
686 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011

CA-Tree: A Hierarchical Structure for Efficient and
Scalable Coassociation-Based Cluster Ensembles

Tsaipei Wang, Member, IEEE

Abstract—Cluster ensembles have attracted a lot of research
interests in recent years, and their applications continue to expand.
Among the various algorithms for cluster ensembles, those based
on coassociation matrices are probably the ones studied and used
the most because coassociation matrices are easy to understand
and implement. However, the main limitation of coassociation
matrices as the data structure for combining multiple clusterings is
the complexity that is at least quadratic to the number of patterns
N . In this paper, we propose CA-tree, which is a dendogram-like
hierarchical data structure, to facilitate efficient and scalable
cluster ensembles for coassociation-matrix-based algorithms. All
the properties of the CA-tree are derived from base cluster labels
and do not require the access to the original data features. We then
apply a threshold to the CA-tree to obtain a set of nodes, which are
then used in place of the original patterns for ensemble-clustering
algorithms. The experiments demonstrate that the complexity for
coassociation-based cluster ensembles can be reduced to close to
linear to N with minimal loss on clustering accuracy.

Index Terms—Cluster ensemble, coassociation matrix, multiple
clusterings.

I. OVERVIEW

A. Introduction

C LUSTERING is the process of identifying the underlying
groups or structures in a set of patterns without the use

of class labels. While there have been a large set of clustering
algorithms (see [1]–[3] for reviews), they all have their limita-
tions in terms of data characteristics that can be processed and
types of clusters that can be found. The performance of many
clustering algorithms also strongly depends on proper choices
of parameters and/or initializations. As a result, the choice of
appropriate clustering algorithms and/or parameters is highly
problem dependent and often involves lots of heuristic choices
or trial and error.

Following the success of classifier ensembles [4]–[6], cluster
ensembles, the process of obtaining a combined clustering of
the data using the information from multiple clusterings, have
attracted much research interest in the past several years. The
motivation behind cluster ensembles is that it is more likely
to generate more stable, more reliable, or more meaningful
clustering results with less sensitivity to parameter choices
or initializations by combining multiple different clusterings
of the same data. According to [7], ensembles of clusterings

Manuscript received September 21, 2009; revised April 30, 2010; accepted
September 10, 2010. Date of publication November 11, 2010; date of current
version May 18, 2011. This paper was recommended by Associate Editor
N. Chawla.

The author is with the Department of Computer Science, National Chiao
Tung University, Hsinchu 300, Taiwan (e-mail: wangts@cs.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2010.2086059

have advantages over individual clusterings in several aspects:
robustness (better average performance), novelty (new solution
different from the individual clusterings), stability and confi-
dence estimation, and parallelism and scalability (combination
of clusterings obtained at different times and locations or
with different features). Ensemble clustering is identified in
[8] as one of three major frontiers of clustering techniques in
recent years. Many existing experimental results have indicated
improved clustering results compared to the results of single-
clustering runs.

B. Relevant Works in Cluster Ensembles

The algorithms for cluster ensembles consist of two main
components. The first component is the method for generating
the base clusterings (the individual clusterings in the ensem-
ble), including the source of diversity (differences among the
base clusterings). One possibility is to use different clustering
algorithms for each base clustering. This is the approach in [9],
where the goal is to identify “robust” clusters, each defined
as a set of patterns that are in the same cluster in every base
clustering. When a single algorithm is employed to produce
all the base clusterings, the most common choices include
expectation maximization (EM), as in [10] and [11], and
k-means, as in [12]–[14]. Both EM and k-means have the built-
in source of diversity from different initializations and, as in
[12], different numbers of clusters in the base clusterings. Other
possible sources of diversity include different orderings of the
patterns for online clustering algorithms [15] and different
linkage types for hierarchical agglomeration [16]. The different
subsampling of data has been studied as well [17]. The relation
between the degree of diversity and the quality of the combined
clustering is the subject of [18].

A popular approach is to generate the base clusterings using
different subspace projections of the original feature space
[11], particularly when there are more than just a few features.
It is indicated in [11] that such clustering ensembles work
better than dimensionality reduction techniques such as prin-
cipal component analysis. Some have also employed a similar
approach, where a randomly selected subset of features is used
in each base clustering [10], [14]. An extreme example is to use
a large number of random 1-D projections, which is studied in
[19], to demonstrate the effectiveness of combining many weak
clusterings.

The second major component is sometimes called the “con-
sensus function” and is concerned about the integration and
representation of the combined information from multiple clus-
terings and the extraction of a final clustering from this rep-
resentation. An example is to use a prototype in the original
feature space to represent a cluster in a base clustering [20].

1083-4419/$26.00 © 2010 IEEE

WANG: CA-TREE: HIERARCHICAL STRUCTURE FOR CLUSTER ENSEMBLES 687

However, this method is not applicable to the “knowledge-reuse
framework,” as suggested by Strehl and Ghosh [21], where the
consensus function only has access to the base cluster labels of
the patterns but not to the original features.

A straightforward approach when using only the base cluster
labels is to consider the cluster ensemble as a transform of
each pattern into a “label space,” where each feature is the
cluster label of a pattern in a base clustering. Some early
works employ a voting scheme to select the final cluster label
of each pattern [22], [23]. However, this requires solving the
correspondence problem among the base clusterings through
relabeling, a process that is somewhat problematic particularly
when the base clusterings have different numbers of clusters.
More recently, Ayad and Kamel [24] have described cumulative
voting methods that are able to handle different numbers of
clusters in the base clusterings. One can also apply a clustering
algorithm to the patterns in the label space. Examples include
the use of k-modes [25], EM [7], and the optimization of
quadratic mutual information [7].

Graph-based representations have also been popular for com-
bining the information from multiple clusterings. Represen-
tative algorithms include cluster-based similarity partitioning
algorithm (CSPA), hyper-graph partitioning algorithm (HGPA),
and metaclustering algorithm (MCLA), all three proposed in
[21], as well as hybrid bipartite graph formulation (HBGF)
[26]. An appropriate graph-cut algorithm can then be applied
to determine the final clustering according to the type of graph
(patterns as vertices for CSPA, clusters as hyperedges for
HGPA, clusters as vertices in a metagraph for MCLA, and a
pattern-cluster bipartite graph for HBGF).

The coassociation matrix [12], [27] is perhaps the most
widely used data structure for combining the information from
multiple clusterings. Example applications to practical prob-
lems include [28]–[31]. A coassociation matrix is a square
matrix where each element represents the similarity between
two patterns. This similarity is given by the probability of
these two patterns being in the same cluster among all the base
clusterings. In other words, a coassociation matrix provides a
relational representation of a data set according to the base
clusterings. Luo et al. [32] describe a method for building the
coassociation matrix for data sets with mixed numerical and
categorical features.

The final clustering can be derived from the coassociation
matrix using many different clustering algorithms for relational
data. The most common choices are probably hierarchical
agglomeration with various linkage types [11], [12], [27], [30].
Graph-cut algorithms are used in CSPA [21], as well as in
[28], with the coassociation matrix treated as a graph where
each vertex represents a pattern and the weight of each edge
represents the similarity between two patterns. Other examples
include the use of spectral clustering in [32] and fuzzy k-means
in [14], where each column is treated as a new transformed
feature vector.

