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Abstract: We convert calculations of the bound-to-continuum absorption
in type-II semiconductor quantum wells into an equivalent source-radiation
problem under the effective-mass approximation with band mixing. Per-
fectly matched layers corresponding to the eight-band Luttinger-Kohn
Hamiltonian are introduced to incorporate the effect of quasi-bound states
in open regions. In this way, the interplay between quantum tunneling and
optical transitions is fully taken into account. From resulted lineshapes of
the Fano resonance, we can evaluate tunneling rates of these metastable
states and related absorption strengths relative to those of the continuum.
The approach here is useful in estimations of carrier extraction rates from
type-II nanostructures for photovoltaic applications.
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1. Introduction

The optical transitions in type-II semiconductor nanostructures are spatially indirect due to
staggered alignments of conduction-band minima and valence-band maxima. Since electrons
and holes are separated from each other, their wave-function overlaps are smaller than their
type-I counterparts. This effect reduces various transition rates, both radiative and nonradia-
tive, in type-II structures. Although the weaker absorption and emission in these nanostructures
do make photon conversions less efficient in device applications, the lower nonradiative re-
combination rate is beneficial in other aspects. For example, the Auger recombination that is
common in narrow-bandgap semiconductors is lower in type-II nanostructures than in their
type-I counterparts [1, 2].

In addition to electron-hole separations, carriers are not necessarily tightly bound to nanos-
tructures in type-II cases. Regions that are barriers for one type of carriers may be free spaces for
those of the other type. For unconfined carriers, there may not be true bound states, but so-called
quasi-bound states that appear as energy resonances of nanostructures may be present. Physi-
cally, carriers in the corresponding metastable states are initially generated near nanostructures
but ultimately leave there. If this process is fast, the carriers in these states can be rapidly trans-
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ferred to some separated channels/contacts before the (non)radiative recombination in nanos-
tructures takes place. In this way, with some designs, the absorption of type-II nanostructures
can be enhanced while the influence of nonradiative recombination remains mild.

The absorption of semiconductor nanostructures can be estimated with a few quantum-
mechanical formalisms. These methods, nevertheless, presume that all the final states includ-
ing unbound ones in an infinite domain containing the nanostructure are known. The domain
size which ideally approaches infinity is crucial. In this limit, quantization conditions of states
such as standing-wave and periodic boundary conditions (BCs) at outer domain boundaries
should not affect responses around nanostructures. However, practical computations are carried
out in finite domains. If domain sizes are not sufficiently large, the artificial quantization due
to domain truncations can interfere with intrinsic quantum-mechanical features [3]. This phe-
nomenon is unwanted if the original lineshapes do reflect some physics or dynamics. On the
other hand, perfectly matched layers (PMLs) are commonly implemented in computations of
electromagnetism to avoid unwanted reflections from outer domain boundaries [4–6]. In other
words, these layers approximate the outgoing-wave BC and play the role of open spaces. They
have also been adopted in calculations of electronic tunneling rates (imaginary parts of complex
eigenenergies) for resonant tunneling diodes [7] and metal-oxide-semiconductor junctions [8],
from which carriers escape without returning. In addition, these setups were utilized in the
(magneto-) excitonic absorption within the two-band model [3, 9, 10]. Comparisons between
cases with/without PMLs do show their essences [3]. Since PMLs model open spaces well,
they can be a solution to domain truncations and keep the computation domain compact.

In this work, we generalize the aforementioned applications of PMLs to the bound-to-
continuum absorption of type-II coupled quantum wells (QWs) with characteristics of tunneling
inherent in quasi-bound states taken into account. Optical transitions of carriers from valence to
conduction states are coherently interfered with the tunneling through conduction barriers. This
effect results in various Fano resonances [11], of which their magnitudes determine absorption
strengths, and spectral widths and skewness of their lineshapes reflect tunneling rates (coupling
strengths) and interferences between the absorptions corresponding to metastable and contin-
uum states. Unlike electronic cases [7, 8], the absorption and tunneling are not separable now
and need to be considered simultaneously.

