishra [11] while a similar fluid flow in an asymmetric porous
channel was considered by Ravi Kumar et al. [12]. The study of
Nadeem et al. [13] was concerned with Carreau fluid flow in a rec-
tangular duct. A study of pseudoplastic fluid flow was reported by
Noreen et al. [14]. Micropolar fluid was the main concern of Ali
and Hayat [15]. A generalized Burgers’ model was employed by
Tripathi [16] to model the viscoelastic property of fluid. By
assigning different values to the material constants, it reduces to
fractional Oldroyd-B, fractional Maxwell, and fractional second
grade fluids, along with the Newtonian fluid.

Perturbation theory is an alternative for theoretical analysis
which was adopted by Fung and Yih [17] and Yin and Fung [18].
In principle, this model is appropriate only for small wave ampli-
tudes because it is based on series expansion in powers of ampli-
tude-to-channel height ratio. No such restriction is required in the
Shapiro’s model. However, the nonlinear inertial effects are
included to allow a finite value of Reynolds number. It was
applied by Wilson and Panton [19] to investigate the flow caused
by bending and contraction waves. Selverov and Stone [20] and
Yi et al. [21] examined the flow in a closed cavity induced by
small-amplitude traveling waves along the boundary. Abd Elnaby
and Haroun [22] extended the theory to include a compliant wall.
The effect of wall properties on the peristaltic flow was investi-
gated. In the studies of Usha and Rao [23] and Rao and Mishra
[24], the perturbation series was expanded in terms of channel
height-to-wave length ratio to examine curvature effects on the
flow in symmetric and asymmetric channels.

It is obvious that either of the two above approaches has its
own inherent shortcomings. The lubrication model can only deal
with small Reynolds numbers, very low-frequency oscillations,
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and long wavelengths whereas the perturbation theory is suitable
only for small wall deformations and only asymptotic solutions
are obtained. Another option for analysis is to solve the Navier-
Stokes equations directly using computational fluid dynamics
techniques. In these numerical calculations, it is essential to deal
with the complex geometry of the channel wall, which contracts
and expands in a traveling wave form. A usual way used in the
past to simplify the problem is, first, to make a coordinate trans-
formation from the laboratory frame to the wave frame so that the
flow becomes steady. Orthogonal curvilinear coordinates were
then used to fit the wavy wall in finite difference calculations in
the study of Brown and Hung [25]. Takabatake and Ayukawa [26]
introduced an oblique-lattice-coordinate technique into their dif-
ference schemes to tackle the irregular boundary. Finite element
methods were adopted by Tong and Vawter [27] and Rathish
Kumar and Naidu [28]. A boundary element method was used by
Pozrikidis [29].

In the past decades, the finite volume method has emerged as
an alternative to the finite element method to cope with irregular
geometries encountered in fluid mechanics problems because
unstructured grids can also be used. The main advantages of the
former over the latter are that this kind of method is relatively
easy to implement and the resulting difference equations can be
solved efficiently using iterative methods because, like the finite
difference method, the coefficient matrices have the sparse char-
acter. In the present study, a method based on the finite volume
approach is introduced. Unlike the above simulations, the labora-
tory frame of reference is used and unsteady calculations are per-
formed. To allow the computational domain to change in
accordance with the wave propagation, governing equations are
formulated in the Lagrangian-Eulerian form. The previous studies
are mainly focused on the flow characteristics in steady state in
one wavelength. We will evaluate the performance of the peristal-
tic pumping in a duct of finite length under certain pressure
differences.

2 Mathematical Methods

A schematic drawing of the channel under consideration is
shown in Fig. 1. It has a length l and a height 2h. The lower wall
is fixed while the upper wall moves in a sinusoidal form with am-
plitude a, wavelength k, and speed c. The flexible wall can be
expressed as

y1 x; tð Þ ¼ 2hþ a cos
2p
k

x� ctð Þ (1)

The flow is regarded as incompressible and laminar due to the low
wave speed. The computational grid is allowed to vary in accord-
ance with the time varying geometry of the channel. The conser-
vation equations for continuity and momentum can then be
written in the following integral form as:
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where q is the density, p is the pressure, l is the viscosity, v
*

is the
fluid velocity, and v

*

g is the grid velocity. The grid, which moves
in space, must also obey the conservation law [30],
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Multiplying the space conservation equation by q and subtracting
it from Eq. (2) leads to the following form:ð

S

qv
* � dS

*

¼ 0 (5)

which means that it is not necessary to consider the grid velocity
in the continuity equation.