C. Motivations and Contributions

The main drawback of using coassociation matrices in cluster
ensembles is its complexity. Since a coassociation matrix has
N2 elements (N being the number of patterns), it has a memory
complexity of O(N2), and the time complexity is also at

least O(N2) for both its creation and its partition into the
final clustering. This quadratic complexity makes coassociation
matrices unsuitable for large data sets. This problem seriously
limits the applicability of related algorithms. For example, in
[10] where several different algorithms for cluster ensembles
are compared, CSPA, which uses coassociation matrices, is
only applied to data sets of no more than 2000 points.

A straightforward approach to solve this complexity problem
is to simply subsample the data. Slightly more robust is to first
group the patterns into a large number of small preclusters
(we use the term “preclusters” here to distinguish them from
the clusters generated by the subsequent clustering algorithms)
using a common algorithm like k-means. The prototypes of
these preclusters are just their centroids in the feature space.
The subsequent ensemble clustering is then applied to these
prototypes instead of the original patterns, and the final cluster
labels of the original patterns are determined from the final clus-
ter labels of the prototypes according to the nearest neighbor
rule. This is the approach taken by Fred and Jain [12], which
also adds an additional step of outlier removal based on shared
nearest neighbor analysis. An example of applying ensemble
clustering to 301 prototypes for a data set of 4000 patterns
is given in [12], although there is no discussion regarding the
effect of using prototypes on clustering results.

While the aforementioned prototype-based method for com-
plexity reduction is intuitive, it has several limitations that affect
its applicability. First, there is no general rule for selecting the
number of prototypes. If the number of prototypes is just set
to a fixed percentage of N , which is the approach in [33],
the complexity of using coassociation matrices is still at least
quadratic to N . Second, the prototypes are points in the feature
space. This means that we need to use all the features at once in
the preclustering process. As a result, we are unable to use this
method in multiview clustering (multiple clusterings obtained
using different subsets of features or projections to subspaces).
In addition, it becomes a complicated, if not impossible, task
to incorporate existing clustering results in the form of cluster
labels, which is a scenario mentioned in the discussion of the
knowledge-reuse framework in [21].

Our goal in this paper is to present a new method for reducing
the time and memory complexity of coassociation-based cluster
ensemble algorithms, therefore significantly extending their
applicability to larger data sets. A hierarchical structure called
a coassociation tree (CA-tree for short) that is similar to a
dendogram is built using the base cluster labels. A cut of this
“dendogram” at a given threshold gives a preliminary partition
of the data set into disjoint groups similar to the preclusters.
We then compute the coassociation matrix and obtain the final
clustering using the representatives of these groups. The name
CA-tree arises from the fact that the size of a node is the
minimum “degree of coassociation” (defined in the same way
as the elements of an ordinary coassociation matrix) between
the representative of this node and all its descendants. We list
several advantages of CA-trees in the following.

1) The procedure for building CA-trees utilizes only the
cluster labels of the patterns in the base clusterings with-
out the need to access the original features. Therefore,
CA-trees are applicable to multiview clustering and are
able to incorporate past clustering results, therefore re-
solving the limitations of the prototype-based methods.

688 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011

2) Compared with prototype-based methods, we do not have
the poorly defined task of determining the number of
prototypes. Instead, we only need to select a threshold.
In addition, our experimental results indicate that the
same threshold (at a fixed ratio of the number of base
clusterings) can work well across different data sets.

3) We experimentally observe that the number of groups
resulting from a cut to a CA-tree approximately follows a
power-law relation with respect to N , with the exponent
less than one and often less than 0.5. Therefore, the
complexity of coassociation-based ensembles using these
groups, being quadratic to their numbers, is much lower
than O(N2) and often lower than O(N). For the latter
case, the complexity with respect to N is O(N) from the
procedure for building the CA-tree.

4) We propose a node reduction scheme to further reduce
the number of groups, as well as the resulting complexity.
We also point out potentially valuable information regard-
ing the actual cluster characteristics (compact or elon-
gated/curvilinear) by comparing the numbers of nodes
before and after node reduction (see Section IV-F).

D. Summary of Notations

1) Data Set and Base Clusterings:
N the number of patterns;
X = {xi} the set of patterns (1 ≤ i ≤ N);
H the number of base clusterings;
Ph the hth base clustering (1 ≤ h ≤ H);
kh the number of clusters in Ph;
kmin/kmax lower and upper bounds of kh;
λih base cluster label of xi in Ph;
λi label vector (the vector of all the λih) of xi;
Λ the set of all the distinct λi.

2) Properties of CA-Tree Nodes:
z a node in the CA-tree
X(z) the set of data points associated with z
G(z) the set of distinct λi in X(z)
λ(z) partial label vector shared by z and all its descendants
λR(z) representative label vector of z
Dr(z) “radius” of z in the space of label vectors
D′r(z) an estimated upper bound of Dr(z)
Z ′(z) a subset of the descendants of z used for computing

D′r(z)
ndes a bound on the size of Z ′(z)

3) Node Selection:
τ the threshold used to select a set of nodes;
Z(τ) the set of selected nodes at τ ;
NZ(τ) the number of nodes in Z(τ);
γ the ratio of retained patterns in node reduction;
Z∗(τ) the version of Z(τ) without node reduction;
N ∗Z(τ) the version of NZ(τ) without node reduction;
α(τ) growth rate of NZ(τ) relative to N .

4) Combined Clustering:
S∗(τ) = [s∗ij(τ)] coassociation matrix obtained using Z(τ);
Q(τ) clustering accuracy at τ ;
ttotal total time for getting the final clustering

from a data set;
tCE time for getting the final clustering from

base clusterings.

E. Paper Organization

For the rest of this paper, we first review the definition of
coassociation matrices in Section II. Definitions and algorithms
related to our tree structure are covered in Section III. Sec-
tion IV presents the experimental results. We provide the analy-
sis of complexity, as well as the experiments on computation
time, in Section V, followed by the conclusions in Section VI.

II. COASSOCIATION MATRICES

Assume that X = {x1,x2, . . . ,xN} is a data set containing
N patterns. Let P = {C1, C2, . . . , Ck} be a crisp clustering
(partition) of X . Here, k is the number of clusters in P . The
clusters C1, C2, . . . , Ck are disjoint nonempty subsets of X ,
with their union being X . It is possible to obtain many different
partitions of X . Let a cluster ensemble consists of H clusterings
of X : P1, P2, . . . , PH . These are called the base clusterings of
the ensemble. We allow each base clustering to have a different
number of clusters and use kh to represent the number of
clusters in Ph(1 ≤ h ≤ H). We also define an H-element label
vector for each xi as

λi = [λi1 λi2 · · · λiH] (1)

with its hth element, denoted as λih, being the cluster label
of xi in Ph. We use the Hamming distance between two label
vectors λi and λj (i.e., the number of different cluster labels)
as their dissimilarity, denoted as d(λi,λj).

We define an N ×N matrix S(h) = [s(h)
ij] for each base

clustering Ph according to

s
(h)
ij =

{
1, λih = λjh

0, otherwise
. (2)

The overall coassociation matrix of a cluster ensemble, de-
noted as S∗ = [s∗ij], is simply the average of all the S(h)’s:

s∗ij =
1
H

∑
1≤h≤H

s
(h)
ij . (3)

An equivalent definition using the label vectors is

s∗ij = 1− 1
H

d(λi,λj). (4)

III. CA-TREE

A. Core Groups

The first source of size reduction of a coassociation matrix
arises from the observation that, often, multiple patterns share
the same label vector. A set of patterns with the same label
vector is indistinguishable for the cluster ensemble algorithms.
As they belong to the same cluster in each base clustering, we
shall expect that they are assigned to the same cluster in the final
clustering regardless of the actual cluster ensemble algorithm
used. Therefore, these patterns can be treated as a single entry,
resulting in a smaller coassociation matrix and the reduction of
associated computational time and memory requirement.

