116 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

A Scalable Multicast Source Routing
Architecture for Data Center Networks

Wen-Kang Jia, Member, IEEE

Abstract—This paper introduces a new scalable, efficient and
stateless source routing scheme to ensure that unified unicast and
multicast packets can be delivered in the Data Center Networks
(DCNs). This scheme, called Code-Oriented eXplicit multicast
(COXCcast), is based on unicast and eXplicit multicast (Xcast). It
constructs the unicast path and multicast tree by encoding the
corresponding output port bitmap of each intermediate node.
Using a common identifier and a node-specific key, so packets
can be self-routed to multiple receivers without requiring header
modification. In addition, intermediate switches/routers on the
path/tree can be stateless. Compared to traditional source-based
unicasting and explicit-based multicasting schemes, COXcast has
lowered the processing cost, protocol overhead and delivery
latency, while simplifying the deployment and management of a
large number of medium-scale multicast groups, especially when
applied to large-scale DCNs.

Index Terms—Code-Oriented eXplicit multicast (COXcast),
eXplicit multicast (Xcast), source routing, Chinese Remainder
Theorem (CRT), Data Center Networks (DCNs).

I. INTRODUCTION

HE DEMANDS for multicast services for network appli-
cations characterized by one-to-many or many-to-many
dissemination have been growing rapidly. These services in-
clude multiparty audio call, video conferencing, whiteboard,
push to talk, live streaming services, collaborative applica-
tions, e-learning, on-line gaming, distributed interaction, soft-
ware upgrading, distributed database replication, etc [1]. Mul-
ticasting can benefit group applications by reducing network
traffic, saving communication costs, improving application
throughput, as well as by supporting efficient group collab-
oration in cloud computing applications. These improvements
are most significant for cloud Data Center Networks (DCNs).
Traditional multicast [2]-[5] schemes are based on man-
aging one-to-many networks resources efficiently. While tra-
ditional multicast schemes are scalable for very large multi-
cast groups, they have scalability problems for large distinct
multicast groups. Since some multicast services are required
only for the close collaboration of small teams, eXplicit
multicast (Xcast) [6] was proposed as a new multicast category
with complementary scaling properties. It achieves this by
encoding the list of destinations explicitly in the packet header,
instead of using a multicast group address. Thus, based on
existing unicast routing information, the intermediate router
can be stateless for forwarding, instead of relying on multicast
routing information. Xcast can efficiently support a very large
number of distinct small multicast groups and thus can play

Manuscript received January 15, 2013; revised July 1, 2013.

W.-K. Jia is with the Department of Computer Science, National Chiao
Tung University, Taiwan (e-mail: wkchia@cs.nctu.edu.tw).

Digital Object Identifier 10.1109/JSAC.2014.140111.

an important role in making multicast applications applicable
for small groups. However, Xcast brings up a new scalability
issue: due to the oversized multicast packet header, both the
group size and payload size in Xcast are restricted. Both
categories of multicasting, therefore, are unscalable on either
number of groups or number of receivers, and solution to this
scalability problem of multicasts has been proved to be NP-
complete [7].

To solve the major problems of datacenter multicasting,
especially those of efficiency and scalability, we propose a new
approach based on the Xcast scheme, called Code-Oriented
eXplicit multicast (COXcast). As the name implies, COXcast is
similar to Xcast, in that all the destinations information in the
packet header are tagged. Through appropriate algorithm, the
on-tree forwarding information is encoded into an identifier in
the multicast packet header, which is resolved into an output
port bitmap by a node-specific key at each traversed router.
Thus proposed scheme is similar to a packet staffed with a
‘cox’, so that it can be self-routed toward all the receivers.
Our contribution is an older algorithm for efficient solving
the deployment issues of the datacenter multicast services.

The rest of this paper is organized as follows: we review
the related work and discuss related issues in Section II. In
Section III, we describe the proposed scheme in detail. In
Section IV, we evaluate the performance of proposed scheme,
compare its strengths and limitations to previous works, and
present simulation results. Finally, we conclude the paper in
Section V.

II. DATACENTER MULTICASTING AND ITS ISSUES

Multicast is originally a key component for effective scaling
within and between DCNs’ overlay applications. For instance,
the majority of the cooperative applications are discovering
and signaling each other, so there may be better ways to
support them then using layer-2 multicast. However, the
multicasting of data is occurring in large volumes, so there
is a need for good layer-3 multicast support.

Small group applications [8], [9] such as multiparty confer-
encing is currently highly desired DCN applications. Multicas-
ting is expected to help conserve bandwidth in the DCNs and
reduce the load on server farms. The communication model
for small-group applications differs from conventional unicast
and traditional multicasts. For example, in an N-participant
conferencing, each participant sends its statement or media
stream to the others using multicast directly. Here that each
participant acts as a source that has N-I receivers, and states
of maximum N multicast channels are created in each on-tree
router. If there are M conferences taking place simultaneously,

0733-8716/14/$31.00 © 2014 IEEE

JIA: A SCALABLE MULTICAST SOURCE ROUTING ARCHITECTURE FOR DATA CENTER NETWORKS 117

MxN multicast groups are there, such application thereby
may have a big scalability problem for the number of groups
because it uses traditional multicast protocols. On the other
hand, for highly available datacenter storage systems, every
disk volume is typically replicated on a multi-way mirror
system either locally or remotely, this N-way data replication
increases the redundant traffic load on the network links
by N times. In order to reduce the latency associated with
the maintenance of data replica consistency, multicast is a
natural solution to this systems [10]. Consider that a practical
replication level is less than or equal to 8 ways, thus Xcast is
also the best choose for such applications. Since small group
applications are usually limited in the demand of number of
participants. Compare to traditional multicast, the Xcast is
inherently more suitable solution for provisioning few-to-few
services to such applications with massive small-groups [11].