The above formulations are nondimensionalized using half the
channel height h as the length scale and the wave speed c as the
velocity scale. As an example, Eq. (1) can then be cast into the
form,

y�1 x�; t�ð Þ ¼ 2þ e cos 2pa x� � t�ð Þ (6)

where x� ¼ x=h, t� ¼ ct=h, e ¼ a=h are the amplitude ratio, and
a ¼ h=k is the wave number.

A pressure based method within the frame of finite volume
approach had been developed by the group of the present authors
to deal with complex flows [31,32], including the case of the mul-
tichamber peristaltic micropump [33]. Therefore, only a brief
introduction of the method is presented in the following.

The convective flux through the surface of the control volume
can be approximated by

Fc ¼
X

f

_mr
f /f (7)

Here the subscript f designates face value and the summation is
over all the faces surrounding the control volume. The symbol /
represents each of the velocity components and /f is approxi-
mated by blending upwind and central difference schemes
using the values at the two cell centroids adjacent to the consid-
ered face. The variable _mr

f is the mass flux relative to the moving
face,

_mr
f ¼ _mf �

qDXf

Dt
(8)

where DXf is the volume swept by the moving face and _mf is the
mass flux based on flow velocities in the laboratory frame.

The diffusive flux crossing the control surface is approximated
in the following way, suitable for unstructured grids of arbitrary
topology:

Fd ¼
X

f

lS2
f
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~Sf �

S2
f
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(9)

Here ~Sf is the surface vector of the face f. The subscripts P and C
denote the centroids of the principal and neighboring cells on the
two sides of the considered face and ~dPC is the distance vector
directed from P to C (see Fig. 2). The face gradient r/f is
obtained by linear interpolation from the gradient values at the
two centroids.

After discretization, the momentum equation can be solved to
find velocities using prevailing pressure field. However, the result-
ing velocity field does not obey the continuity law and the pres-
sure needs to be updated. A pressure equation can be derived by
adjusting the velocities in the way that the continuity equation (5)
is satisfied. For conservation of mass in a cell the mass flux at

Fig. 1 Schematic sketch of the peristaltic channel
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each face of the cell needs to be estimated, which is obtained
using a momentum interpolation approach [31] as

_mf ¼ qf
�~vf � ~Sf � Bf ½ðpC � pPÞ � rpf � ~dPC� (10)

where the overbars denote the value obtained via interpolation
from the two centroids P and C, and Bf denotes a coefficient.
Details about the derivation of the pressure equation are given in
Ref. [31].

The coupling between momentum and pressure equations can
be treated in an iterative manner, similar to the SIMPLE algo-
rithm, by solving these equations sequentially until convergence
is reached in each time step. This iterative procedure is very time-
consuming. As an alternative, the noniterative, predictor-corrector
procedure of the PISO algorithm [34] is employed. After the mo-
mentum equations are solved, it is followed by two correction
steps to adjust pressure and velocities. In the first corrector, the
adjustment is similar to that of the SIMPLE algorithm. This proce-
dure relies on the second corrector to make the pressure field to
get rid of the mass residual left by the predictor step and to yield
better approximation to the momentum conservation.

Pressures are specified at the inlet and outlet of the channel and
flow flux through the channel must be sought. A method, based on
mass conservation, is employed to fulfill this task. Figure 3 illus-
trates a cell P next to an open boundary B. Boundary pressure pb

is prescribed at the centroid of this cell. An extrapolation practice
is undertaken to find the pressure on the boundary node. With this
boundary face pressure pB, the velocity at centroid P can be

obtained by solving momentum equation as described above. Af-
ter mass fluxes through all internal faces are calculated using the
momentum interpolation method given by Eq. (10), the mass flux
through boundary face _mB is then obtained via conservation of
mass,

_mB ¼ �
X
i 6¼B

_mi (11)

where _mi denotes the mass flux through internal face and the
summation is taken over all the internal faces.

3 Results and Discussion

The geometry under consideration has been given in Fig. 1. The
dimensionless length of the channel is 32 and the width 2. The
variables of the flow system can be grouped into four dimension-
less parameters: amplitude ratio e ¼ a=h, wave number a ¼ h=k,
Reynolds number Re ¼ qch=l, and dimensionless back pressure
Pb ¼ pb=qc2. It is noted that zero pressure is given at the inlet and
the back pressure specified at the outlet represents the pressure
difference across the entire channel.