For this purpose, we introduce here the concept of core
groups, defined as subsets of X that satisfy the following
condition: Two patterns xi and xj belong to the same core
group if and only if λi = λj . Let Λ be the set of all the different

WANG: CA-TREE: HIERARCHICAL STRUCTURE FOR CLUSTER ENSEMBLES 689

TABLE I
CORE GROUP LABEL VECTORS FOR FIG. 1

label vectors in X given the base clusterings. Since each core
group has a unique label vector, the number of core groups
is simply ‖Λ‖, which is the cardinality of Λ. It is easy to
understand that ‖Λ‖ ≤ N . The number of core groups depends
on the distribution of patterns, as well as the algorithms and
parameters used to generate the base clusterings. The procedure
for identifying the core groups from the base clusterings is
included in the next section. We note here that the concept of
core groups has been previously mentioned in [16], although
the method there for identifying the core groups is very different
from ours and is only designed to work with a particular cluster
ensemble algorithm.

The following example demonstrates the use of a ‖Λ‖ ×
‖Λ‖ coassociation matrix of the core groups in place of an
N ×N coassociation matrix of the original patterns. Using a
2-D synthetic data set of four Gaussian clusters of 25 points
each [Fig. 1(a)], four base clusterings are generated using k-
means with k being three, four, five, and six, respectively. The
base clusterings are shown in Fig. 1(d)–(g), with the numbers
in the plots being the cluster labels. These four base clusterings
result in ‖Λ‖ = 9 core groups, as shown in Fig. 1(b), where the
numbers represent the indices of the core groups. Here, we see
that a problem size of 1002 in terms of the number of elements
in the coassociation matrix is reduced to 92 simply by taking
advantage of the redundancy in base cluster labels. We list in
Table I the associated label vector, as well as the number of
patterns of each core group. Fig. 1(c) shows the resulting 9 × 9
coassociation matrix according to (3).

B. CA-Tree Construction

Further reduction of computational complexity can result
from this assumption: Patterns with similar label vectors are
more likely to be assigned to the same cluster in the final
clustering. This leads to the use of groups that contain several
similar core groups, instead of the individual core groups, as the
units for building the coassociation matrix. Such an approach
results in even fewer groups than ‖Λ‖ and further reduces the
amount of computation and memory requirement.

This leaves us with the problem of how to form these
groups from the core groups. Since our purpose is to lower
the computational complexity below the quadratic complexity
of the original coassociation matrix, we specifically exclude
any option that starts with a matrix of pairwise similarity or
dissimilarity among the original patterns or the core groups.
Instead, with each base clustering of the data, we incrementally
grow a tree structure that has some similarity to a dendogram
formed with hierarchical clustering algorithms. When all the
base clusterings have been processed, a threshold is applied to
the tree to extract a set of nodes, each representing a group of
core groups. We can then build a coassociation matrix of these
groups as the input for final clustering extraction.

Fig. 1. (a) Four-cluster data set. (b) Nine core groups. The numbers in the plot
indicate the core group indices. (c) Coassociation matrix of the core groups.
(d)–(g) Four base clusterings used to obtain the core groups.

Each node of the tree contains one or more core groups of
X . For a given node z, we define X(z) as the union of these
core groups (i.e., the elements of X(z) are the original patterns)
and G(z) as the set of label vectors associated with these core
groups. We initialize the tree with a single root node where
X(z) = X . For each additional base clustering P , if X(z) of
a leaf node z belongs to more than one cluster in P , we add
a child to z for each different cluster label of X(z) in P . The
purpose is to ensure that X(z) of a leaf node z is always a core
group. This process is described in the following pseudocode:

Initialize the tree with a single node z1.
X(z1)← X
λ(z1)← an empty vector
Zleaf ← {z1} /∗ the current set of leaf nodes ∗/
m← 1 /∗ the current count of nodes ∗/
For h = 1 to H

Zleaf−temp ← φ /∗ the set of newly created nodes ∗/
For each node zi in Zleaf

690 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011

Fig. 2. (a) CA-tree generated with the data and base clusterings in Fig. 1.
The vertical axis represents the base clustering at which the children of a node
are created. (b) Same tree as in (a) with the vertical axis being the node size.
The arrows point out the five nodes selected through thresholding (threshold
indicated by the dashed horizontal line).

A← {t|X(zi) ∩ Ct �= φ;Ct is a cluster in Ph}
If ‖A‖ > 1

For each t in A
m← m + 1
Create a new node zm

parent(zm)← zi

Zleaf−temp ← Zleaf−temp ∪ {zm}
λ(zm)← [λ(zi) t]
X(zm)← X(zi) ∩ Ct

End For
End If

End For
Zleaf ← Zleaf ∪ Zleaf−temp

End For

All the processing within the outermost loop can be imple-
mented with a single scan through all the patterns in X . As
a result, the complexity of this algorithm is O(NH), not in-
cluding the generation of the base clusterings. As the algorithm
terminates, each λ(z) is the partial label vector that is shared
among z and all its descendants. If z is a leaf node, X(z) is
a single core group, and G(z) contains a single label vector
which is λ(z). The largest possible branching factor in the tree
is kh(max) ≡ max(kh)(1 ≤ h ≤ H), and the largest possible
depth is H . We note here that the exact tree generated depends
on the ordering of the clusterings. However, we do not expect
the variation of clustering results among different orderings
to be more significant than the variation among different en-
sembles generated under the same conditions. An example tree
from the experiment for Fig. 1 is given in Fig. 2(a). The leaf
nodes (nodes that correspond to the core groups) are all at the
bottom. The vertical position of each nonleaf node indicates
the index of the base clustering (index h in the pseudocode) at
which its children are created.

C. Determining Node Sizes and Representatives

If we can define the “size” (in the space of label vectors) of a
node z to represent the consistency of the label vectors in G(z),
we can redraw the tree more like a dendogram, with the vertical
axis being the node size. Fig. 2(b) shows such an example
(the computational detail of node sizes is described later). By
applying a threshold on the node size, we cut the tree at a
particular level. The horizontal dashed line in Fig. 2(b) is just

an example of a threshold that results in a five-group partition;
each of the five groups here corresponds to a node z [marked by
arrows in Fig. 2(b)] such that the size of z is no more than the
threshold while the size of parent(z) is above the threshold.
Some relevant definitions for this purpose are given hereinafter.