As mentioned before, the consequences of such increases
demand for application characteristics has changed how ap-
plications are currently hosted in datacenters. To respond to
one of the most important challenges for the DCNs, it’s
important to understand how multicast properly supports these
applications in the continually evolving DCNs. In order to
overcome the scalability problems in terms of multicast group
sizes, Xcast has experienced various enhancements such as
Xcast+ [12], GXcast [13], SGM [9], MSC [8], REUNITE
[14], and HBH [15]. The majority of these propositions tried
to reduce the overhead by using hybrid stateful and stateless
approach, but none of them have really solved the scalability
problems yet. Hence, we find the technical trends of modern
DCN design have brought up new challenges for multicasting:

First, in order to fairly and effectively use this band-
width requires ensuring traffic flows achieve the maximum
throughput, the topologies of DCNs usually lead to high
link density and redundancy. For example, recently DCN
topologies such as Fat-Tree [16], BCube [17], Portland [18]
and VL2 [19] typically provide many equal-cost paths between
arbitrary given pair of hosts with multipath routing. In this
scenario, multicast trees formed by traditional independent
receiver-driven multicast routing can result in severe link waste
compared to efficient ones. In other words, enabling multipath
support in DCNs is necessary for multicast traffics. Previous
investigation shows that source routing can achieve this goal
by establishing multiple path pairs through source control [16],
[17], but it is not easy to represent a multicast tree by a cost-
efficient encoding method [20], which poses a challenge.

Second, entry-level commercial switches are widely used
in most DCN designs for economic and scalability consid-
erations, through the memory space of their multicast for-
warding/routing table are relatively narrow, less than 1,500
entries [21]. Thus performance of the multicast forwarding
states lookup operation could be the bottleneck. Furthermore,
it is difficult to aggregate in-switch multicast routing entries
since the multicast address embeds no topological information.
Hence, it is quite challenging to support the many thousands
of multicast groups in DCNs.

Third, the fundamental feature of stateful multicast is that
the routers are responsible for every group’s initial establish-
ment by contacting involved routers. The convergence time
and signaling overhead of stateful multicast routing protocols

are inefficient for multicast tree construction. The problem
becomes much more severe for multicast groups with many
members and high member join-leave frequency. In order to
support the emerging and demanding requirements of cloud
applications, datacenter multicasting needs to perform beyond
the current requirements for QoS, reliability, availability, re-
silience, load-balance, etc. At the same time, facing the limit
of the commercial deployment for Internet-scale multicasting,
the closed and well-managed DCNs can also provide a chal-
lenging opportunity for pioneered multicast deployment.

Fourth, the stateless-approach multicast protocols such as
Xcast also have inscalability and inefficiency problems as in
non-DCNs. The effective payload of Xcast packet will be
reduced if the number of receivers grows, and this problem
cannot be solved by packet fragmentation [1]. Since packets
are bounded by MTU in size, Xcast faces a tradeoff between
group size and payload size. The another drawback of Xcast is
the forwarding cost: an Xcast router must send multiple copies
of Xcast packet with different header content; hence routing
lookup and header recombination processes may seriously
reduce the performance of on-tree routers, not only processing
time but also memory space are occupied, especially in
the branching routers. The problem becomes much severe
for the high link density of DCNs’ topologies. In addition,
the switch/router will spends too much time on the unicast
table lookup, separating and combining the list of destination
addresses, which will cause massive and uncertain delivery
latency and hurts some real-time applications.

Deploying successful multicast services relies on the effec-
tive underlying multicast enabled networks. In spite of the
benefits from multicast technologies and continuous improve-
ment of multicast routing protocols, numerous restrictions
still exist, especially in scalability and flexibility. Through
proposed scheme, these restrictions of multicast should be
lifted within the next several years.

III. CODE-ORIENTED EXPLICIT MULTICAST

We have propose a novel multicast routing architecture to
deal with various existing issues regarding in today’s DCNs.
In proposed scheme, the considered DCNs are characterized
entirely by COXcast-enabled switches, and the scheme can
be adopted to Software Defined Networking (SDN) framework
[22] in the future. Our goals are to improve the scalability
ans efficiency performance of the current multicast routing
protocols, and provide higher flexibility in the deployment of
new multicast services in a great quantity of medium-scale
groups with few thousands of participants.

A. Basic Concepts

There are three key elements for the COXcast: 1) source-
specific Multicast Channel-specific [Dentifier (MCID); 2)
node-specific KEYs, which are stored at each intermediate
switch/router; 3) node-specific Output Port Bitmaps (OPBs)
at each intermediate switch/router. Based on the proper-
ties of the CRT, a MCID divided by different KEYs
will remain as different OPBs as a remainder, that’s
to say MCID=OPB;(mod KEY;)=0PB; (mod KEYs)=

118 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

.. Unicast Path (host1,G1)

1
---> Multicast Tree (host1,G2) SW1 . SW 2 I 7,811 (mod 37 ‘i ol
------------------- k=37) “T-=4d)=0lo[1o[ofb) | — O !
148,665 (mod 31 ! P Rog
1 [l 1 . 1
+=20(d) =[1[0[1]0[o](b);” - N~
— \ A 21 T8
o o/8 | i
HIRE L ;
A R T e REEEE Y < AVARE T\ Y W AN] Y
—457 {148,665 (mod 19 (148,665 (mod 41) |
S i=9(d) =[1]0[0[1](b) NS 40(d) =[1]o]1]o]o]0](v) |
R i ' o
£5g L 32 0 . 53 o_J a
% £ = ,,_____:'_'_'_:'_'_::;\ \‘ I R R / - O'rg
B i5g | (18nmad1g N\ OE ©
552 | |=29=0Dl [SW 3 Se
£6=a ||| ©
8 g
=
ST 2@ ©@ & .
S 2 7,811 (mod 17) \
oA ay H
EIEEIN 1=8(d) Z0[1]o[0[0[b) ;
2% g2 H ¥ o
28 \ - !
ik 2 |
s |< o
_85 | o |
(G I
“EE 3

Fig. 1. COXcast operations in the FT(m=2,n=4,r=16) DCN.