Before examining the effects of the parameters, the accuracy of
the computational procedure needs to be verified. Three different
grids with 10� 80, 20� 160, and 40� 320 cells are used for grid
sensitivity test. For a case with amplitude ratio e¼ 0.3, wave num-
ber a¼ 0.0907, Reynolds number Re¼ 1, and back pressure
Pb¼ 0 the mean flow rates obtained for the three different grids
are 0.06587, 0.06609, and 0.06632. Obviously, the results are not
sensitive to the grids used in the calculations.

In calculations, the amplitude of the wave is increased gradu-
ally to its final value during the first period and the computation
proceeds for several periods to reach periodic steady state. The
mean flow rates at period numbers 2, 4, 6, and 8 are 0.6501,
0.8124, 0.8188, and 0.8191 for the case e¼ 1.0, a¼ 0.3125,
Re¼ 20, and Pb¼ 0. It can be seen that at least six periods of
computation are required to obtain steady-state solutions.

Validation of the calculation is made in Fig. 4 by comparing
the experiments of Yin and Fung [18] for the configuration
a¼ 0.0907, Pb¼ 0 and two different amplitude ratios e¼ 0.30 and

0.41. It is obvious that the dimensionless mean flow rate �Q(¼ Q/
ch, where Q represents the time-mean flow rate at each cross sec-
tion) is independent of the Reynolds number which lies within a
limited range of small values between 0.5 and 2. Also presented
are the results obtained from the perturbation theory of Fung and

Fig. 2 Illustration of a typical control volume

Fig. 3 A control volume adjacent to the open boundary

Fig. 4 Comparison with theoretical solutions and experiments
for two amplitudes
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Yih [17]. The curves marked by “modified theory” are obtained
by taking account of the side effects of the three-dimensional
channel in the theoretical results. The appearance of the side walls
leads to higher viscous losses, and thus, lower fluid flows. For the
larger amplitude case the numerical predictions perform better
than the theoretical one even when the side wall effects are
accounted for. The higher flow rates of the present calculations
than the measured ones can be attributed to the 3D effects not
included in simulations. For the smaller amplitude case the flow
rate is lower and the results obtained by different methods are
close.

Based on the above tests, confidence is acquired about the accu-
racy of the solution method. In the following, the effects of the
four dimensionless parameters on the peristaltic pumping are
examined individually. We will compare our calculations with the
analytical solution obtained from the lubrication model of Shapiro
et al. [1], which is briefly described in the Appendix. The resulting

relation between dimensionless mean flow rate and dimensionless
back pressure is given by

�Q ¼ 2� 4 4� e2ð Þ
8þ e2ð Þ �

Re

6

4� e2ð Þ5=2

8þ e2ð Þ
Pb

L
(12)

where L(¼ l/h) represents dimensionless length of the channel. It
can be found that maximum flow ( �Q¼ 2) is yielded when the
channel is completely occluded (e¼ 2) and no net flow is induced
( �Q¼ 0) when there is no driving pressure force (Pb¼ 0) and
peristalsis (e¼ 0).

3.1 Effects of Reynolds Number. Figure 5(a) presents the
variation of mean flow rate against Reynolds number for ampli-
tude ratio e¼ 0.3 and back pressure Pb¼ 0. The Reynolds number
is varied in the range up to 100. Two wave numbers are consid-
ered. For the low wave number case (a¼ 0.0907) the mean flow
rate remains nearly as a constant, being seen in Fig. 4. As the
wave number is enlarged to 0.3125, the flow rate is greatly
increased and becomes an increasing function of Reynolds num-
ber. The analytic solution obtained from Eq. (12) is also shown in
the figure. It is noted from the equation that the mean flow rate
depends on amplitude ratio only when the back pressure is zero.
The numerical solution for the low wave number case agrees well
with the theoretical solution except at high Reynolds numbers
close to 100. Based on the understanding that, as will be stressed
later, the lubrication theory is valid only when the wave number is
small, it is not surprising to find significant differences between
the numerical results for the large wave number case and the
theoretical one.