First, we define the distance between a label vector λ and
a node z as the largest distance between λ and all the label
vectors in G(z)

d(λ, z) = max
λ′∈G(z)

d(λ,λ′). (5)

For each node z, the label vector λ in G(z) that minimizes
d(λ,z) is selected as the node representative λR(z)

λR(z) = arg min
λ∈G(z)

d(λ, z). (6)

Next, we define the size of a node z in the space of cluster
labels as

Dr(z) = d(λR(z), z). (7)

The subscript “r” indicates that its meaning is similar to
radius. However, one problem with this definition is that its
computation involves all the possible label vectors in G(z).
For those nodes that are several levels above the leaf nodes,
their G(z) may contain many label vectors, making the com-
putation of (5)–(7) quadratic to ‖G(z)‖ and, hence, too time
consuming. This is inconsistent with our overall goal to reduce
computational complexity. As a result, we opt for estimating the
upper bound of Dr(z) in place of the exact value. From here
on, we use D′r(z) to represent the estimated upper bound of
Dr(z). The definitions (5)–(7) are replaced with the following
estimations based on the estimated D′r(z). First, we need to
select a subset Z ′(z) of the descendants of z (the actual
procedure of selecting Z ′(z) is described later). Equation (5)
is replaced with

d′(λ, z) = min
{

H, max
z′∈Z′(z)

[d (λ,λR(z′)) + D′r(z
′)]

}
. (8)

The node representative is now determined as

λR(z) = arg min
λ∈G′(z)

d′(λ, z) (9)

where we consider only the node representatives of those nodes
in Z ′(z)

G′(z) = {λR(z′)|z′ ∈ Z ′(z)} . (10)

The size of z is now estimated as

D′r(z) = d′ (λR(z), z) . (11)

If z is a leaf node, we simply set D′r(z) = 0 and λR(z) =
λ(z). The actual computation of (8)–(11) for all the nodes is
done in a bottom–up order; this ensures that the processing of a
node occurs only after all its descendants are already processed.
During this process, we can also determine G(z) and X(z)
according to

G(z) = ∪
z′,parent(z′)=z

G(z′) (12)

X(z) = ∪
z′,parent(z′)=z

X(z′). (13)

WANG: CA-TREE: HIERARCHICAL STRUCTURE FOR CLUSTER ENSEMBLES 691

Now, let us explain the procedure for determining Z ′(z). The
purpose of Z ′(z) is to reduce the computational complexity for
node size and representative determination from proportional to
‖G(z)‖2 to proportional to ‖Z ′(z)‖2 per node. Here, we need
a parameter ndes to control ‖Z ′(z)‖. We initialize Z ′(z) to
contain only the immediate children of z and iteratively replace
the largest node in Z ′(z) with its immediate children. This
process is continued until ‖Z ′(z)‖ ≥ ndes or all the nodes in
Z ′(z) are leaf nodes. Overall, ‖Z ′(z)‖ satisfies the condition
that

‖Z ′(z)‖ ≤ min
(‖G(z)‖ , kh(max) + ndes

)
. (14)

The actual value of ndes used in our experiments is 32, unless
specified otherwise. The complexity of this step is therefore
the number of nodes times the upper bound of ‖Z ′(z)‖2 or
O(N ·H · (kh(max) + ndes)2), as there are no more than 2N
nodes. The factor H results from the need to compute the
Hamming distances between label vectors.

The extraction of a set of nodes from the tree is very similar
to the process of extracting a partition from the dendogram in
hierarchical clustering algorithms. We determine Z(τ), which
is the extracted set of nodes given a threshold τ , according to

Z(τ) = {z|Dr(z) ≤ τ and Dr(parent(z)) > τ} . (15)

It is those nodes in Z(τ) that are used to build the coas-
sociation matrix. We also define NZ(τ) = ‖Z(τ)‖. Let us
index the nodes in Z(τ) as z1(τ),z2(τ), . . . ,zNz(τ)(τ). A
straightforward method for computing the elements of the
resulting coassociation matrix, denoted as S∗(τ), is just to use
the pairwise similarities among the node representatives in a
form similar to (4)

s∗ij(τ) = 1− 1
H

d [λR (zi(τ)) ,λR (zj(τ))] . (16)

In Fig. 3(a)–(d), we show the partitions of X obtained by
thresholding the tree in Fig. 2(b) with τ being 0, 1, 2, and 3,
respectively. The values of NZ(τ) is 9, 5, 4, and 3, respectively.
It is interesting to see that the partition in Fig. 3(c) is completely
consistent with the ground truth.

D. Node Reduction

One interesting observation in Fig. 3(a) is that several of the
nine core groups contain very few patterns. These core groups
are generally located at low-density regions or regions between
actual clusters in the feature space. On the other hand, the core
groups in high-density regions are more likely to contain more
patterns. Here, the six largest core groups out of nine contain
94% of the patterns. Similar phenomena also occur for the
nodes extracted at different τ ’s (i.e., not just the core groups)
after more experiments with larger data sets; the results are
included in the next section.

Based on this observation, we believe it is possible to further
reduce NZ(τ) by keeping only the important nodes (i.e., nodes
that contain substantial numbers of patterns) for building the
coassociation matrix. Instead of specifying the number of nodes
to keep, we define a parameter γ(0 < γ ≤ 1) such that we
retain enough nodes, on the order of decreasing number of
patterns, to include at least a total of γN patterns. For example,
for the data in Fig. 3, using γ = 0.8 results in NZ(τ) of 5, 4,

Fig. 3. (a)–(d) Partitions of the data set in Fig. 1 obtained with the threshold
being 0, 1, 2, and 3, respectively.

4, and 3 for τ of 0, 1, 2, and 3, respectively. The choice of
γ in a particular application depends on the desired tradeoff
between clustering accuracy and efficiency; we can always err
on a larger γ to prevent significant degradation of the final
cluster accuracy. The value 0.9 (in addition to the default of 1.0)
is used in some experiments in the next section and seems to
work well for all our data sets. Since now both Z(τ) and NZ(τ)
are also affected by γ, we use Z∗(τ) and N ∗Z(τ) to represent the
versions without node reduction (i.e., when γ = 1) when there
might be ambiguity.

As the final clustering is now derived from the retained
nodes, a problem remains regarding how to assign the final clus-
ter labels for the patterns in the excluded nodes. We first extract
a subtree consisting of only the retained nodes and their ances-
tors. For each excluded node z, we perform a search starting at
the root of this subtree. In each step, we select the child that is
most similar to z. This search continues until we reach a leaf
node, which is a retained node included in the final clustering.
The final cluster label for this leaf node is then assigned to z as
well. The complexity of this step is O(N ∗Z(τ) ·H · kh(max)).
On the other hand, the complexity of selecting the nodes to
retain is O(N ∗Z(τ) · log N ∗Z(τ)), as this involves sorting all the
nodes in Z(τ) according to their numbers of patterns.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

Although any clustering algorithm for relational data can
be used to obtain the final clustering from the coassocia-
tion matrix, we focus our experiments on the framework of
evidence-accumulation clustering (EAC), as described in [12].
The common k-means algorithm is used to generate the base
clusterings, with the number of clusters k in each clustering
randomly selected from an interval [kmin, kmax]. The actual
values of kmin and kmax are data set dependent. However, we
use a large range to ensure that the results are not too sensitive
to the choice of an optimal k. The clustering runs are initialized
using a randomly selected subset of the data points as the initial

692 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011

TABLE II
SUMMARY OF DATA SETS

prototypes. The experimental results presented here, unless
otherwise noted, use EAC plus hierarchical agglomeration with
average linkage (EAC-AL) for obtaining the final clustering,
which is the best overall performer in [12]. The final cluster
label of a pattern x is just the final cluster label assigned to the
node z, where X(z) contains x.

The quality of the final clustering is evaluated by matching
the final cluster labels with the ground-truth cluster labels of
the patterns. The ground truth consists of the class labels of
real data sets and the cluster labels used when generating the
synthetic data sets. We use the Hungarian algorithm to find the
optimal assignment (the one that results in the largest number
of correctly labeled patterns) between the two sets of labels.
We then use the ratio of correctly labeled patterns given by this
optimal assignment as the clustering accuracy measure. We use
Q(τ) to represent the clustering accuracy at τ .

For the experiments described in the following, the results
are always averaged over 20 ensembles. Unless noted other-
wise, the user-specified parameters are H = 20, ndes = 32, and
γ = 1 (without node reduction) or 0.9 (with node reduction).