..=0PB,, (mod KEY,,). We use this property to represent
the entire multicast delivery tree in a DCN.

At the source (sender), the KEYs and OPBs through the op-
timal (shortest) path and further multicast tree in the network
are collected by inter-operating with each on-tree intermediate
switch, using appropriate protocols. In order to support the
COXCcast, each source should maintain a data structures called
Multicast Control Table (MCT). A multicast group (channel)
in COXcast is identified by (S,G) according to [23], each
active multicast group (S,G) it contains a list of participating
receivers and their current states. The table also contains KEY's
and the associated OPBs of all on-tree switches (Forwarding
Set(FS)) for each (S,G). Using MCT, the source can construct
the MCID for each unicast path as well as multicast tree.
Figures 1 illustrates the MCT. Once the group membership
changes, the corresponding entry should be updated. Due to
lack of topology knowledge at the source in case of SDN-
based DCNs, the SDN controller could offer a query interface
to provide the information toward the source. Furthermore,
an arithmetic of MCID generation is performed based on the
CRT) routing [24]. The derived MCID is an in-packet message
placed in a special header extension (COXcast header) in
either IPv4 or IPv6 multicast packets, and that MCID must be
processed by every switch along the unicast path or multicast
delivery tree hop by hop.

At each intermediate switch, a result is calculated using
a simple modulo operation on the MCID with its own node-
specific keys, which result will be used to designate the correct
OPBs in each intermediate switch. Details of these operations
are described in the following subsections. Since the proposed
scheme does not require table lookup and header modification
for incoming packets, it is important that processing in the
intermediate switches should be stateless, fast and highly
scalable in the number of multicast receivers. Thus we can

expect that our scheme to provide better performance than
mostly existing schemes.

The basic operation of the COXcast is illustrated in Fig-
ure 1, in which a multicast packet traverses through a reference
DCN. The DCN is a fat-tree which has been widely adopted as
the topology for DCNs, and it can be modeled as a notation
FT(m,n,r) to denote such a fat-tree: the topology of a two-
level fat-tree, where each edge in the fat-tree network consists
of bidirectional links between two neighboring nodes, given
the number of edge switches (lower-level) n and the number
of nodes associated with each edge switch r, which consists
of an r-port downlink and m-port uplink configuration. The
connection capacity of a fat-tree network F7(m,n,r) depends
on the number of core switches (upper-level) m, which consist
of n-port downlink configurations. Thus we have nxr hosts
and nx(2m+r) switch ports in the network.

There are four major steps for COXcast operation: 1) topo-
logic discovery at source and key assignment at intermediate
switches; 2) membership management such as joining and
leaving between receiver(s) and source; 3) MCID calculation
at source, and 4) packet delivery from source to receiver(s)
through intermediate switches. The COXcast supports two
types of packets: control and data packets, the latter may
contain a MCID field, and the former contains several type
of messages such as JOIN and LEAVE.

On the other hand, to ensure that each switch obtains a
unique key, and that all the keys in the network are pairwise
relative primes, and each of the keys must be larger than the
port bitmap size (2™ ©f Ports) of the switch. Either static
or dynamic manners should be deployed, so when the DCN
is configured, each DCN switch can be pre-assigned a unique
key value that satisfies the requirements previously described.
However, this is costly and error prone, so using dynamic
assignment may be a better choice. In this approach, we can

JIA: A SCALABLE MULTICAST SOURCE ROUTING ARCHITECTURE FOR DATA CENTER NETWORKS 119

deploy a centralized key management infrastructure similar to
DHCP. Here, a COXcast key management server is adopted
in the system design, collects key request, generates keys, and
assigns keys automatically to the requesting switches.

B. MCID Generation Arithmetic at Source

In order to construct a MCID of (S,G), the information of
multiple unicast paths that needs to be collected by source first,
the underlying topology discovery protocol performs the path
information gathering procedure that involves all forwarded
nodes along the end-to-end path

P (S — ds) = { (km,la 5 (kw,l)) R (k$72,€ (kLz)) g
s (Ko ey € (Raew)) }
= P(S—ds)

kyi € ky CP,)
€ (ki) < kg sande (kg ;) € &5
,whered, € G,z =1,2,...,m
,andi=1,2,...,¢(x)

= (kz,ivf (kz,Z))

of receiver d, with path length ¢(x), where k, denotes the
node specific key of switch x, which is positive integer and
pair-wise co-prime with each other k;.,, and ¢(k;) denotes
its corresponding Output Port Index (OPI) and maximum
g(ky)=2"* < ky,where v, denotes number of ports of switch
. With multiple unicast paths, a multicast tree consists of
all the forwarded nodes can be represented by recursively
merging these two arrays k, and pg:

T(S = G) =
ke szl Er,
(k, p(k)| [p(k) = e(ka.) ETT 10 N RS
p(k) = Ny e(keyi) ,otherwise

(@)

where G = {dy,ds,...,d,} denotes the destination set, z =
1,2,...,mandi=1,2,... U~ k|

We can rewrite the Eq.(2) in simplify form
k={ki,k2,...,k,} and P={p1,p2,...,pn} respectively,
where n=‘U;11k_l| denotes the tree size. These two arrays
are denoted by the keys and the desired OPBs (merged from
multiple OPIs) also known as FS of (S,G)={k,p} of the
designated unicast path and multicast tree.

