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Abstract—We propose a human motion extrapolation algorithm
that synthesizes new motions of a human object in a still image
from a given reference motion sequence. The algorithm is imple-
mented in two major steps: contour manifold construction and
object motion synthesis. Contour manifold construction searches
for low-dimensional manifolds that represent the temporal-do-
main deformation of the reference motion sequence. Since the
derived manifolds capture the motion information of the refer-
ence sequence, the representation is more robust to variations in
shape and size. With this compact representation, we can easily
modify and manipulate human motions through interpolation or
extrapolation in the contour manifold space. In the object motion
synthesis step, the proposed algorithm generates a sequence of
new shapes of the input human object in the contour manifold
space and then renders the textures of those shapes to synthesize
a new motion sequence. We demonstrate the efficacy of the algo-
rithm on different types of practical applications, namely, motion
extrapolation and motion repair.

Index Terms—Contour manifold, motion synthesis, motion
transfer.

I. INTRODUCTION

I N recent years, human motion synthesis has become one
of the most popular research fields because of its potential

application in motion creation, motion editing, and recovery op-
erations [1]–[3]. As a result, many algorithms have been devel-
oped, e.g., [4]–[9] to create or edit human motion sequences.
The objective is to synthesize visually pleasing human motion
sequences with realistic motions and appearance. Conventional
human motion synthesis algorithms can be divided into two cat-
egories: methods based on a model-driven architecture (model-
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drivenmethods) [5], [8], [9] and methods based on a data-driven
architecture (data-driven methods) [4], [6], [7]. Model-driven
methods provide an interactive system to help animators specify
the pose of a character. Then, constrained optimization tech-
niques can be used to compute the details of physically valid
motions for the character. In [5], Fang and Pollard used a va-
lidity constraint optimization approach that iteratively adjusts
a synthesized motion to satisfy the animator’s requirement for
realistic motions. Liu and Popovic [8] proposed a system that
synthesizes realistic character motions by regulating a small set
of linear and angular momentum constraints; and Safonova et
al. [9] utilized a motion capture database to find a low-dimen-
sional space that captures the characteristics of a desired motion
and then solved the optimization problem in that low-dimen-
sional space. Although model-driven algorithms guarantee that
the synthesized motions will be as realistic as possible, they are
not practical for real-world applications due to the need for a
complex motion control interface and a massive amount of user
intervention.
Data-driven algorithms reduce the amount of user interven-

tion needed to synthesize visually pleasing human motions.
Specifically, they use reference motions as a guide to synthesize
the desirable motions of a human object. In [7], Kovar et al.
proposed an example-based algorithm called a motion graph
that synthesizes new motions by using examples of motion
data with 3D models. Cheung et al. [4] developed a computer
vision-based system to synthesize new motions of a human
object. First, they built detailed kinematic models of a human
object to capture the motion data of each part of the human body
in the input motion sequence. Then, they used an image-based
rendering algorithm to render the captured motion of another
human object. In [6], Gleigher presented a technique that
retargets motions from one character to another by adapting
the motion of one articulated figure to another figure that has
an identical structure. Most data-driven algorithms try to use
the motion data obtained from reference motions to synthesize
desirable motions directly with less user intervention. How-
ever, the inaccessibility of motion capture devices and the
complex settings of the experimental environment make these
algorithms impractical for ordinary users.
To help users synthesize new human motions from input

video sequences, Kobayashi et al. [10] developed an interactive
framework that uses shape matching techniques to extract
video objects and build a 2D motion graph. The user can
then synthesize a new motion sequence of the extracted video
object by dragging the detected feature points to search for
available object images in the 2D motion graph. However,
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the algorithm can only generate new motion sequences for the
original human object, and an ordinary user cannot apply the
constructed motion graph to other human objects. Xu et al. [11]
proposed a method to rearrange available motion templates
with few user assistance to form a new motion sequence by
minimizing the shape context distance in the proposed motion
cycle reconstruction algorithm. We believe that data-driven
algorithms are more effective than model-driven algorithms in
synthesizing human motions with the minimum cost and the
least amount of user intervention, but some issues need to be
addressed to tackle the above mentioned constraints.
Understanding human motions is one of the most important