B. Data Sets

Table II gives a summary of the data sets used in our
experiments, including the intervals [kmin, kmax] used. Here, N
is the number of patterns, L is the data dimensionality (number
of features), and k∗ is the “natural” (ground-truth) number of
clusters, taken as the number of classes for the real data sets
and as the number of clusters used for generating a synthetic
data set. The following provide more detailed descriptions to
these data sets.

1) Spherical5: five touching spherical clusters with 50 pat-
terns each in a 16-D space. The five clusters have the same
size, and their centroids all fall on the plane of the first
two dimensions.

2) Half-rings: two half rings with 200 and 600 patterns,
respectively. The distribution of patterns is similar to the
half-ring data set in [12].

3) 3-rings: three concentric circles with 100, 400, and
400 patterns, respectively. The distribution of patterns is
similar to the three-ring data set in [12].

4) 8d5k [10]: This is a synthetic data set of five ellipsoidal
clusters with 200 patterns each in an 8-D space. The five
clusters are well separated and have identical covariance
matrix.

5) Opt-digits (optical recognition of handwritten digits): a
ten-class (each for one digit) 3823-pattern 64-D data set
from the UCI Machine Learning Repository [34].

6) Pen-digits (pen-based recognition of handwritten digits):
a ten-class (each for one digit) 10 992-pattern 16-D data
set from the UCI Machine Learning Repository [34].

Fig. 4. Three synthetic data sets used in our experiments. (a) Spherical5.
(b) Half-rings. (c) 3-rings.

Fig. 5. Plots of the number of selected nodes (as a ratio to N) versus the
threshold. Data sets: (a) Spherical5, (b) Half-rings, (c) 3-rings, (d) 8d5k,
(e) Opt-digits, and (f) Pen-digits.

The first-three synthetic data sets (projected onto the first two
dimensions if L > 2) are shown in Fig. 4. The last two (Opt-
digits and Pen-digits) are selected because they are large for
coassociation matrices. For example, the authors of [12] only
use the first 100 patterns of each of the ten classes in Opt-digits.

C. Experiments on the Properties of CA-Trees

We start by showing in Fig. 5 how NZ(τ)/N varies with τ
for several data sets. The value of τ ranges from 0 to H − 1.
When τ is zero, each node in Z(τ) is a core group. Therefore,
NZ(τ = 0) is the total number of core groups. We can see
that NZ(τ)/N is down to 0.1 or much lower at, for example,
τ = H/2, resulting in significant computational savings for the
processing of the coassociation matrix.

Each plot in Fig. 5 actually has two curves corresponding
to (blue curve) ndes = 32 and (magenta curve) ndes =∞,
respectively. The latter case corresponds to using the exact node
sizes computed according to (5)–(7). In each plot, either the two
curves are identical or they are only slightly different for larger
τ . The small difference indicates that using ndes = 32 results in
a good estimation of node sizes for our experimental settings.
However, we want to note that a larger ndes may be needed if
significantly more base clusterings are used, leading to a deeper
tree. This is because the estimation error accumulates through
the recursive processing of the tree, which is the reason why the
difference is more evident at larger τ .

Fig. 5 does not tell us how to select an appropriate threshold.
For this purpose, we are more interested in how the clustering

WANG: CA-TREE: HIERARCHICAL STRUCTURE FOR CLUSTER ENSEMBLES 693

Fig. 6. Plots of clustering accuracy versus the threshold with and without node
reduction. The horizontal dashed line in a plot indicates 90% of the accuracy
at τ = 0. Data sets: (a) Spherical5, (b) Half-rings, (c) 3-rings, (d) 8d5k,
(e) Opt-digits, and (f) Pen-digits.

accuracy varies with τ . Fig. 6 shows the plots of Q(τ) versus
τ for the same data sets as in Fig. 5. Here, we focus on
the case where we select the final clustering with the known
number (k∗) of clusters during hierarchical agglomeration. To
help us choose an appropriate threshold, in each plot, we also
show a horizontal dashed line indicating the clustering accuracy
at 0.9Q(0), meaning a 10% degradation from the accuracy
obtained by directly using the core groups. For example, a
common threshold of τ = 10(τ/H = 0.5) is applicable for
all six data sets if 10% is considered the acceptable level of
degradation. To err on the conservative side, 0.4H and 0.2H
seem to be reasonable choices for γ = 1 and γ = 0.9, respec-
tively. We still get most of the benefit, as the most significant
drop of N(τ) occurs at small values of τ , which is evident
in Fig. 5.

A closer examination of Fig. 6 seems to indicate that there
are two types of behaviors in terms of how clustering accuracy
varies with τ . For four of the six data sets [Fig. 6(a), (d), (e),
and (f)], the curves are quite flat, and Q(τ) only drops slightly
(close to or less than 10%) even at τ = H − 1. On the other
hand, Fig. 6(b) and (c) seems to exhibit some critical threshold,
after which Q(τ) drops dramatically. This can be explained
by the fact that these two data sets have elongated curvilinear
clusters, and NZ(τ) at this “critical threshold” approximately
corresponds to the number of representative points needed to
preserve the cluster information in the data. NZ(τ) values at
τ = 10 are 21 and 55 for data sets Half-rings and 3-rings,
respectively. This observation seems to suggest two different
strategies for threshold selection if we have some information
about the type of clusters: larger thresholds to get smaller
NZ(τ) and, hence, less computation for compact and spherical
clusters, and smaller thresholds to ensure acceptable accuracy
for clusters that are curvilinear or otherwise have noncompact
shapes. While the knowledge about cluster shapes may not be
available, the process of node reduction can provide us with
some useful information on this. This is further explained later
in Section IV-F.

Fig. 7. Logarithmic plots of the number of selected nodes versus N at four
different thresholds. Data sets: (a) Spherical5 and (b) Pen-digits.

Our main goal is the reduction of complexity by using
only the selected nodes to build the coassociation matrix. It
is therefore important to analyze how NZ(τ) scales with N .
For this purpose, we generate additional data sets that have the
same distributions as several synthetic data sets but different
N ’s. For the three data sets from external sources (8d5k, Opt-
digits, and Pen-digits), the additional data sets are obtained
by random subsampling. Fig. 7 shows the logarithmic plots of
NZ(τ) versus N without node reduction at a few different τ ’s
for the Spherical5 and Pen-digits data sets. The nearly linear
plots suggest that it is reasonable to assume that

NZ(τ) ∝ Nα(τ) (17)

where α(τ) is data set dependent. The complexity associated
with the coassociation matrix becomes O(N2α(τ)) instead of
O(N2). As long as α(τ) < 1, we have lower than quadratic
complexity, and the cluster ensemble algorithm using our se-
lected nodes will scale better to large data sets than the original
version that uses all the patterns in the data set.

In Tables III and IV, we list more α(τ) values for additional
data sets using γ = 1 and γ = 0.9, respectively. It is evident
that α(τ) decreases fairly fast as the threshold increases. This
is an indication that NZ(τ) is more affected by N at very low
thresholds and by the actual distribution at higher thresholds.
At our recommended thresholds (0.4H for γ = 1 and 0.2H for
γ = 0.9), all the α(τ) values are less than 0.5, resulting in the
complexity associated with the coassociation matrix being be-
low O(N). A comparison between these two tables also shows
that node reduction leads to substantially lower complexity at
similar thresholds. Even when comparing τ = 0.4H for γ = 1
and τ = 0.2H for γ = 0.9, four of the α(τ) values for γ = 0.9
are much less than the corresponding values for γ = 1, and for
the other two (3-Rings and 8d5k), the α(τ) values are already
close to zero. This is an indication that node reduction is an
attractive option when we need to process very large data sets.
Lower γ is expected to lead to even lower α(τ) but can also
result in lower clustering accuracy because fewer nodes are
used to represent the data distribution.