The MCID can be implemented straightforwardly using the
CRT with %k and p. First, a new scalar K is defined as a
continued product of all n elements in the array k:

K =[] k. 3
i=1
Using K and k, we create a new array
K K K

m:{m17m27"'7mn}:{k_lak_zv"'vk_}' (4)

Another array ¢ = {c1,¢a,...,¢,} is created based on the

arrays T and k

c; = m; X (m;l(mod kz)) Vi < n. 5)

1

The term m; denotes the multiplicative inverse of

m; mod k; defined by m;lmi(mod k;) = 1. This requires
that m; and n; should have no common divisors larger than
1, i.e. ged(my, ki) = 1. Because m; is the product of all n-
elements minus k, all the n-elements should be relative primes
to satisfy the requirement. The scalar MCID(S,G) can be easily
calculated using array p and ¢
MCID(S, G) = <Z(pi X cl-)> (mod K). (6)
i=1
For a MCID(S,G), let n be among of FS in a multicast
delivery tree or unicast path. The time complexity to construct
a MCID is written as O (n x logK). The average bit length
of MCID(S,G) (say space complexity) can be derived as

(K —2m)+ 205 (29)
K Y
where v = |log, K|, which known as the asymptotic law of

distribution of prime numbers. Thus the average bit length of
K can be expressed as

IMCID(S, G)| =

(N

p+1

IMCID(S,@)| < [K|~ Y [(x(2") = x(2" ")) x],

1=p+1
®)
where m(2%) < (n+7(2”)), and 7(z) = = denotes the
prime-counting function that gives the number of primes less

than or equal to x, for any real number z.

C. Packet Delivery at Intermediate Switches

Let’s take a look in detail how the COXcast packet flows
through an intermediate switch. Each incoming multicast
packet is in-need duplicated and forwarded to next-hop neigh-
bor switches indicated by the remainder at each intermediate
switch ¢, which is constructed by using a simple modulo
operation: Let MCID(S,G) be the dividend and node-specific
key k; be the divisor. Through a long integer divider, the
desired p; for each intermediate switch ¢ is obtained by the
remainder p;. The forwarding logic is given by

p; = MCID(S, G)(mod k;). 9

Hence, it can be observed that by having MCID(S,G) and
the array k, each element of the array p can be restored in a
unicast path P(S — d) or multicast tree T(S — G). That is
to say, the COXcast packets with different MCID(S, G) contain
different channels’ self-routing information traverse a specific
intermediate switch, and so different OPBs will be obtained
from extracting different MCID values with the same key.
Therefore one unique key with a different MCID is sufficient
to distinguish one OPB from another with no conflict, and
theoretically there can be limitless multicast channels. In
addition, the order of pair {k;, p; }is irrelevant.

D. Example of COXcast operation

In the following we provide two examples of unicast and
multicast operations using COXcast. In the case of unicast
forwarding in Figure 1, when a source node hostl wants to
establish a connection toward a destination node host48, we
have the unicast path sequence {SW3,SW2, SW5}. Based

120 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

on the proposed arithmetic, three KEYs {19,37,17} are
created and associated with OPIs {1,2,3}, which is trans-
ferred to OPBs {2(00010b),4(00100b),8(01000b)}. Finally,
we obtain the MCID(host1,G1)=7,811 by calculating CRT
arithmetic. Note that the order of key and OPB entries is
irrelevant. Now host1 sends the unicast packet flow (The blue
dotted line) with COXcast header to SW3. SW 3 receives the
packet, obtains the OPB=2 by performing the 7,811(mod 19)
operation (detailed as in Eq.9), and forwards the packet to
SW2 via port 1. SW2 receives the packet, obtains the OPB=4
by performing the 7, 811(mod 37) operation, and forwards the
packet to SW5 via port 2. SW5 receives the packet, obtains
the OPB=8 by performing the 7,811(mod 17) operation, and
forwards the packet to final destination host48 via port 3.

In the case of multicast forwarding, when source hostl
has received the JOIN requests from host16, host32, host49,
and host64, a source-route multicast tree is established
by its associated source and group ID (hostl,G2), and a
multicast forwarding set {SW1,SW3, SW4,SW6} can be
found. Then several KEYs {31,19,23,41} are created and
associated with OPIs set {{2,4},{0,3},{4},{3,5}}, which
are transferred to OPBs 20, 9, 16, 40. Finally we obtain
a MCID(hostl,G2)=148,665 by calculating CRT arithmetic.
Then hostl sends the multicast packet(s) (The red dotted
line) with COXcast header to SW3. SW 3 obtains the OPB=9
by 148,665(mod 19), and forwards the packet to STW1 via
port 0 and to hostl6 via port 3 respectively. SW1 receives
the packet, obtains the OPB=20 by 148, 665(mod 31), and
forwards the packet to SW4 and SW6 via ports 2 and 4
respectively. SW4 obtains the OPB=16 by 148, 665(mod 23),
and forwards the packet to destination host32 via port 4.
SW6 obtains the OPB=40 by 148, 665(mod 41), and forwards
the packet to destination host49 and host64 via ports 3 and
5 respectively. Thus this packet has arrived at all desired
receivers.

IV. PERFORMANCE EVALUATION

In this section, we analyze the characteristics and evaluate
the performance of COXcast with existing schemes. Compared
with previous multicasting schemes, our scheme is a newer
paradigm with distinguished characteristics. Table I summa-
rizes the main differences among them. In order to compare
the performance of proposed scheme and the selected com-
petitors, we conduct simulations that validate the scalability
and efficiency using C, and the quantitative metrics are used
to measure the simulation models as following subsections.