We convert evaluations of the absorption into a source-response problem [12, 13] through
the Green functions of the eight-band Luttinger-Kohn (LK) Hamiltonian [14–18] corrected by
Bir-Pikus (BP) strain terms [19]. Here, the source in this eight-band space is related to the mo-
mentum operation of initial states in bound valence subbands. While various Green functions
with different BCs may be utilized [20], we adopt the retarded one, which is motivated by the
effective outgoing-wave BC of PMLs, namely, sources radiate in the eight-band space. In this
way, we do not really solve the quasi-bound states but setup their presence through PMLs. In
fact, neither do we construct the retarded Green function of the eight-band Hamiltonian due to
its cumbersomeness. Rather, we directly tackle the problem by computing the source-generated
field, which is governed by the wave equation of the eight-band Hamiltonian with band mixing.

The remaining of this paper is organized as follows. In section 2, we first introduce the
eight-band effective Hamiltonian [16] as applied to type-II coupled QWs. Then, we begin from
the density-matrix formalism and convert the bound-to-continuum photon absorption in the
presence of quantum tunneling into an effective source-radiation problem in the eight-band
space of this Hamiltonian. The inclusion of PMLs is presented afterward. In section 3, we
apply this approach to type-II coupled QWs based on the gallium-arsenide-antimony (GaAsSb)
material system and utilize characteristics of the Fano lineshape to extract tunneling lifetimes
of the metastable states and their absorption magnitudes relative to those of the continuum (the
Fano parameter). A conclusion is given in section 4, and technical details are left in appendices.
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2. Theoretical formulation

2.1. Eight-band effective Hamiltonian

The k ·p method is a technique for the bandstructure calculations of semiconductor bulks and
nanostructures near the Brillouin zone (BZ) center. The eight-band LK Hamiltonian corrected
by BP strain terms is a variant of the technique. In this scheme, two conduction and six valence
bands are considered. The six valence bands include two heavy-hole (HH), two light-hole (LH),
and two spin-orbit split-off (SO) bands. In addition, the spin-orbit coupling, corrections from
other bands (Loẅdin’s perturbations up to the second order in the wave vector k) [16, 21], and
strain effect are incorporated in this method. Details on Bloch parts |ul〉 of these bands at the
BZ center and matrix elements Hl′l [k] of the eight-band Hamiltonian in bulk semiconductors
(l, l′ = 1−8 for two conduction and six valence bands) are presented in appendix A.

In semiconductor QWs, the position (r) representation Ψ(n,kt)(r) of state |n,kt〉 is approxi-
mated in the eight-band space as

Ψ(n,kt)(r) = 〈r|n,kt〉 � eikt·ρρρ
√

AQW

8

∑
l=1

φ (n,kt)
l (z)ul(r), (1)

where n is the subband label which may indicate the unbound continuum; kt is the wave vector
transverse to the growth direction z ([001] crystal axis); ρρρ is the transverse coordinate; AQW is

the QW area; φ (n,kt)
l (z) is the envelop function of band l; and ul(r) are position representations

of Bloch parts |ul〉. If subband n is a bound one, the envelop functions φ (n,kt)
l (z) can be properly

normalized as ∑l
∫

dz|φ (n,kt)
l (z)|2 = 1. On the other hand, the normalization of unbound sub-

bands may depend on n in a nontrivial way. Utilizations of the Green function would, however,
resolve the issue.

We first turn the Hamiltonian matrix elements Hl′l [k] of bulk semiconductors into real-space

operators, from which we construct the Schrodinger’s equation of envelop functions φ (n,kt)
l (z)

under the multiband effective-mass approximation as

8

∑
l=1

Hl′l [kt,kz =−i∂z]φ
(n,kt)
l (z) = En,ktφ

(n,kt)
l′ (z), (2)

where the wave-vector component kz is replaced with the differential operator −i∂z ≡−i∂/∂ z;
and En,kt is the eigenenergy of state |n,kt〉 and may depend on label n in a continuous fashion
for unbound subbands. In Eq. (2), whenever the operator −i∂z and a spatial function appear
together in Hl′l [kt,kz =−i∂z], the hermitian forms are adopted:

A(z)[−i∂z]
2 →−∂zA(z)∂z, B(z)[−i∂z]→− i

2
[B(z)∂z +∂zB(z)] , (3)

where A(z) and B(z) are some spatial functions of z.
The multiband Schrodinger’s equation in Eq. (2) is an eigenvalue problem. For bound sub-

bands, we adopt the finite-difference (FD) method to solve envelop functions φ (n,kt)
l′ (z) and

energies En,kt [22, 23]. For unbound ones, no calculations of envelop functions and energies
would be carried out, but the FD scheme is still utilized in the equivalent source-radiation ap-
proach to be described in section 2.2. In addition, if the anisotropy of bandstructures is minor,
namely, En,kt mostly depends on the magnitude kt of transverse wave vector kt rather than on its
direction, the axial approximation is often adopted [15, 16]. After some basis transformations,
this approximation block-diagonalizes the eight-band Hamiltonian into two four-band ones.
Note that the new eigenenergies and envelop functions of the two four-band Hamiltonians only
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depend on kt, and the directional dependence of calculations on kt can be simplified or removed
in this way. The property reduces the amount of computations significantly but does not alter
the tunneling effect much. Therefore, this approximation is applied here. Details on the axial
approximation are presented in appendix B.