D. Experiments With Very Large Data Sets

To further demonstrate the ability of CA-tree to make
coassociation-based cluster ensembles scalable to very large

694 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011

TABLE III
VALUES OF α(τ) AT DIFFERENT THRESHOLDS (γ = 1)

TABLE IV
VALUES OF α(τ) AT DIFFERENT THRESHOLDS (γ = 0.9)

data sets, we include here the example of clustering the pixels
in an image. Fig. 8(a) shows a 640 × 480 image with a total of
over 3× 105 pixels. Using the RGB values of each pixel as a
pattern to be clustered, we have a data set almost 30 times larger
than the largest data set (Pen-digits) used in our experiments
so far. We apply the EAC-AL algorithm with CA-tree using
the following parameters: H = 10, kmin = 3, kmax = 6, τ =
0.2H , γ = 0.9, and k∗ = 3 for the three main regions (sky,
road, and greenery). The result is shown in Fig. 8(b), where
each color represents a cluster. We can see that the clustering
result is quite accurate except for where the treetops meet the
sky. Using 1000 manually labeled pixels randomly selected
from the image, we estimate the clustering accuracy to be 0.979.
This experiment clearly indicates the usefulness of CA-tree for
applying cluster ensembles to very large data sets.

E. Comparisons With the Prototype-Based Method

We are interested in comparing our method with the
prototype-based method in terms of how well the information
of the original data set is condensed into the set of selected
nodes (our method) or preclusters (prototype-based method).
For the prototype-based method, three preclustering approaches
are implemented for comparison: 1) random sampling, i.e.,
randomly selecting a subset of data points as the prototypes;
2) k-means; and 3) k-medoids. Both k-means and k-medoids
are randomly initialized for each ensemble.

We base the comparison on how Q, which is the clustering
accuracy, varies with NZ . For the prototype-based methods,
NZ is the number of prototypes, and we obtain the results of
these methods at several prespecified NZ . For the CA-tree, we
obtain results at different NZ’s by varying τ . Both similar clus-
tering accuracy at smaller NZ and higher accuracy at similar
NZ indicate a better ability for information condensation. The
plots are shown in Fig. 9. Each plot contains five curves: two
for CA-tree with γ = 1 and γ = 0.9, respectively, and three for

Fig. 8. Clustering of image pixels. (a) Original image. (b) Clustered pixels.
Each color represents the pixels of a different cluster.

Fig. 9. Clustering accuracy versus the number of selected nodes, assuming
known number of clusters. Data sets: (a) Spherical5, (b) Half-rings, (c) 3-rings,
(d) 8d5k, (e) Opt-digits, and (f) Pen-digits.

the prototype-based methods. Our method with γ = 0.9 clearly
outperforms the prototype-based methods for all the data sets
except for in Fig. 9(e), where they are comparable.

Fig. 10 is similar to Fig. 9 except that the final cluster-
ing is selected according to the maximum-lifetime criterion
in hierarchical agglomeration. Again, our method with γ =
0.9 is the best performer except for in Fig. 10(b) and (c),
where the clustering accuracy is extremely low for all the
methods.

WANG: CA-TREE: HIERARCHICAL STRUCTURE FOR CLUSTER ENSEMBLES 695

Fig. 10. Clustering accuracy versus the number of selected nodes, assum-
ing unknown number of clusters. Data sets: (a) Spherical5, (b) Half-rings,
(c) 3-rings, (d) 8d5k, (e) Opt-digits, and (f) Pen-digits.

Fig. 11. Ratio of the numbers of selected nodes with and without node
reduction. Each curve is for a different data set.

F. Node Reduction and Cluster Shapes

When comparing the results with and without node reduction
in Figs. 9 and 10, the effect of node reduction seems to range
from significantly better (Opt-digits and Pen-digits) and slightly
better (Spherical5 and 8d5k) to somewhat worse (Half-rings
and 3-rings). To better understand these differences, we plot
in Fig. 11 the ratios NZ(τ)/N ∗Z(τ). (As mentioned previously,
when we need to disambiguate between the two, NZ(τ) and
N ∗Z(τ) represent the values with and without node reduction,
respectively.) In general, the smaller the ratio, the stronger the
information condensation is as more nodes are excluded. The
minimal ratio for a particular data set seems to be a useful
indicator of the effect of node reduction. These minimal ratios
are 0.189 (Pen-digits), 0.267 (Opt-digits), 0.433 (Spherical5),
0.506 (8d5k), 0.557 (Half-rings), and 0.671 (3-rings). We can
see that smaller minimal ratios somewhat correlate with the
improvements from node reduction, although only qualitatively.
As a starting point, we believe that this minimal ratio can be a
useful rough guideline regarding whether to use node reduction.

For example, node reduction is used when the minimal ratio is
below a threshold of 0.5.

To better understand the information in the ratio NZ(τ)/
N ∗Z(τ), let us consider the following scenarios: When we have
compact actual cluster structure in the data, the regions between
clusters have low data density. The “intersections” between
base clusters in these regions are therefore likely to have few
data points, forming small groups in the CA-tree. Such are the
nodes that are excluded in node reduction. Since these groups
are small, we can exclude many nodes at a given γ, giving a
smaller ratio NZ(τ)/N ∗Z(τ). On the other hand, for elongated
actual clusters, the intersections between (compact) base clus-
ters have similar density as the regions inside the base clus-
ters, resulting in more groups with similar data counts. Node
reduction, in this case, gives larger NZ(τ)/N ∗Z(τ) (i.e., fewer
excluded nodes) at a given γ. Overall, these arguments can help
to explain our observation that the two data sets with known
elongated cluster structures (Half-rings and 3-rings) have the
largest minimum NZ(τ)/N ∗Z(τ) ratios and support our idea
that this ratio contains information about actual cluster shapes.
We also suspect that there is more useful information regarding
the underlying cluster shapes that can be deduced from the
statistics of pattern counts in the nodes at different thresholds,
which is a point that requires additional investigation.

V. COMPUTATIONAL COMPLEXITY

A. Analysis of Complexity

In the following, we summarize the computational complex-
ity involved in the various steps of our proposed method:

1) tree construction: O(N ·H);
2) node size and representative determination: O(N ·H ·

(kh(max) + ndes)2);
3) computation of the coassociation matrix:

O(H ·NZ(τ)2);
4) if node reduction is used, the selection of the retained

nodes: O(N ∗Z(τ) · log N ∗Z(τ));
5) if node reduction is used, the final cluster label assign-

ment for the excluded nodes: O(N ∗Z(τ) ·H · kh(max)).
Here, we do not include the complexity involved in gener-

ating the base clusterings and extracting the final clustering,
as there are many different algorithms applicable to these two
steps and their differences are not our focus.