Since the FT and BCube are the most popular DCN
topologies [16], [18], we consider both the reference net-
works needs of our simulations model: 1) F7(m,n,r), and
2) BCube(n,k). The investigation results from large backbone
networks operated by different DCN service providers indicate
that FT(8,16,96) are sufficient. Therefore our study focuses
on network size of less than 128 switches in the reference
network. A BCube(n,k) network is constructed from n* (k+1)
n-port switches, n* of them are edge switches. Thus we have
n**+1 hosts and n**1(k + 1) switch ports, and each host has
k 4+ 1 Network Interface Cards (NICs) in the BCube network.

In order to indicate the scalability issues of the proposed
scheme, a large number of network sizes have been con-

structed through simulation, including 23 types of FT and 16
types of BCube networks. COXcast in BCube networks have
become more complicated because of the COXcast must be
enabled in each host. Before the simulation starts, each router
must be randomly assigned a unique key via centralize control
in the reference network. The one million prime numbers in 24
bits can represent all keys consumed for all COXcast switches,
so no more than 64 bits are needed for future extension. Note
that the selection of prime numbers depends on the number
of interfaces. When a source and its associated receiver(s) are
randomly selected from the reference network, the shortest
paths connecting each receiver to its source are found, and
then we create a multicast tree by merging these unicast paths.
The tree’s expected value increases as the network size grows
and the number of participating receivers’ increases. These
network models hence reflect a more realistic situation.

A. Protocol Overhead and Scalability

We have experimented with several scenarios and then
compared the results with other stateless multicast protocols,
such as Xcast4, Xcast6, Xcast4+ and Xcast6+. For the first
scenario, a central key management assigns a minimum key to
each involved switch in the unicast path or multicast delivery
tree, and this key is incremented progressively in the reference
network. Similar to Xcast’s header, we expect this longer
MCID of COXcast can cause a larger overhead, which will
reduce the effective payload. The required in-packet overhead
can sometimes reflect the scalability. We have observed the
scalability from two perspectives: 1) unicast path lengths, and
2) multicast group sizes.

In unicast scenario, the length of a unicast path between
two hosts is the hop-count between them when connection is
established. We compare COXcast to Strict Source and Record
Route (SSRR) over IPv4 [25] and IPv6 [26]. We consider that
for the various sizes of BCube and FT networks respectively.
We pick the arbitrary 10,000 pair of unicast paths with the
minimum hop-counts and then we calculate COXcast header
and SSRR header sizes to each of these two paths. COXcast
incurred a total overhead of 2 bytes in FT networks, and 3
bytes in BCube networks. The SSRR4 incurred 4~6 bytes of
overhead and SSRR6 incurred as much as 16~23 bytes of
overhead. COXcast maintained a tight bound on worst case
packet overhead while doing on average much better than
either SSRR4 or SSRR6 as can be seen in Figure 2(a) and
(b). For a 1,500-byte packet the maximum possible COXcast
overhead ratio is 0.199%, but in fact in these simulations no
packet incurred more than three bytes of overhead. Drasti-
cally reducing the protocol overheads of source routing on
the transmit path in this way can significantly increase the
performance seen by the servers of DCNs. That is because in
such network architecture and scalability, the selected keys are
usually kept in a low sized range. Besides, a routing path is
the minimum hop-count between the two hosts, and the source
routing information is compressed into incredibly small size
by proposed arithmetic.

The second simulation scenario is focused on the multicast
group sizes, and we compare COXcast to Xcast4, Xcasto,
Xcastd+ and Xcasto6+ for the network sizes of FT(2,4,24),

JIA: A SCALABLE MULTICAST SOURCE ROUTING ARCHITECTURE FOR DATA CENTER NETWORKS 121

TABLE I
COMPARISON AMONG VARIOUS MULTICAST PROTOCOLS

Protocol COXcast Traditional Multicast Xcast Xcast+

Routing state in the switch No O(SG) No No

Control state in the switch No O(IG) No No (core) / O(DSG) (edge)
Routing state in the source No No No No

Control state in the source O(DGR) o(G) O(DG) O(EG)

Addressing Unicast+Xcast Multicast Unicast+Xcast Unicast+Xcast+Multicast
Scalability (# of groups) Huge (c0) Poor™ (< 1.5k) Huge (c0) Medium (< 1k per edge)
Scalability (group size) Medium™ (< 8k) Huge (c0) Poor (375-92)" Medium (4k—2k)“"#
Processing time O(M) O(G)-0(SaG)™ O(D) O(E)

Packet overhead Huge (O(M)) Low (O(1)) Very High (O(D)) High (O(E))

Cost (joining) O(Dlog M) O(RD) O(k) O(ED)

Cost (leaving) O(Dlog M) O(Rlog D) O(log D) O(Elog D)

Packet type Proactive Reactive Proactive Proactive+Reactive
Security High Medium ™ Low ™3 Low ™3

Convergence time Low High Low Medium™/

Optimal delivery Yes Uncertain™ Yes Yes™

Asymmetric Problem No Yes No No™

Multipath support Yes No Yes No™

Header modification No No Yes Yes

G: # of (active) groups; S: # of sources; D: # of receivers; I: # of interfaces, R: # of on-tree switches, E: # of edge switches, M: length of MCID.
*]. Depend on DCN architecture. *2. Depend on memory usage on switch. *3. Depend on protocol. *4. Depend on IP version.