Given by Eq. (12), a linear relationship exists between flow rate
and Reynolds number. It becomes an increasing function for nega-
tive Pb and a decreasing function for positive Pb, as identified in
Fig. 5(b) (for a¼ 0.0907). The lubrication theory is appropriate
only for small Reynolds numbers. Thus, it is not surprising that
the discrepancy between numerical predictions and analytical sol-
utions increases with Reynolds number, which is especially true
for the condition of adverse pressure gradient. In general, the rela-
tion between mean flow rate and Reynolds number becomes non-
linear when the Reynolds number is greater than 20. Equation
(12) also shows that the flow rate becomes a function of amplitude
ratio only at zero Reynolds number. At this limit, �Q¼ 0.067 for
e¼ 0.3. Thus, all curves are directed toward this point in the figure
as Reynolds number approaches zero.

3.2 Effects of Amplitude Ratio. The effects of amplitude ra-
tio on mean flow rate for the case of zero back pressure and wave
number a¼ 0.0907 are illustrated in Fig. 6(a). Under the condition
of zero pressure gradients, Eq. (12) can be reduced to

ð �QÞPb¼0 ¼ 2� 4 4� e2ð Þ
8þ e2ð Þ (13)

It is seen from Fig. 6(a) that this equation is valid for the Reynolds
numbers up to 20. Figure 6(b) presents the results for back pres-
sures �0.5, 0, and 1.5. At low amplitudes, the flow in the channel
is mainly driven by the pressure gradient. As a consequence, the
differences between these different back pressure cases are signifi-
cant at low values of amplitude. However, the differences dwindle
as e increases because the amplitude effect gradually becomes
more important. When the channel is completely occluded (e¼ 2),
�Q¼ 2. This is the reason why all the curves tend to merge at high
amplitudes.

3.3 Effects of Wave Number. The lubrication theory of Sha-
piro et al. assumes that the peristaltic wavelength is very large,
and thus the wave number must be very small. This leads to the
results that the flow rate is independent of wave number, as seen

Fig. 5 Variation of mean flow rate against Reynolds number
with e 5 0.3 for (a) two wave numbers (Pb 5 0) and (b) different
back pressures (a 5 0.0907)
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from Eq. (12). Since the wave number is, in general, not so small,
this conclusion is not true, which can be verified in Figs. 7(a) and
7(b) for different Reynolds numbers and back pressures. The flow
rate increases with wave number because the frequency of the per-
istaltic motion is increased. It can be found from the figures that
the dependence of the mean flow rate on the wave number can be
approximated in a parabolic manner.

3.4 Effects of Back Pressure. As seen from Figs. 8(a) and
8(b) for different wave numbers and amplitude ratios, the increase
in back pressure results in a nearly linear decrease of mean flow
rate, which can be identified from Eq. (12). The back pressure at
which there is no mean flow can be deduced as

ðPbÞ �Q¼0 ¼
36Le2

Re 4� e2ð Þ5=2
(14)

The numerical values of back pressure required for zero mean
flow rate are 0.37 and 1.14 for e¼ 0.3 and 0.5, respectively,

compared to the theoretical values 0.34 and 1.06. This zero-flow
pressure is increased in Fig. 8(a) when the wave number becomes
larger. However, as addressed in the above, the theory cannot tell
the difference for different wave numbers.

3.5 Effects on Flow Structure. To illustrate the flow struc-
ture, streamlines at various times in a time period T for two differ-
ent peristaltic amplitudes with Pb¼ 1.5, a¼ 0.0907, and Re¼ 20
are presented in Figs. 9 and 10. The flow fields are shown in both
the laboratory and wave frames of reference. The transformation
of velocity field from laboratory frame to wave frame is obtained
by subtracting the wave speed c from the absolute velocity u. It is
apparent that the streamline pattern in the wave frame is shaped
by the walls of the channel. According to Shapiro et al. [1], flow
circulation may appear in the regions under the wave crests in the
wave frame when the peristaltic amplitude is large enough. How-
ever, this flow trapping phenomenon is not seen in Fig. 10 even
for the case of large amplitude ratio e¼ 1.0. The cause of this is
ascribed to the channel geometry. The lower wall is motionless

Fig. 6 Variation of mean flow rate against amplitude ratio with
a 5 0.0907 for (a) different Reynolds numbers (Pb 5 0) and (b)
different back pressures (Re 5 20)