issues in transferring motions successfully from a reference mo-
tion sequence to another human object. Human motion is diffi-
cult to synthesize because of its non-rigid nature and high di-
mensionality. Several algorithms have been proposed to com-
pute the underlying structure of motion data for synthesizing
human motions, e.g., [9], [12]–[19]. In [12], Hsieh et al. pro-
posed a skeleton-based posture recognition method that con-
verts each sequence of human movements into a posture se-
quence to analyze the human object’s behavior. Dimensionality
reduction techniques are often used to simplify a large collec-
tion of motion data. It is then possible to compute the data’s in-
trinsic structure and construct a low-dimensional representation.
Safonova et al. [9] used Principal Component Analysis (PCA)
to reduce the dimensionality of human motions and showed
that the articulated motion could be optimized effectively in
the lower-dimensional space by satisfying user-specified mo-
tion constraints. Shin and Lee [13] used a multi-dimensional
scaling algorithm to project human motions on to a two-dimen-
sional space and designed an interface that allows the user to
sketch a curve on the constructed two-dimensional space and
choose the desired motions. Chai and Hodgins [14] proposed
an animation system that uses low-dimensional control signals
obtained from a fewmarkers on a human body to control themo-
tion of animated characters. In [15], Elgammal et al. introduced
a technique that learns low-dimensional activity manifolds from
silhouettes and then conducts analysis and tracking in the low-
dimensional manifold. Subsequently, they proposed an efficient
human gait tracking algorithm [16] with an explicit manifold
modeling for body configuration to model shape variations in
human motion sequences. Liang et al. [17] proposed an ap-
proach that learns low-dimensional posture manifolds and per-
forms human motion analysis in the low-dimensional manifold
space. In [18], Ding et al. proposed a method which uses a set
of low-dimensional points computed by Locally Linear Embed-
ding to represent the high dimensional motion frames in orig-
inal images and then repaired damaged motion sequences by
interpolating low dimensional points corresponding to missing
or occluded motion frames.
In a previous work [19], we used the shape distance between

any two motions as input and then exploited isometric feature
mapping to construct a low-dimensional structure of a human
motion database. When a user inputs specific starting and
ending poses, the system synthesizes the desirable interior
motions of the user-specific 2D human object. However, in
our experiments, we found that constructing low-dimensional
embedding for the whole human motion database is time con-

suming. In fact, the major limitations of our previous method
and those proposed in [14] are the time complexity and the lack
of flexibility. In other words, the methods can only produce
human motion sequences based on the postures collected in
their respective motion databases.
The above limitations motivate us to develop a low-cost,

easy-to-use system that will help ordinary users create, edit and
recover the motions of a human object. In this paper, we propose
a human motion extrapolation algorithm that can synthesize
new motions of a human object in a single image from a given
reference motion sequence. Our goal is to capture and transfer
the motion from the reference sequence to the input human
object to help ordinary user extrapolate motion sequences they
would like to have, even though their shape and sizemay be very
different. Basically, the method we proposed is a data-driven
based approach. We use a reference motion sequence as a guide
to synthesize the desirable motions of a human object. Fig. 1
shows the proposed framework, which consists of two major
phases: contour manifold construction and object motion syn-
thesis. The first phase, contour manifold construction, uses local
features to describe the articulated motion of a human body, and
then constructs contour manifolds to represent the human mo-
tion data in the manifold embedding space. Using the proposed
contour manifold to represent human motion ensures that our
method is robust to variations in the size, shape and kinematics of
human bodies. The second phase, object motion synthesis, first
generates a sequence of new shapes of the input human object
in the contour manifold space. It then renders the textures of
the derived shapes to synthesize the new motion sequence.
From a technical perspective, the contribution of this work