The combined expression for the complexity is

O
(
N ·H · (kmax + ndes)2 + N2α(τ) ·H

+ Nα∗(τ) · (log N + kmax)
)

(18)

after substituting (17) for NZ(τ) and an analogous expression

N ∗Z(τ) ∝ Nα∗(τ) (19)

for N ∗Z(τ). We have also used the user-specified parameter
kmax as the upper bound for kh(max). Since we expect that
α∗(τ) < 1, the third term in (18) is always less than the first
term and can be dropped. We end up with the following:

O
(
N ·H · (kmax + ndes)2 + N2α(τ) ·H

)
. (20)

696 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011

If we have 2α(τ) ≤ 1, which is the case in our experiments
except for very low thresholds (see Table IV), then the overall
complexity is linear with respect to N . Even when this con-
dition is not satisfied, the savings over the original quadratic
complexity is still very significant for large N . In addition, this
lower complexity is even more important when the algorithm
for the final clustering extraction has a complexity that is higher
than quadratic. Such examples include average or complete
linkage, both having O(N2 log N) complexity using the exist-
ing efficient hierarchical agglomeration algorithms [35], [36].

Regarding space complexity, the coassociation matrix now
has N2α(τ) elements. The tree itself has at most 2N nodes.
Similar to time complexity, the space complexity with respect
to N is O(N) when 2α(τ) ≤ 1 and O(N2α(τ)) if otherwise.

B. Experiments on Computation Time

This section consists of experimental results regarding the
actual computation time spent in constructing a cluster en-
semble. The purpose is to provide empirical evidences to the
theoretical claim of reduced computational complexity in the
previous section. The experimental environment is MATLAB
R14 running on a 3.0-GHz Pentium IV PC with 1 GB of
memory, while the majority of the time-consuming work is
implemented in C. The timing data are obtained with the
MATLAB Profiler.

Specifically, we compare the required execution time when
the data structure for the ensemble (such as the coassociation
matrix) is built using one of the following [referred to as
methods (A)–(D) in this section]:

1) (A): the original data set;
2) (B): the core groups, corresponding to CA-tree with

τ = 0;
3) (C): the groups selected from the CA-tree with τ = 0.2;
4) (D): the same as (C) plus node reduction (γ = 0.9).
The experimental settings are the same as those in

Section IV-C, except that we use H = 10. Two synthetic
data sets Spherical5 and 3-rings are used here. However, to
emphasize the performance comparison for larger data sets,
we increase the numbers of samples in these two data sets
to 2000 and 1800, respectively, while maintaining the same
distributions as the original data sets.

Tables V lists the execution time (in seconds) and clustering
accuracy averaged over 20 ensembles. Here, ttotal represents
the total execution time, including the time spent on obtaining
the base clusterings. On the other hand, tCE includes only the
time for extracting the final clustering from available base
cluster labels. While our focus is on the improvement of tCE ,
we list ttotal as well to provide the information about the total
time requirement when the base clusterings are not available.

In addition to EAC-AL, we also list the results obtained with
three well-known graph-based cluster ensemble algorithms:
HBGF [26], CSPA [21], and MCLA [21]. We use METIS
[37] as the method that partitions the graph into final clusters.
Among the three, only CSPA is based on coassociation matri-
ces. The computational complexities of HBGF and MCLA are
both linear with respect to N . The motivation here is to see

TABLE V
COMPARISON OF EXECUTION TIME AND CLUSTERING ACCURACY

whether and how much performance improvement is achievable
by using CA-tree with such methods.

The improvement in execution time is most significant with
coassociation-based methods (EAC-AL and CSPA), as ex-
pected. For HBGF and MCLA, tCE is also reduced by about
60%–75% from methods (A) to (D), with little loss of clustering
accuracy. This indicates that CA-tree is still useful in improving
the efficiency and scalability of cluster ensemble algorithms
that are not based on coassociation matrices. The time used
to obtain the base clusterings (approximately ttotal − tCE)
stays approximately constant for all the methods, which is not
surprising. For methods (C) and (D), we have reduced tCE

so much that the time for base clusterings mostly dominates
ttotal. We can also see that the improvement in execution
time obtained with node reduction [from (C) to (D)] is not as
significant as the improvement obtained with the CA-tree itself
[from (A) to (C)]. This is because the time spent on processing
node reduction is not negligible compared with clustering the
already small set of groups from method (C). However, the
improvement from node reduction is more significant for larger
data sets. For example, if Spherical5 is scaled to N = 10 000,
the tCE values for EAC-AL become 0.61 and 0.09 for methods
(C) and (D), respectively, a factor of about 6.7 compared to
about 1.9 (0.11/0.06) when N = 2000.

One more important observation can be made about the re-
sults for 3-rings (and more generally, data sets with noncompact
clusters). We see that the clustering accuracies obtained with
the three graph-based algorithms range from 0.74 to 0.78 and
are far below the near perfect accuracy achieved by EAC-AL.
This is previously known in [12] and is a major motivation be-
hind using the inefficient hierarchical agglomeration algorithms
to get the final clusterings. However, when considering meth-
ods (C) and (D), EAC-AL outperforms the three graph-based
algorithms in both execution time and accuracy. In other words,
CA-tree significantly alleviates the problem of computational
cost for algorithms such as EAC-AL, allowing us to use the

WANG: CA-TREE: HIERARCHICAL STRUCTURE FOR CLUSTER ENSEMBLES 697

most appropriate cluster ensemble algorithms on different data
sets without much worry about efficiency.

VI. CONCLUSION

In summary, in this paper, we have proposed the CA-tree,
which is a new data structure for improving the scalability
of ensemble-clustering algorithms for large data sets, partic-
ularly those based on coassociation matrices. When cut at a
particular threshold for node sizes, a set of nodes is selected
to approximate the data set in the space of base cluster la-
bels. Subsequent ensemble-clustering algorithms are applied
to this set of selected nodes instead of the original patterns,
leading to reduced computational complexity. A node reduction
scheme has also been proposed to further reduce the amount
of computation by excluding nodes that contain few patterns.
As demonstrated by our experiments with various data sets,
we can often achieve a complexity of lower than linear to N
for coassociation matrix processing with little loss in clustering
accuracy, and the complexity for building the tree is linear to
N . This improvement of efficiency is dramatic compared to the
O(N2) or higher complexity of popular coassociation-based
algorithms such as EAC and CSPA, therefore significantly
extending their applicability to more clustering problems.

The CA-tree has several advantages over the prototype-
based method that was previously employed to help solve the
scalability problem. In addition to the overall better clustering
accuracy, our method does not require the guesswork involved
in determining the number of prototypes to use. Because the
only information required for building the CA-tree is the base
cluster labels, it is applicable to distributed multiview cluster-
ing, when a data set does not have all the features, and is able
to incorporate existing base clusterings. These are two well-
known ensemble-clustering scenarios that the prototype-based
method is unable to address.

One important element of our method, which is the power-
law relation between N and NZ(τ) [see (17)], is currently
supported by empirical results. In the future, we intend to pro-
vide a deeper understanding of such a relation from theoretical
perspectives, as well as to investigate factors that affect α(τ).
Moreover, of theoretical interest is the information regarding
the properties of the actual clusters that may exist in the
statistics of pattern counts in the nodes at various thresholds,
such as to tell whether the clusters are elongated or compact.
While current results seem to hint at the existence of such
information (see Section IV-F), more study, both experimental
and theoretical, will be needed to provide a clearer picture.
Another possible subject for future study is the extension of
our method to fuzzy cluster ensembles, which is a subject that
has attracted increasing interests in recent years.

The software implementing the CA-tree will be made avail-
able at the home page of the author: http://www.cis.nctu.edu.tw/
~wangts/.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[2] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 3rd ed.
San Diego, CA: Academic, 2006.