2.2. Source-radiation approach to photon absorption

From the density-matrix formalism, the relative permittivity tensor εr,i j(ω) (i, j = x,y,z) at a
frequency ω corresponding to bound-to-continuum transitions with negligible photon momenta
(k selection rules) can be expressed as [21, 24]

εr,i j(ω) = εr,b,i j(ω)+
1

ε0VQW
∑
kt

∑
n,n′

′ ( fn,kt − fn′,kt

)

×
(

e
m0ω

)2( pi
nn′,kt

p j
n′n,kt

En′n,kt − h̄ω − iϒkt

+
p j

nn′,kt
pi

n′n,kt

En′n,kt + h̄ω + iϒkt

)
, (4)

where εr,b,i j(ω) is the relative background permittivity; ε0 is the vacuum permittivity; VQW is
the volume of coupled QWs and is set to AQWhQW with hQW being the total thickness of coupled
QWs; e and m0 are the charge and mass of free electrons, respectively; h̄ is Planck constant; n
is the label of bound valence subbands while n′ is that of final subbands including quasi-bound
ones in conduction bands; pj

n′n,kt
= 〈n′,kt|p j|n,kt〉 is the matrix element of the momentum

operator p j in direction j ( j = x,y,z); En′n,kt is the energy difference En′,kt −En,kt ; ϒkt is the
half width at half maximum (HWHM) of the transition due to various relaxation and dephasing
mechanisms for states at kt; fn,kt and fn′,kt are occupation numbers of the corresponding states
and are modeled as the Fermi-Dirac distribution fFD(E) = {exp[(E −EF)/(kBT )]+1}−1 with
the Fermi energy EF and thermal energy kBT ; and the prime (′) after the summation over n and
n′ means that only subband pairs (n,n′) with En′,kt > En,kt are considered.

For most of the cases in which the time-reversal symmetry of quantum states is unbroken
(absence of the magnetism or external magnetic field), the permittivity tensors εr,i j(ω) and
εr,b,i j(ω) are symmetric with respect to indices i and j. Under such circumstances, we can
rewrite εr,i j(ω) = [εr,i j(ω)+ εr, ji(ω)]/2 as

εr,i j(ω) = εr,b,i j(ω)+
1

ε0VQW
∑
kt,n

Xn,kt,i j(ω), (5a)

Xn,kt,i j(ω) =

(
e

m0ω

)2

∑
n′

′ 1
2

(
fn,kt − fn′,kt

)(
pi

nn′,kt
p j

n′n,kt
+ p j

nn′,kt
pi

n′n,kt

)

×
(

1
En′n,kt − h̄ω − iϒkt

+
1

En′n,kt + h̄ω + iϒkt

)
. (5b)

The imaginary part of the function Xn,kt,i j is directly related to the polarized absorption αi(ω) =

2(ω/c)Im
[√

εr,ii(ω)
]

(i = x,y,z) and is further approximated as [21]

αi(ω)≈ 1
√

Re [εr,b,ii(ω)]

(ω
c

){
Im [εr,b,ii(ω)]+

1
ε0VQW

∑
kt,n

Im [Xn,kt,ii(ω)]

}
. (6)

In Eq. (6), we obtain the transverse-electric (TE) and transverse-magnetic (TM) absorption
spectra if i is set to x (y) and z, respectively. After taking the imaginary part of Xn,kt,i j(ω), we
turn the content inside the last parentheses of Eq. (5b) into two Lorentzians. In this way, we
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may alternatively express Im[Xn,kt,i j(ω)] as

Im
[
Xn,kt,i j(ω)

]
=

(
e

m0ω

)2[
In,kt,i j(ω)−In,kt,i j(−ω)

]
, (7a)

In,kt,i j(ω) =
∫ ∞

0
dω ′ 1

π
ϒkt/h̄

[(ω −ω ′)2 +(ϒkt/h̄)2]
Im
[
Vn,kt,i j(ω ′)+Vn,kt, ji(ω

′)
]
, (7b)