can be summarized in the following. Basically, our work con-
tributes to the society with two things. First, the proposed con-
tour manifold provides a compact representation of high dimen-
sional human motions, and it makes human motions analyz-
able and maneuverable. Since a human motion is composed of
a number of articulated motions, it is hard to represent in the
spatial domain. Besides, a same motion done by different in-
dividuals may be very different. For example, different people
have different sizes and the speed they perform the motion may
be quite different. By transforming the spatial domain into the
contour manifold domain, many problems that are originally ex-
isting in the spatial domain can now be solved. Second, the con-
structed contour manifolds provide a systematic way to manip-
ulate human motion efficiently in a low dimensional space. The
proposed algorithm can easily produce visually pleasing motion
sequences of an input object, with any number of motions and
for different purposes, because it exploits the constructed con-
tour manifold. In addition, the proposed method is developed in
a general manner. One can apply it to repair damaged human
subject sequences in digitized vintage films (as shown in Fig. 2)
for maintaining the original values. Another potential applica-
tion is to generate new video sequence by editing or creating
new video contents of video objects for movie industry.
The remainder of this paper is organized as follows. Section II

presents the proposed human motion extrapolation algorithm
which includes contour manifold construction for human mo-
tion and object motion synthesis. Section III details the experi-
ment results; and concluding remarks are drawn in Section IV.
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Fig. 1. Proposed framework.

Fig. 2. An example of damaged human subject repairing in a digitized vintage
film.

II. HUMAN MOTION EXTRAPOLATION

The synthesis and manipulation of human motion is a very
challenging task that usually involves high-dimensional data. It
also requires consistency in the spatiotemporal domain to ensure
the smoothness of a realistic human motion. In this paper, we
propose a novel motion extrapolation algorithm that automat-
ically synthesizes a sequence of human motions from a single
still image of one person and a given reference motion se-
quence , which can be performed by an-
other person. The representation of human motions usually re-
lies on sets of densely sampled contour points. As shown in
Fig. 3(a), a set of contour points is uniformly sampled on the
shape of . However, this representation would require a mas-
sive amount of high-dimensional data to describe a sequence

Fig. 3. Example of a shape context descriptor: (a) and (b) show the uniformly
sampled contour points and on the shape of motion and

; and (c) a diagram of the log-polar space.

of human motions, whose intrinsic structure tends to lie on a
lower-dimensional manifold. To manipulate human motions ef-
fectively, we propose a representation scheme called contour
manifold, which characterizes the time-evolving trajectories of
each contour point along their corresponding manifolds. Then,
we use the constructed contour manifolds as guides to synthe-
size new motions of the input shape . We
describe the proposed algorithm in detail in the following sub-
sections.

A. Contour Manifold Construction

Given a motion sequence , we first uni-
formly sample a set of contour points on the silhouette of each
single motion (or posture). Then, we estimate the correspon-
dence of the contour points between two consecutive postures

and to obtain the motion trajectory for each contour
point. To construct the contour manifolds, we apply a linear
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dimensionality reduction technique called Orthogonal Locality
Preserving Projection (OLPP) [20], which projects the motion
trajectories into lower-dimensional manifolds by preserving the
local neighborhood information in the spatial and temporal do-
main. The advantage of using OLPP is that the continuity of
each contour point on spatial and temporal domain will be pre-
served during the manifold construction process. The compu-
tational efficiency of the proposed method combined with the
data reconstruction ability of OLPP ensures that it is suitable
for practical applications.
1) Posture Correspondence Estimation: Establishing corre-

spondences between different postures is not a trivial task, espe-
cially for non-rigid human motions. To resolve the problem, we
propose using a cost-minimization method to initiate the cor-
respondences and then apply an error-match correction mecha-
nism to refine them further.
Two consecutive postures, and , are first uniformly

sampled into sets of contour points and ,
as shown in Fig. 3(a) and (b) respectively. Let