[3] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[4] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classifiers,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239,
Mar. 1998.

[5] T. Dietterich, “Ensemble methods in machine learning,” in Proc. 1st Int.
Workshop Multiple Classifier Syst., 2000, pp. 1–15.

[6] L. Lam, “Classifier combinations: Implementations and theoretical is-
sues,” in Proc.1st Int.Workshop Multiple ClassifierSyst., 2000, pp. 78–86.

[7] A. Topchy, A. K. Jain, and W. Punch, “A mixture model for clustering
ensembles,” in Proc. SIAM Int. Conf. Data Mining, 2004, pp. 379–390.

[8] A. K. Jain and M. H. C. Law, “Data clustering: A user’s dilemma,”
in Pattern Recognition and Machine Intelligence. Berlin, Germany:
Springer-Verlag, 2005, pp. 1–10.

[9] P. Kellam, X. Liu, N. J. Martin, C. Orengo, S. Swift, and A. Tucker,
“Comparing, contrasting and combining clusters in viral gene expression
data,” in Proc. 6th Workshop Intell. Data Anal. Med. Pharmocol., 2001,
pp. 56–62.

[10] K. Punera and J. Ghosh, “Soft cluster ensembles,” in Advances in
Fuzzy Clustering and Its Applications, J. Valente de Oliveira and
W. Pedrycz, Eds. Hoboken, NJ: Wiley, 2007.

[11] X. Z. Fern and C. E. Brodley, “Random projection for high dimensional
clustering: A cluster ensemble approach,” in Proc. 20th Int. Conf. Mach.
Learn., 2003, pp. 186–193.

[12] A. L. N. Fred and A. K. Jain, “Combining multiple clusterings using
evidence accumulation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 6, pp. 835–850, Jun. 2005.

[13] L. I. Kuncheva and D. P. Vetrov, “Evaluation of stability of k-means
cluster ensembles with respect to random initialization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1798–1808, Nov. 2006.

[14] R. Avogadri and G. Valentini, “Ensemble clustering with a fuzzy
approach,” in Supervised and Unsupervised Ensemble Methods and Their
Applications. New York: Springer-Verlag, 2008, pp. 49–69.

[15] P. Viswanath and K. Jayasurya, “A fast and efficient ensemble clustering
method,” in Proc. Int. Conf. Pattern Recog., 2006, pp. 720–723.

[16] T.-Y. Lv, S.-B. Huang, X.-Z. Zhang, and Z.-X. Wang, “Combining
multiple clustering methods based on core group,” in Proc. 2nd Int. Conf.
Semantics, Knowl., Grid, 2006, pp. 29–34.

[17] B. Minaei-Bidgoli, A. Topchy, and W. F. Punch, “Ensembles of partitions
via data resampling,” in Proc. Int. Conf. Inf. Technol., 2004, pp. 188–192.

[18] L. I. Kuncheva and S. T. Hadjitodorov, “Using diversity in cluster
ensembles,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2004, vol. 2,
pp. 1214–1219.

[19] A. Topchy, A. K. Jain, and W. Punch, “Clustering ensembles: Models of
consensus and weak partitions,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 12, pp. 1866–1881, Dec. 2005.

[20] P. Hore, L. Hall, and D. Goldgof, “A cluster ensemble framework for
large data sets,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2006,
pp. 3342–3347.

[21] A. Strehl and J. Ghosh, “Cluster ensembles—A knowledge reuse frame-
work for combining multiple partitions,” J. Mach. Learn. Res., vol. 3,
pp. 583–617, Mar. 2002.

[22] B. Fischer and J. M. Buhmann, “Bagging for path-based clustering,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 11, pp. 1411–1415,
Nov. 2003.

[23] S. Dudoit and J. Fridlyand, “Bagging to improve the accuracy of a cluster-
ing procedure,” Bioinformatics, vol. 19, no. 9, pp. 1090–1099, Jun. 2003.

[24] H. G. Ayad and M. S. Kamel, “Cumulative voting consensus method for
partitions with a variable number of clusters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 1, pp. 160–173, Jan. 2008.

[25] H. Luo, F. Kong, and Y. Li, “Combining multiple clusterings via
k-modes algorithm,” in Advanced Data Mining and Applications.
Berlin, Germany: Springer-Verlag, 2006, pp. 308–315.

[26] X. Z. Fern and C. E. Brodley, “Solving cluster ensemble problems by bi-
partite graph partitioning,” in Proc. 21th Int. Conf. Mach. Learn., vol. 69,
ACM International Conference Proceeding Series, 2004, p. 36.

[27] A. L. N. Fred and A. K. Jain, “Data clustering using evidence accumula-
tion,” in Proc. 16th Int. Conf. Pattern Recog., 2002, pp. 276–280.

[28] Z. Yu, Z. Deng, H.-S. Wong, and X. Wang, “Fuzzy cluster ensemble and
its application on 3D head model classification,” in Proc. IEEE Int. Joint
Conf. Neural Netw., 2008, pp. 569–576.

[29] J. Gllavata, E. Qeli, and B. Freisleben, “Detecting text in videos using
fuzzy clustering ensembles,” in Proc. 8th IEEE Int. Symp. Multimed.,
2006, pp. 283–290.

[30] A. Lourenco and A. Fred, “Ensemble methods in the clustering of string
patterns,” in Proc. 7th IEEE Workshop Appl. Comput. Vis., 2005, vol. 1,
pp. 143–148.

698 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011

[31] R. Avogadri and G. Valentini, “Fuzzy ensemble clustering for DNA
microarray data analysis,” in Applications of Fuzzy Sets Theory.
Berlin, Germany: Springer-Verlag, 2007, pp. 537–543.

[32] H. Luo, F. Kong, and Y. Li, “Clustering mixed data based on evidence
accumulation,” in Advanced Data Mining and Application. Berlin,
Germany: Springer-Verlag, 2006, pp. 348–355.

[33] D. Greene and P. Cunningham, “Efficient Ensemble Methods for
Document Clustering,” Trinity College, Dublin, Ireland, Tech. Rep. TCD-
CS-2006-48, 2006.

[34] A. Asuncion and D. J. Newman, UCI Machine Learning Repository,
Irvine, CA, Univ. California, 2007. [Online]. Available: http://www.ics.
uci.edu/~mlearn/MLRepository.html

[35] T. Kurita, “An efficient agglomerative clustering algorithm using a heap,”
Pattern Recognit., vol. 24, no. 3, pp. 205–209, 1991.

[36] Y. El-Sonbaty and M. A. Ismail, “On-line hierarchical clustering,” Pattern
Recognit. Lett., vol. 19, no. 14, pp. 1285–1291, Dec. 1998.

[37] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Aug. 1998.

Tsaipei Wang (M’05) received the B.S. degree
in physics from National Tsing Hua University,
Hsinchu, Taiwan, in 1989, the Ph.D. degree in
physics from the University of Oregon, Eugene,
in 1999, and the M.S. degree in computer science
and the Ph.D. degree in computer engineering and
computer science from the University of Missouri,
Columbia, in 2002 and 2005, respectively.

He was a Postdoctoral Fellow with the University
of Missouri. He is currently an Assistant Professor
with the Department of Computer Science, National

Chiao Tung University, Hsinchu. He was previously involved in research topics
including frequency-selective optical memory, coherent transient phenomena,
signal/image processing for land-mine detection, and automated vision devel-
opment assessment with video photoscreening. His current research interests
include fuzzy systems, pattern recognition, image processing, medical image
analysis, and visualization.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