N
=

B W COXcast__(1SSRR4__[1SSRR6 16 M[E Coxcast
= __14|CISSRR4
820 2 | mSSRRE
5 £
a 4 a12
-] ;
g° g4
£4 £

0 0

N AN DD N O AN D AN D D DD AR DD OO D D D P N D D DD D S D D
Q‘&'@Q‘“}D‘Q&m\% 9\“‘&“\\“‘3”9& }’%\“QZQ'\’Q;O’}:*}@@@@@Qﬁ@'@%@} 0&’2@@6@9:\, 'x%%@}%@:i@?g’%@* x&})@\@&\@v&}\o&?@@?@% ATy (,mv”&@”w o
v ¥ v v 2 0 v v 3 v v v 3 3 v W v
AT T QY QP QTR0 QPR QT QT QT QT QBT QIO QT TSP S
Network Types Network Types
(a) (b)

Fig. 2. Required unicast overheads vs. (a) FT and (b) BCube network sizes.

FT(4,8,48) and FT(6,16,96), respectively. Similar to previous
results, many receivers can lead to longer MCIDs in COXcast.
A longer MCID causes a larger overhead, so reduced effec-
tiveness of the payload is expected. The difference is that the
overhead of Xcast is only affected by the group size, whereas
the overhead of COXcast is affected not only by the networks
size, but also by the group size. Thus the Xcast’s overhead is
constant with increasing numbers of destinations in any size of
DCN. The simulation results are depicted in Figures 3(a) and
(b) which display results for Xcast and Xcast+ respectively.
We find that the overhead of COXcast increases faster than
Xcast as the group size increases; but with the group size
continuously increasing (density), the increasing overhead
slows down until the overhead is more than that of Xcast.
Then overhead remains stable after the multicast tree spans
all switches in the reference network. As regards F7(6,16,96),
a group consisting of a 96 hosts is more efficient than that
in Xcast. Another interesting observation from Figure 3(b) is
that the overhead of COXcast is higher than Xcast4+’s for
the network size FT(4,8,48). Without considering this factor,
COXCcast was superior for most remaining network sizes.
Although a practical DCN currently rarely exceeds 500
switches, we cannot rule out this possibility that to face higher
scalability requirements in the near future. Compared to Xcast
and Xcast+, the simulation results indicate that COXcast offers
remarkable performance in scalability while simplifying the
deployment and management of multicast service for medium-
scale or even large-scale groups (depending on required pay-
load size for specific applications) in large-scale DCNs. In a

FT(8,16,96) network, the maximum number of receivers can
reach 1,535, whereas the COXcast header size merely reaches
211 bytes with an effective payload of 1,300+ on standard
MTU. Assuming that the network scale has sustainable growth
of DCNs, COXcast still can accommodate more receivers in a
group with acceptable header overhead, and almost unlimited
number of groups.

The simulation results are also summarized in Table II
which shows the maximum overheads in COXcast and its
competitors for various network sizes from FT(2,4,16) to
BCube(48,1) respectively. We have assumed that each situation
has the maximum receivers applied (e.g., broadcast), and
that COXcast has equal overhead for both IPv4 and IPv6.
As shown by the results, the COXcast reduce the overhead
in the best case by 99.77%, 99.92%, 84.38% and 96.09%
compared to Xcast4, Xcast6, Xcast4+, and Xcast6+ respec-
tively. In the worst case, the COXcast reduce the overhead
by 70.1%, 92.52%, and 53.19% compared to Xcast4, Xcasto,
and Xcast6+, respectively; while it increases the overhead by
87.24% in the worst case (BCube(12,3)) of Xcast4+. Based on
the MTU=1.5K bytes, the Xcast cannot operate efficiently in
all network sizes unless their receivers are sparse, the COXcast
can still accommodate a sufficient payload size for all network
sizes and any group size. The quantity is much larger than
the theoretical maximum number of receivers, 374 and 92, in
Xcast4 and Xcast6 respectively, even with an empty payload.
At its least efficient situation, COXcast will carry for more
payloads than either Xcast or Xcast+ are capable of.

122

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 1, JANUARY 2014

211

Xcast4

-Xcastd+ FT(2,4,24)
+Xcast4+ FT(6,16,96]
- -~ Xcast6+ FT(4,8,48)
29 # COXcast FT(2,4,24)

210

<& Xcasté

—Xcastd+ FT(4,8,48) ok
) - Xcast6+ FT(2,4,24)

——Xcast6+ FT(6,16,96)

A COXcast FT(4,8,48)

Mwmw

*_COXcast FT(6,12,32) O COXcast FT(6,16,96)

N
=3

N
N
S

N

Overhead (Bytes)
N

:E\

%
e

10 20 30 40 50 60 70 80 90
Group Size (# of Receivers)

()

100

211

0

&m/@;ﬁiﬁ&}Q

533333888
210 . @%@Wﬁ/’y 5K

29

N
%

N
<

N
ol

Overhead (Bytes)
N

N
kS

<& Xcast4
----- Xcast4+ Bcube(48,1)
22 A COXcast BCube(4,1)
R ® COXcast BCube(16,1)
O COXcast BCube(48,1)

10 20 30 40 50 60 70 80 90
Group Size (# of Receivers)

(b)

Xcast6
Xcast6+ Bcube(4,1)
COXcast BCube(8,1)

A Xcast4+ Bcube(4,1)
——Xcast6+ Bcube(48,1)

X COXcast BCube(12,1)
COXcast BCube(24,1) & COXcast BCube(32,1)

[e

100

Fig. 3. Required multicast overheads vs. group sizes in (a) F7 and (b) BCube
networks.