, where . The goal of posture corre-

spondence is to determine a one-to-one matching by
minimizing the total cost as follows:

(1)

where is a permutation func-
tion and indicates the cost of matching the con-

tour point in with in .
In (1), an effective cost measurement be-

tween a pair of matching points and need to be devel-
oped. To this end, we utilize the shape context [21] as the de-
scriptor, which measures a coarse diagram in a log-polar space
for each contour point. A shape-context based descriptor has
good discriminative power and good robustness against defor-
mations. Therefore, it can help obtain a good initial estimate for
determining posture correspondences. The cost of a matching
pair can be determined by the shape context as follows

(2)

where and denote the -th bin of the normalized
histogram in the log-polar space (as shown in Fig. 3(c)) around
and respectively. Hence, the cost minimization defined

in (1) is regarded as an assignment problem and solved by using
a bipartite graph matching method [22]. However, as shown in
Fig. 4(b), the estimated correspondences contain several error-
matches because the cost function only considers the cost of
matching two isolated points and ignores the global consistency.
To correct the error-matches in the initial estimate of ,

we employ an error-match correction mechanism, which is
implemented in two steps: error-match detection and corre-
spondence re-estimation. In the first step, we assume that the
correct correspondences will preserve a linear order of the
contour points sampled from a posture to maintain the global

Fig. 4. Example of estimated correspondence between and . (a) The
example of and . (b) The estimation done by bipartite correspondence
matching ; and (c) the corrected correspondences done by our method.
Purple line segments shown in (c) represent the perfectly matched parts between
the ground truth correspondences and the corrected correspondences.

consistency. Hence, we refer error-matches to those pairs that
do not satisfy the following rule:

(3)

After determining all the error-matches in , we re-estimate the
correspondence between those contour points by minimizing
the coordinate transformation error:

(4)

where denotes the TPS (Thin Plate Spline) transform es-
timated by using the approach in [23]. Finally, we re-arrange
the contour points in according to the permutation .
Fig. 4(a) shows an example of consecutive postures, and

, which are bounded by red rectangle. To precisely eval-
uate the performance of the proposed correspondence estima-
tion method, we manually connect the ground truth contour
points and the estimated corresponding contour points. Fig. 4(b)
shows the connections linked by the original bipartite corre-
spondence matchings. Fig. 4(c), on the other hand, shows the
correspondence matchings done by our proposed method. The
average success rate of the original correspondence matching
method was about 73% and the average success rate of our
proposed method was about 90%. Therefore, we use the pro-
posed method to perform correspondence estimation. Note that,
to simplify the notation, we use

to denote the permuted contour points
in the following sections.
2) Contour Manifold Construction: After determining

the correspondences between consecutive postures, we can
represent the human motion in terms of motion trajectories

, as shown in Fig. 5(a). Al-
though the trajectories provide a good representation of the
reference motion sequence , if the input
shape is very different from that of the reference sequence,
it may be difficult to transfer and synthesize a new motion
sequence for . However, as the motion trajectory of each
contour point lies on a lower-dimensional manifold embedded
in the 3-dimensional space , we should be able to
construct a lower-dimensional manifold to characterize the
non-rigid deformation of each contour point. In summary, to



TANG et al.: EXAMPLE-BASED HUMAN MOTION EXTRAPOLATION AND MOTION REPAIRING USING CONTOUR MANIFOLD 51

Fig. 5. Example of contour manifold construction: (a) the motion trajectory of
each contour point in the original space; (b) the constructed OLPP embedding
and the contour manifold of a contour point; (c) the back projected results

of . One thing to be noted is that the areas bounded by red rectangles in (a)
and (c) look different. It is obvious that the noises caused by the segmentation
problem are handled during the manifold construction process.