Fig. 7 Variation of mean flow rate against wave number with
e 5 0.3 for (a) different Reynolds numbers (Pb 5 0) and (b) differ-
ent back pressures (Re 5 10)
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and only the upper wall is in motion in the present study, whereas
both the walls oscillate in a symmetric manner in Shapiro’s study.
Thus, it can be understood that there is not enough room, and thus
no adverse pressure gradients large enough for the recirculating
flow to develop in the crest region in this asymmetric channel.
The flow field in the laboratory frame is much more complicated.
As seen in Fig. 9(b) for the case e¼ 0.3, a thorough stream is
directed toward the inlet (the left boundary) in the region near the
lower wall due to the adverse pressure gradient imposed. Isolated
flow is formed in the region under each trough of the upper wall.
These bolus-like zones are transported forward toward the outlet
(the right boundary) by the peristalsis of the wall despite the back-
ward flow in the boluses and the underneath stream. The through
stream disappears when the amplitude of the wave is increased to
e¼ 1.0. As seen from Fig. 10(b), the flow in the entire channel is
separated into a number of isolated zones. In the regions under the
crests of the wavy wall, the flow is directed forward while in those
under the troughs, the flow is in the backward direction. All these
boluses move downward with the peristaltic wall. The resulting
mean flow rate is positive with �Q¼ 0.39.

The instantaneous pressure variation along the lower wall for
the two amplitudes is given in Fig. 11. The periodic shape of the
channel results in wavy variation of pressure with a maximum in
the crest region and a minimum in the trough region. Also shown
is the time-mean pressure, obtained by averaging over a time pe-
riod. Obviously, the mean pressure varies in a linear fashion
throughout the entire channel. The wavy variation of the instanta-
neous pressure is superimposed on the linear mean pressure pro-
file. As expected, the amplitude of the pressure variation increases
with the amplitude of the wavy wall due to the enlarged variation
of the channel height. Figure 12 presents the pressure distribution
for two wave numbers

Fig. 8 Variation of mean flow rate against back pressure with
Re 5 10 for (a) two wave numbers (e 5 0.3) and (b) two amplitude
ratios (a 5 0.0907)

Fig. 9 Streamlines at times t 5 0, T/4, T/2, and 3T/4 in a time pe-
riod for e 5 0.3 (a) in wave frame and (b) in laboratory frame
(a 5 0.0907, Re 5 20, and Pb 5 1.5)

Fig. 10 Streamlines at times t 5 0, T/4, T/2, and 3T/4 in a time
period for e 5 1 (a) in wave frame and (b) in laboratory frame
(a 5 0.0907, Re 5 20, and Pb 5 1.5)
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a¼ 0.0907 and 0.28125 with e¼ 0.3. Since the wavelength
decreases as the wave number increases, it causes smaller varia-
tion of pressure in each wavelength as seen in the figure. The vari-
ation of pressure is also affected by Reynolds number. In general,
the amplitude of the variation decreases as the Reynolds number
increases.

The flow peristalsis becomes even clearer by tracing particles
released in the channel. In Fig. 13, corresponding to the low am-
plitude case (e¼ 0.3) given in Fig. 9, three particles are initially
placed at locations x¼ 22.05 and y¼ 2.007, 1.0, and 0.23. These
particles move in the backward direction in a wavy form. The
closer the particle to the upper wall, the larger the oscillation am-
plitude. As revealed in Fig. 14, the flow is mainly in the negative
direction due to the adverse pressure gradient. The velocity in the
channel is higher in the core region than those near the walls.
Thus, the particle initially at y¼ 1.0 travels much farther than the

two near the walls. In the plot, each individual period of the peri-
staltic motion is marked by different line pattern. It is interesting
to note that the traveling distances in individual periods are differ-
ent. When the amplitude is greatly increased to e¼ 1, loops are
visible in the path lines as shown in Fig. 15 for the particles ini-
tially located at x¼ 11.025. It was seen from Fig. 10 that the
boluses under the crests and the troughs are of different flow
directions. The velocity profiles along the vertical axis at selected
times in a time period are illustrated in Fig. 16. In the early stages
of t¼ 0 and T/6, the flow is in the positive direction. The flow
direction is reversed at the following times t¼T/3 and T/2. At
t¼ 2T/3, positive velocity is recovered in the region near the
upper wall. It is followed by the flow becoming fully positive.
Due to this kind of flow pattern, it results in loops in the path
lines. In general, the particles move in the direction toward the
outlet despite the looping flow, resulting in positive mean flow
rate.