B. Multicast Packet Forwarding Latency

In this subsection, we compare packet forwarding perfor-
mance of the COXcast with existing schemes. The simulation
scenario is as follows: We randomly select several hosts in
a FT(6,16,96) network. Each host serves over 2'° multicast
groups in the meantime, and each group size=1~ 2!3 increas-
ingly. In addition, we assume that each random memory access
in each switch requires 50ns, and the computing power of each
switch to be fixed at 1 MIPS 32-bit microprocessor. The link
capacity is 1Gbps at both edge level and server farm, and
10Gbps at core level, and each link has sufficient bandwidth
and non-blocking switch capacity to accommodate the traffic
need in the reference network. For the following simulations,
we have considered the payload of each multicast packet is a
constant 20 bytes in length.

Figure 4 presents the average ene-to-end packet forwarding
latencies versus group sizes (number of receivers) in the
reference DCN. We compare COXcast with various existing
works, as described above, where the number of groups is
fixed at 2'3. The curves show that S/W-implemented COXcast
is much efficient than all existing schemes in the packet
processing latency with no more than 2° receivers, and H/W-
implemented COXcast has an advantage over any existing
schemes. Now we can see that the Xcast protocols are affected
by the group size, and so the massive processing cost leads to

TABLE II

MAXIMUM OVERHEADS VS. NETWORK SIZES

Network Types | COXcast | Xcast4 Xcasto Xcastd+| Xcasto+
FT(2,4,16) 10 12 1,008 16 64
FT(2,4,24) 14 380 1,520 16 64
FT(2,4,32) 18 508 2,032 16 64
FT(4,8,16) 22 508 2,032 32 128
FT(4,8,24) 30 764 3,056 32 128
FT(4,8,32) 38 1,020 4,080 32 128
FT(4,8,48) 54 1,532 6,128 32 128
FT(4,8,96) 102 3,068 12,272 32 128
FT(6,12,16) 36 764 3,056 48 192
FT(6,12,24) 48 1,148 4,592 48 192
FT(6,12,32) 60 1,532 6,128 48 192
FT(6,12,48) 84 2,300 9,200 48 192
FT(6,12,96) 156 4,604 18,416 48 192
FT(6,16,16) 47 1,020 4,080 64 256
FT(6,16,24) 63 1,532 6,128 64 256
FT(6,16,32) 79 2,044 8,176 64 256
FT(6,16,48) 111 3,068 12,272 64 256
FT(6,16,96) 207 6,140 24,560 64 256
FT(8,16,16) 51 1,020 4,080 64 256
FT(8,16,24) 67 1,532 6,128 64 256
FT(8,16,32) 83 2,044 8,176 64 256
FT(8,16,48) 115 3,068 12,272 64 256
FT(8,16,96) 211 6,140 24,560 64 256
BCube(4,1) 11 60 240 16 64
BCube(4,2) 126 252 1,008 64 256
BCube(4,3) 2176 1,020 4,080 16 64
BCube(8,1) 42 252 1,008 32 128
BCube(8,2) 1,752 2,044 8,176 256 1,024
BCube(8,3) 132,864 16,380 | 65,520 2,048 8,192
BCube(12,1) 93 572 2,288 48 192
BCube(12,2) 8478 6,908 27,632 576 2,304
BCube(12,3) 1,501,632 | 82,940 | 331,760 6,912 27,648
BCube(16,1) 164 1,020 4,080 64 256
BCube(16,2) 26,208 16,380 | 65,520 1,024 4,096
BCube(24,1) 366 2,300 9,200 96 384
BCube(24,2) 129,816 55,292 | 221,168 2,304 9,216
BCube(32,1) 648 4,092 16,368 128 512
BCube(32,2) 405,888 131,068 | 524,272 4,096 16,384
BCube(48,1) 1,452 9,212 36,848 192 768

[V
o
[s]

450 --\--COXcast (S/W-Implementation)
—A-COXcast (H/W-Implementation)
400 —~>-Xcast4
~&-Xcast6
w350 -©-Xcastd+
-@-Xcast6+

Packet Delivery Latency (us)
= = N N w
o w o v o
o o o o o

[
=]

o

N T T T T T T
(Unicast) Group Size (# of Receivers)

210 11 12 13

Fig. 4. Packet forwarding latencies vs. group sizes in F7(6,16,96) networks.

poorer performance than others when the group size is large.
On the contrary, the curve for the core switches of Xcast+
are almost unaffected by increasing the group size, and it
is obvious that the latency of edge switches of Xcast+ are
increased with the group size. This is because the Xcast+
edge switches are responsible for the layer-2 table lookup of
end receivers. Our scheme consistently obtains shorter average
packet processing latency than other stateless approaches. The
results fully demonstrate that our scheme is effectively reduces
the forwarding latency in the DCNs.

JIA: A SCALABLE MULTICAST SOURCE ROUTING ARCHITECTURE FOR DATA CENTER NETWORKS 123

V. CONCLUSION

In this paper, we present a novel self-routing unified unicast
and multicast routing architecture in DCNs, called COXcast,
to overcome the scalability problems in terms of stateless-
based multicast. The proposed scheme entirely eliminates mul-
ticast forwarding states in the intermediate switches/routers
by explicitly encoding the ciphered list of the forwarding set
in the packets instead of using a multicast group address.
We present the advantages and disadvantages, as well as the
comparison with various existing work by main characteristics.
The simulation results indicate that our proposed scheme
offers remarkable performance in reducing the overhead and
delivery latency, and improving the scalability of explicit
multicast compared with the Xcast family scheme in various
mainstream DCN topologies. Thus COXcast will effectively
support the growing demands of real-time, large-scale, few-
to-few multicast applications, and guarantees such emerging
applications against all ineffective information which delay
in arrival, hence the bandwidth are saved. The COXcast
simplifies deploying and managing inter-domain and intra-
domain multicast and enables a novel category of multicast
routing scheme for large-scale DCNs. In addition, dual appli-
cations working with both IPv4 and IPv6 are recommended in
future DCNs. But the development of IP version-independent
technology and applications is required. COXcast avoids IP
dependencies issue as a better solution that provides an IP
version-independent architecture to applications and that hides
all dependencies. Of particular note, COXcast is a natural
multipath-enabled technique of using multiple alternative for-
warding paths through a DCN, which can yield a variety of
benefits such as fault tolerance, load balancing, bandwidth
aggregation, multipath and improved security.