better analyze and manage motion sequences, we utilize con-
tour manifolds to find a compact representation that can capture
the continuous motion of each contour point independent of the
shape of the reference motion sequence.
Let be the 3-di-

mensional representation of the contour point and let

be the matrix of the input data, where is the number of
sampled contour points in each posture and is the length of
the input motion sequence. We apply OLPP [20] and use as
inputs to construct contour manifolds for each contour point.
The objective is to preserve the continuity of each contour point
along the temporal dimension. In addition, because spatially
neighboring contour points usually have very similar motion
trajectories, we include the spatial continuity in the contour
manifold construction process. Next, we describe the steps of
the construction process.
1) PCA Projection: First, we project the input motion data

of the contour points into the PCA subspace

by removing the components with a zero eigenvalue. In
this step, the transformation matrix of PCA is denoted by

.
2) Constructing the Adjacency Graph: Let denote the
graph with the nodes, as represented in the columns
of the matrix . Two nodes are connected by an edge when
they are neighbors in the spatial domain (i.e., and )
or in the temporal domain (i.e., and ).

3) Constructing the Weight Matrix: After deriving the
adjacency relationship in graph , we compute the edge
weight to construct a sparse symmetric weight matrix

. The weight of the edge between two
nodes is calculated as follows:

if and are connected
otherwise.

(5)

The setting of the parameter can be referred to [24]. The
weight matrix of graph characterizes the local struc-
ture of the contour points in both the spatial domain and
the temporal domain.

4) Computing the Orthogonal Basis Functions: In this step,
we define as a diagonal matrix whose entries are the
column sums of , i.e., ; and we let
be the Laplacian matrix defined by . We
select orthogonal basis vectors which
correspond to the largest eigenvalues and compute as
follows:
• Compute as the eigenvector of
associated with the smallest eigenvalue.

• Compute as the eigenvector of

(6)

where

(7)

(8)

associated with the smallest eigenvalue of .
5) Computing OLPP Embedding: Let

. The -dimensional OLPP
embedding is computed as follows:

(9)

where is the transformation matrix.
Fig. 5(b) shows an example of the constructed contour
manifolds in the OLPP embedding with .

Using the proposed manifold representation to represent
human motion in a lower-dimensional space has two major
benefits. First, the proposed contour manifolds provide a com-
pact representation that describes how the body shape varies in
a motion sequence. Because the computed contour manifolds
characterize the non-rigid deformation of each local part of
a human body, the representation is invariant to the scales of
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Fig. 6. Estimating the correspondence between the shape of the input object
and the reference posture: (a) the shape of input object, (b) the reference posture,
and (c) the estimated correspondence.

shapes and poses. Second, the contour manifolds provide a sys-
tematic way to manipulate human motion in a low dimensional
space. By using the continuous bijective mapping between the
lower-dimensional embedding and the original human motion
representation, we can easily modify and manipulate human
motion through interpolation or extrapolation on the contour
manifolds.

B. Object Motion Synthesis

After constructing the contour manifolds of the reference mo-
tion sequences , we can synthesize new
motions of the input object . The proposed motion synthesis
process involves two steps. The first step, shape synthesis, gen-
erates a sequence of new shapes of by deforming the latter’s
shape in the embedding space of contour manifolds. The second
step, object texture rendering, implements two processes, trian-
gular mesh deformation and texture transfer, which work to-
gether to render the corresponding textures of the synthesized
shapes.
1) Shape Synthesis: To synthesize new shapes of , we must

establish the correspondences between the shape of and the
first reference posture so as to deform each contour segment
of individually. Once again, we use the correspondence es-
timation method described in Subsection II.A to determine the
correspondence between and . Let

denote the set of contour points of in the order de-
termined by , as shown in Fig. 6. The sets of uniformly sampled
contour points of the shapes and are shown in Fig. 6(a)
and (b) respectively; and Fig. 6(c) shows the estimated corre-
spondence.
After obtaining the set of contour points

in the -th frame, we synthesize a new shape by
deforming each contour segment of in the constructed con-
tour manifolds. Let denote the contour seg-
ment between two contour points and in . We calcu-
late the coordinate of on by mapping the contour em-
bedding back to the input motion space as follows:

(10)

where is the computed transformation matrix in (9), and
is the embedding of in

the -th contour manifold. Fig. 5(c) shows an example of
back projection result of . The coordinates of all
the contour points in are then extracted from by

. We also need to determine the
coordinates of all the pixels located in the
contour segment . Since we have the

Fig. 7. An example of shape synthesis: (a) the rotation , scale and transla-
tion of a contour segment ; and (b) the shape (in red) and the
synthesized shape (in blue).

Fig. 8. Triangular mesh deformation: (a) an example of mesh triangulation;
(b) the handle constraints, vertices and edges of the meshes; (c) the surrounding
vertices of the edge ; (d) the deformed meshes.

corresponding contour segment in for each
contour segment in , we perform affine transforma-
tion directly on to obtain . As illustrated in Fig. 7(a),
the contour segment is affine transformed from with
rotation angle , scaling , and translation displacement

. That is,

(11)

Fig. 7(b) shows an example of and the synthesized .
After the new shapes of the input object corresponding
to the -th reference posture has been synthesized,
we start to render the object’s texture.
2) Object Texture Rendering: To render the texture of the

synthesized shapes from for , we
first decompose into a set of triangular meshes. Then, we
exploit a triangular mesh deformation process to deform every
triangular mesh from to . We describe the steps in detail
below.
First, we take the contour points on as inputs and

apply the constrained conforming Delaunay triangulation algo-
rithm [25] to decompose into triangular meshes. Let and
denote, respectively, the set of directed edges and the set of

vertices in . Fig. 8(a) shows an example of mesh triangula-
tion, and Fig. 7(b) shows the contour points , the derived
vertices and edges of .
Next, we use a modified version of an edge-based mesh de-

formation algorithm [26] to deform all the triangular meshes
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in by minimizing the distortion of the deformed edges. In
this algorithm, we use the edges as inputs and the contour
points and on and as the given constraints
(called “handles” in the deformation algorithm) to guide the de-
formation process. The goal is to find the vertex set by
minimizing the distortion between the directed edges under the
handle constraint:

(12)

where is the vertex coordinate of the triangular meshes on
is the vertex coordinate of the triangular meshes on

the synthesized shape , and is a weight factor. The rota-
tion matrix is used to convert the vertices around the edge
(as shown in Fig. 8(c)) into new positions that are as close as
possible in a least-square sense. It can be obtained by

(13)

where is the set of vertices around
the edge , as shown in Fig. 8(c). Details of the deriva-
tion of the closed-form solution can be found in [26]. Since
the contour points and were obtained by (10) in
the shape synthesis step, we can now obtain all the vertices of
the deformed triangular meshes in automatically. Fig. 8(d)
shows the deformed triangular meshes.
After obtaining the vertex set of the deformed trian-

gular meshes, we transfer the texture from the triangles at the
-th posture to the deformed triangles at the -th posture.
Let be a triangle at the -th posture, and let

be its corresponding triangle at the
-th posture. We convert each point inside the triangle

into the barycentric coordinate system by

(14)

where , and are the barycentric coordinates and are
subject to the constraint .
During the texture transfer operation, we need to determine

the corresponding point for each , as shown in Fig. 9.
Since all the vertices of the two triangles are given, we use linear
interpolation to determine the point by solving the following
linear system:

(15)

Fig. 10 shows an example of the texture transfer operation, and
Fig. 11 shows two rendered objects.

Fig. 9. Illustration of the point correspondence between the original object and
its deformed triangular meshes.

Fig. 10. An example of texture transfer: (a) the input object and its triangular
meshes; (b) the result of texture transfer.

Fig. 11. Examples of object texture rendering: (a) and (c) are two original ob-
jects, and (b) and (d) are the corresponding rendered results.