Fig. 11 Variation of pressure at the fixed wall for two amplitude
ratios (a 5 0.0907, Re 5 20, and Pb 5 1.5)

Fig. 12 Variation of pressure at the fixed wall for two wave
numbers (e 5 0.3, Re 5 20, and Pb 5 1.5)

Fig. 13 Path lines for three particles (e 5 0.3)

Fig. 14 Velocity profiles along a vertical line in a time period
(e 5 0.3)
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4 Conclusions

A numerical model based on the finite volume method has been
developed to investigate the flow characteristics of peristaltic
pumping in a channel. It incorporates moving-grid formulations
and unstructured-grid techniques to cope with the time-dependent
domain caused by peristalsis of the flexible wall. It was shown
that bolus-like zones are formed in the regions under the troughs
and crests of the sinusoidal wall. These boluses are transported by
the peristalsis of the wall. Due to the peristaltic flow, the path lines
of particles exhibit a wavy pattern. At large vibration amplitudes,
flow directions in the boluses are not the same in the crest regions
and trough regions, resulting in loops in the particle path. The
wavy geometry of the channel causes wavy variation of pressure,
which is superimposed on the linear mean pressure gradient
resulting from the prescribed pressure boundary conditions. Com-
parison of flow rate was made between numerical simulations and

lubrication model. In this model, it is assumed that both the wave
number and Reynolds number are extremely small. This leads to
independence of the mean flow rate on wave number and a linear
relationship between flow rate and Reynolds number. It was
revealed in our computational results that the flow rate increases
with the wave number in a parabolic form. The theory is appropri-
ate only when the wave number is less than 0.1 and the Reynolds
number is less than 20.
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Appendix

In the wave frame of reference, which moves at speed c relative
to the laboratory frame, the flow becomes steady. The transforma-
tion between the two frames is given by

x ¼ X � ct; u ¼ U � c (A1)

where u is the velocity in the x-direction in the moving frame.
With the assumptions of infinite wavelength and inertia-free flow,
the Navier-Stokes equations in the x-direction reduce to

dp

dx
¼ l

@2u

@y2
(A2)

The coordinate of the wavy wall in the wave frame is

y1ðxÞ ¼ 2hþ a cos
2px

k
(A3)

The problem is subject to the following boundary conditions:

uðy ¼ 0Þ ¼ �c; uðy ¼ y1Þ ¼ �c (A4)

The solution obtained is

u ¼ ðy
2 � y1yÞ

2l
dp

dx
� c (A5)

The flow rate in the wave frame can be obtained,

q ¼
ðy1

0

udy ¼ �y3
1

12l
dp

dx
� cy1 (A6)

It is noted that although each term on the right-hand side of the
expression depends on the coordinate x, the flow rate itself is con-
stant because of the steady state in the wave frame. The flow rate
in the laboratory frame becomes

Q ¼
ðy1

0

uþ cð Þdy ¼ qþ cy1 (A7)

The time-mean flow rate is obtained by integrating over a period
T

�Q ¼ 1

T

ðT

0

Qdt ¼ qþ 2ch (A8)

Equation (A6) can be rearranged to give pressure gradient in
terms of flow rate

dp

dx
¼ �12l

q

y3
1

þ c

y2
1

� �
(A9)

Fig. 15 Path lines for three particles (e 5 1)

Fig. 16 Velocity profiles along a vertical line in a time period
(e 5 1)
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Substituting y1 from Eq. (A3) and integrating this equation over a
wavelength lead to the pressure rise per wavelength,

Dpk ¼
�6lk 8h2 þ a2ð Þq

4h2 � a2ð Þ5=2
� 24lchk

4h2 � a2ð Þ3=2
(A10)

In the above integration, the following formulas are used:

ð2p

0

dh

aþ b cos hð Þ2
¼ 2pa

a2 � b2
� �3=2

(A11a)

ð2p

0

dh

aþ b cos hð Þ3
¼

p 2a2 þ b2
� �
a2 � b2
� �5=2

(A11b)

Substituting q from Eq. (A8) and introducing dimensionless varia-
bles, Eq. (A10) yields

�Q� ¼ 2� 4 4� e2ð Þ
8þ e2ð Þ �

Re

6

4� e2ð Þ5=2

8þ e2ð Þ
Dp�k
k�

(A12)

where �Q� ¼ �Q=ch, e ¼ a=h, Re ¼ qch=l, Dp�k ¼ Dpk=qc2, and
k� ¼ k=h.
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