REFERENCES

[1] A. Benslimane, Multimedia Multicast on the Internet. London, UK:
ISTE, Wiley, 2010.

[2] J. Moy, “Multicast Extensions to OSPF,” RFC 1584, Internet Engineer-
ing Task Force, Mar. 1994.

[3] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei,
“An architecture for wide-area multicast routing,” SIGCOMM Comput.
Commun. Rev., vol. 24, no. 4, pp. 126-135, Oct. 1994.

[4] T. Ballardie, P. Francis, and J. Crowcroft, “Core based trees (cbt),”
SIGCOMM Comput. Commun. Rev., vol. 23, no. 4, pp. 85-95, Oct.
1993.

[5] D. Waitzman, C. Partridge, and S. Deering, ‘“Distance Vector Multicast
Routing Protocol,” RFC 1075, Internet Engineering Task Force, Nov.
1988.

[6] R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms, “Explicit Mul-
ticast (Xcast) Concepts and Options,” RFC 5058, Internet Engineering
Task Force, Nov. 2007.

[7] L. H. Sahasrabuddhe and B. Mukherjee, “Multicast routing algorithms
and protocols: a tutorial,” Netwrk. Mag. of Global Internetwkg., vol. 14,
no. 1, pp. 90-102, Jan. 2000.

[8] T. Braun and L. Liu, “Multicast for small conferences,” in Proc. 6th
IEEE Symposium on Computers and Communications (ISCC 2001),
Hammamet, Tunesia, Jul. 2001, pp. 145-150.

[9]1 R. H. Boivie, N. K. Feldman, and C. Metz, “Small group multicast: A
new solution for multicasting on the internet,” IEEE Internet Computing,
vol. 4, no. 3, pp. 75-79, May/Jul. 2000.

[10] A. Bianco, P. Giaccone, E. M. Giraudo, F. Neri, and E. Schiattarella,
“Multicast support for a storage area network switch,” in GLOBECOM,
Nov. 2006, pp. 1-6.

C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. V. Vasilakos, “Survey on
routing in data centers: insights and future directions,” IEEE Network,
vol. 25, no. 4, pp. 6-10, Jun./Aug. 2011.

K.-S. P. Myung-Ki Shin, Yong-Jin Kim and S.-H. Kim, “Explicit
multicast extension (xcast+) for efficient multicast packet delivery,”
ETRI Journal, vol. 23, no. 4, pp. 202-204, Dec. 2001.

A. Boudani, A. Guitton, and B. Cousin, “Gxcast: Generalized explicit
multicast routing protocol,” in Proc. 9th IEEE Symposium on Computers
and Communications (ISCC 2004), Jun. 2004, pp. 1012-1017.

I. Stoica, T. S. E. Ng, and H. Zhang, “Reunite: A recursive unicast
approach to multicast,” in Proc. 19th IEEE INFOCOM, Apr. 2000, pp.
1644-1653.

L. H. M. K. Costa, S. Fdida, and O. Duarte, “Hop by hop multicast
routing protocol,” SIGCOMM Comput. Commun. Rev., vol. 31, no. 4,
pp. 249-259, Aug. 2001.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63-74, Aug. 2008.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 4, pp. 63-74, Aug. 2009.

R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 4, pp. 39-50, Aug. 2009.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VI2: a scalable and flexible
data center network,” Commun. ACM, vol. 54, no. 3, pp. 95-104, Mar.
2011.

V. Arya, T. Turletti, and S. Kalyanaraman, “Encodings of multicast
trees,” Lecture Notes in Computer Science, vol. 3462, pp. 992-1004,
May 2005.

D. Newman, “10 gig access switches: Not just packet-pushers anymore,”
Netw. World, vol. 25, no. 12, pp. 34-39, Mar. 2008.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69-74, Mar. 2008.

H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” RFC 4607,
Internet Engineering Task Force, Aug. 2006.

H. Wessing, H. Christiansen, T. Fjelde, and L. Dittmann, “Novel scheme
for packet forwarding without header modifications in optical networks,”
J. Lightwave Technol., vol. 20, no. 8, pp. 1277-1283, Aug. 2002.

J. Postel, “Internet Protocol,” RFC 791, Internet Engineering Task Force,
Sep. 1981.

J. Abley, P. Savola, and G. Neville-Neil, “Deprecation of Type 0 Routing
Headers in IPv6,” RFC 5095, Internet Engineering Task Force, Dec.
2007.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Wen-Kang Jia (S’09-M’11) received his Ph.D.
degree from the Department of Computer Science,
National Chiao Tung University (NCTU), Hsinchu,
Taiwan, in 2011. Before returned to school, he
had been a senior engineer and manager since
1991 in various networking areas including ICT
Manufacturer, Network Integrator, and Telecomm
Service Provider. His recent research interests are
the OSI layer-2~5 such as TCP/IP protocols design,
mobile management, error resilience coding, multi-
media communications, NAT traversal, routing and
switching, multicasting and broadcasting, teletraffic engineering, IP-optical
convergence networks, P2P overlay networks, and wireless networks. He has
published over 15 journal articles, over 30 international conference papers, 3
book chapters, and 3 patents. His work has been cited more than 300 times.

.
-— -~

——
.=

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