III. EXPERIMENT RESULTS

To assess the effectiveness of the proposed human motion
extrapolation method, we conducted three experiments for
different applications, namely, motion extrapolation and mo-
tion repair. We implemented the proposed algorithm on an
i7-3.4 GHz machine. All the experimental results related to
this work can be found at http://research.twnct.net/MExtrapo-
lation/. To extract the accurate object images from all motion
sequences, we first apply our previous work [27] to obtain a
background image and then use it as basis to extract the fore-
ground object by using a well-known background subtraction
algorithm proposed by Barnich and Van Droogenbroeck [28].
In the first experiment, we used a set of images downloaded

from the Internet as input objects and adoptedour ownmotion se-
quences as referencemotions to synthesize new sequences of the
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Fig. 12. Experiment 1—Motion extrapolation on sequences #1, #2, #3, #4 and #5: (a), (c), (e), (g) and (i) are the input objects downloaded from the Internet and
(b), (d), (f), (h) and (j) are the respective motion extrapolation results derived by the proposed algorithm.

TABLE I
MOTION SEQUENCES USED IN MOTION EXTRAPOLATION EXPERIMENTS. CMC STANDS FOR CONTOUR MANIFOLD CONSTRUCTION. OMS STANDS FOR OBJECT

MOTION SYNTHESIS

input objects. Fig. 12(a), (c), (e), (g) and (i) are the input objects.
The corresponding motion extrapolation results are shown in

Fig. 12(b), (d), (f), (h) and (j). Table I shows the test sequences
used in the first set of experiments and their corresponding
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Fig. 13. Experiment 2—Motion repair in sequence #5: (a) part of the damaged motion sequence; (b) the reference motions performed by an actor; (c) part of the
reconstructed motions derived by the proposed algorithm; (d) and (e) the reconstructed motions and the ground truth.

execution time. The computation time of Isomap [29], LLE [30]
and our method respectively illustrated in Table I. The results
of this experiment demonstrate that the proposed method can
synthesize new motions of a human object successfully, even if
the user only provides a single image of the object.
In the second experiment, we applied the proposed algorithm

to a damaged motion sequence to repair the missing motions.
The goal was to reconstruct the missing motions from undam-
aged motions while maintaining the spatiotemporal continuity
of the repaired sequence. For example, in Fig. 12, assume that
the consecutive motions between the two undamaged motions

and are missing. Because the undamaged motions
only contain limited information, applying linear interpolation
in the temporal domain would result in a poor performance.
Therefore, we hired an actor to perform a sequence of motions

(shown in Fig. 12(b)) as a reference between
the undamaged motions and (marked by red rectangles
in Fig. 12(b)). Then, with the reference motion sequence ,
we searched for the motions that were most similar to and

in based on the shape similarity defined by

(16)

In (16), and are the uniformly sampled contour points
on the shapes of the motion in and (or ) respec-
tively; and the function measures the cost of matching
two sets of contour points, as defined in (2). After deriving the
most similar motions and of and , we use the
sequence of reference motions between and to syn-
thesize the missing motions with the proposed motion extrapo-
lation algorithm. Fig. 13(a) shows part of the damaged motion
sequences; Fig. 13(b) shows part of the filmed reference motion
sequences and the discovered reference pos-
tures and (marked by green rectangles in the figure);
Fig. 13(c) shows the reconstructed motions derived by the pro-
posed motion extrapolation algorithm; and Fig. 13(d) and (e)
compare the reconstructed motions with the ground truth.
To check whether a repaired motion sequence is visually

pleasant or not, we compare our method with the methods
proposed in [11], [18]. We execute our algorithm and the two
algorithms proposed in [11] and [18] to repair the missing mo-
tions of two damaged motion sequences prepared by ourselves
(http://research.twnct.net/MExtrapolation/vote/). Figs. 14 and
16 show, respectively, the results of the three compared methods
applied on the two damaged motion sequences. In the two fig-
ures, the black parts are the difference portions belonging to
the ground truth postures and the red parts are the difference
portions belonging to the reconstructed postures. As to the blue
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Fig. 14. Sequence #6: Comparison of the ground-truth motions and reconstructed missing motions (the parts in black, red, and blue represent the ground-truth
motions, the reconstructed motions, and the perfectly matched portions respectively).

Fig. 15. Experiment 2—Motion repairing result of sequence #6. (a) “Blank” represents the damaged portions of the damaged motion sequence; (b), (d) and (d)
are the reconstructed motions done by the proposed algorithm, Xu et al.’s algorithm [11] and Ding et al.’s algorithm [18] respectively.

parts, they represent the perfectly matched parts between the
ground truth postures and the reconstructed postures. Figs. 15
and 17 show the motion repairing results of motion sequence
#6 and #7, respectively. The “Blank” portion of Figs. 15(a)
and 17(a) represent the damaged video frames of sequence #6

and #7, respectively. Figs. 15(b)–(d) and 17(b)–(d) are recon-
structed motion sequences done by the proposed algorithm, Xu
et al.’s algorithm [11], and Ding et al.’s algorithm [18], respec-
tively. It is obvious that the work done by our algorithm is much
better than the work done by the two comparison methods.
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Fig. 16. Sequence #7: Comparison of the ground-truth motions and reconstructed missing motions (the parts in black, red, and blue represent the ground-truth
motions, the reconstructed motions, and the perfectly matched portions respectively).

Fig. 17. Experiment 2—Motion repairing result of sequence #7. (a) “Blank” represents the damaged portions of the damaged motion sequence; (b), (c) and (d)
are the reconstructed motions done by the proposed algorithm, Xu et al.’s algorithm [11] and Ding et al.’s algorithm [18] respectively.

To check the degree of user satisfaction, we create a website
http://research.twnct.net/MExtrapolation/vote/, and upload the
motion sequences #6 and #7 as well as the reconstructed results
done by our algorithm, Xu et al.’s algorithm [11] and Ding et
al.’s algorithm [18], respectively. Fig. 18 shows for sequence
#6, our result received the highest score, Ding et al.’s algorithm
the second, and Xu et al.’s algorithm the third. In the case of
sequence #7, our algorithm, again, received the highest score.

Ding et al.’s algorithm and Xu et al.’s algorithm are the second
and third again.

IV. DISCUSSION AND CONCLUSION

We have proposed a novel human motion extrapolation algo-
rithm for synthesizing new motion sequences of an object with
minimum user intervention. To demonstrate the efficacy of the
algorithm, we conducted three sets of experiments on several
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Fig. 18. User satisfaction questionnaire result of the motion repairing result derived by the proposed algorithm, Xu et al. [11] and Ding et al. [18].

test sequences. The results demonstrate that the algorithm can
produce visually pleasing results in a wide range of applications,
such as motion extrapolation, motion synthesis and motion re-
pair operations. In addition, all of the results are produced au-
tomatically. The user only needs to input a human object and
a reference motion sequence. The contribution of this work is
twofold. First, the proposed contour manifold provides a com-
pact representation of high dimensional human motions, and it
makes human motions analyzable and maneuverable. Second,
The constructed contour manifolds provide a systematic way
to manipulate human motion efficiently in a low dimensional
space.
The proposed contour manifold computation algorithm has

two limitations, which we will address in our future work.
First, the algorithm relies heavily on the results of shape
correspondence estimation. If the reference motion sequence
contains many self occlusions the proposed correspondence
estimation method would fail to estimate the correspondence of
the occluded parts. Second, because the object motion synthesis
algorithm uses the textures of an input object to synthesize new
images of the object, visual defects may appear in the resulting
motion sequences if the new motion of the input object is very
different from the original one. To solve the self occlusion
problem, we will try to improve the feasibility of our shape
correspondence estimation method by incorporating different
features.
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