Vn,kt,i j(ω ′) =
1
2

[
fFD(En,kt)− fFD(En,kt + h̄ω ′)

]
∑
n′

pi
nn′,kt

p j
n′n,kt

En′,kt − (En,kt + h̄ω ′)− iη
, (7c)

where η = 0+ is an infinitesimal positive number; and we no longer constrain the summation
over n′ in Eq. (7c) with the condition En′,kt > En,kt because the integration in Eq. (7b) is only
performed at ω ′ > 0. Calculations of polarized absorption spectra αi(ω) for type-II coupled
QWs are now simplified to evaluations of the function Vn,kt,i j(ω ′) which solely reflects intrinsic
features of the initial and final states other than broadenings (ϒkt ).

The band mixing effect needs to be taken into account in the evaluations of momentum matrix
elements in the eight-band space. Analogous to the k ·p method, matrix elements of the eight-
band Hamiltonian may be written as Hl′l [k]� Hl′l [0]+ (h̄/m0)k ·pl′l [k = 0]+O(kik j). Further
generalizing this analogy, we express the momentum matrix elements of bulk semiconductors
in the eight-band space as [17, 25]

pl′l [k] =
m0

h̄
∇kHl′l [k] = ΓΓΓl′l + h̄kzQl′l + h̄ΛΛΛl′l [kt], (8)

where ΓΓΓl′l , Ql′l , and ΛΛΛl′l [kt] are matrix elements derived from Hl′l [k]. The expressions of these
matrices are shown in appendix C. For nanostructres, we replace pl′l [k] with real-space oper-
ators pl′l [kt,kz = −i∂z] and calculate momentum matrix elements pj

n′n,kt
( j = x,y,z) with the

hermitian form in Eq. (3) and envelop functions as follows [17, 25, 26]:

p j
n′n,kt

= 〈n′,kt|p j|n,kt〉= ∑
l′,l

∫ ∞

−∞
dzφ (n′,kt)∗

l′ (z)p j,l′l [kt,kz =−i∂z]φ
(n,kt)
l (z)

≡ ∑
l′

∫ ∞

−∞
dzφ (n′,kt)∗

l′ (z)J(n,kt)
j,l′ (z), (9)

where p j,l′l [kt,kz =−i∂z] = ĵ ·pl′l [kt,kz =−i∂z] ( j = x,y,z); and a new field J(n,kt)
j,l′ (z) resulted

from the momentum operation is defined as

J(n,kt)
j,l′ (z)≡ ∑

l

p j,l′l [kt,kz =−i∂z]φ
(n,kt)
l (z)

= ∑
l

{

Γ j,l′l(z)φ
(n,kt)
l (z)− ih̄

2

(
Qj,l′l(z)∂z[φ

(n,kt)
l (z)]+∂z

[
Qj,l′l(z)φ

(n,kt)
l (z)

])

+ h̄Λ j,l′l [kt,z]φ
(n,kt)
l (z)

}

. (10)

In Eq. (10), Γ j,l′l(z), Qj,l′l(z), and Λ j,l′l [kt,z] are the j component ( j = x,y,z) of the matrix
elements ΓΓΓl′l(z), Ql′l(z), and ΛΛΛl′l [kt,z], respectively, and we have included the position depen-
dence (z) in their arguments due to the presence of coupled QWs.

Using the integral form of matrix element p j
n′n,kt

in Eq. (9), we rewrite function Vn,kt,i j(ω ′)
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in Eq. (7c) as

Vn,kt,i j(ω ′) =
1
2

[
fFD(En,kt)− fFD(En,kt + h̄ω ′)

]

×∑
l,l′

∫ ∞

−∞
dz
∫ ∞

−∞
dz′J(n,kt)∗

i,l (z)G(R)
kt,ll′(z,z

′,En,kt + h̄ω ′)J(n,kt)
j,l′ (z′), (11)

where the retarded Green function G(R)
kt,ll′(z,z

′,E) in the eight-band space is

G(R)
kt,ll′(z,z

′,E) = ∑
n′

φ (n′,kt)
l (z)φ (n′,kt)∗

l′ (z′)
En′,kt −E − iη

. (12)

We further construct a field F(n,kt)
j,l (z,ω ′) from J(n,kt)

j,l′ (z) and this Green function through a
response integral:

F(n,kt)
j,l (z,ω ′) = ∑

l′

∫ ∞

−∞
dz′G(R)

kt,ll′(z,z
′,En,kt + h̄ω ′)J(n,kt)

j,l′ (z′), (13)

with which we reorganize Vn,kt,i j(ω ′) in Eq. (11) as

Vn,kt,i j(ω ′) =
1
2

[
fFD(En,kt)− fFD(En,kt + h̄ω ′)

]
∑
l

∫ ∞

−∞
dzJ(n,kt)∗

i,l (z)F(n,kt)
j,l (z,ω ′). (14)

Analogous to cases in electromagnetism, the summation of various spatial integrals over l in
Eq. (14) resembles the complex source-generated power density −J∗s (r) ·E(r) in Poynting’s
theorem, where Js(r) and E(r) are the source and electric field, respectively. Furthermore, the
radiation field E(r) is connected to the source Js(r) through a dyadic Green function, which is

similar to the relation between F(n,kt)
j,l (z,ω ′) and J(n,kt)

j,l (z) in Eq. (13). From this viewpoint, we
have converted calculations of absorption spectra into an equivalent source-radiation problem
in the eight-band space of the effective Hamiltonian.

Rather than working on the wave functions of quasi-bound states which are not properly
solved under the truncation of computation domains, we disguise them into the retarded Green
function. However, neither do we explicitly construct this Green function in the eight-band

space due to its cumbersomeness. In fact, we solve F(n,kt)
j,l (z,ω ′) through the differential equa-

tion of the eight-band effective Hamiltonian. The retarded Green function is the inverse operator
of the eight-band effective Hamiltonian up to a (complex) energy shift, namely,

8

∑
l=1

{
Hl̃l [kt,kz =−i∂z]− (E + iη)δl̃l

}
G(R)

kt,ll′(z,z
′,E) = δl̃l′δ (z− z′), (15)

where the presence of Kronecker delta δl̃l′ and Dirac delta function δ (z− z′) is due to the

completeness relation of envelop functions φ (n′,kt)
l (z): ∑n′ φ

(n′,kt)
l (z)φ (n′,kt)∗

l′ (z′) = δll′δ (z− z′).
This relation directly incorporates the normalization of various states, including bound and
quasi-bound ones, into the retarded Green function. Utilizing Eqs. (13) and (15), one can show

that the field F(n,kt)
j,l (z,ω ′) is the solution of the following differential equation:

8

∑
l=1

{
Hl̃l [kt,kz =−i∂z]− (En,kt + h̄ω ′+ iη)δl̃l

}
F(n,kt)

j,l (z,ω ′) = J(n,kt)

j,l̃
(z). (16)

Equation (16) indicates that the response F(n,kt)
j,l (z,ω ′) is generated by the source J(n,kt)

j,l (z),

namely, a source-radiation problem in the eight-band space. The field F(n,kt)
j,l (z,ω ′) can be di-

rectly solved from Eq. (16) rather than Eq. (13), where the retarded Green function is used.
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Fig. 1. The band diagram of type-II GaAs0.7Sb0.3 coupled QWs. The strained conduction
bandedge Ec,s and valence counterpart Ev,s are marked in red lines. The blue lines indicate
energies of a few bound valence subbands at the BZ center. The PMLs (green regions) at
two ends of the computation domain effectively model the open regions.

2.3. Perfectly-matched layers in eight-band space

Since we adopt the retarded Green function in the formulation, the causality requires generated
fields due to localized sources to be outgoing at z →±∞. Numerically, the outgoing-wave BC

has to be imposed on the response field F(n,kt)
j,l (z,ω ′). To realize this BC in finite computation

domains, we apply PMLs to the source-radiation problem in section 2.2.
In Maxwell’s equations, PMLs are often introduced through the complex-stretched coordi-

nate [5, 6]. They are present at rims of computation domains as some effective media which
absorb outgoing waves and avoid reflections there [4]. As shown in Fig. 1, for the type-II
GaAs0.7Sb0.3 coupled QWs to be considered in section 3, we can also apply this concept to the
differential equation in Eq. (16) and locate the corresponding effective media at two ends of the
computation domain [7]. We adopt the complex-stretched coordinate zs(z) as follows:

zs(z) = z+ izI(z) =

⎧
⎪⎪⎨

⎪⎪⎩

z− iκ
(

zL−z
hz

)m
, zout,L < z < zL,

z, zL < z < zR,

z+ iκ
(

z−zR
hz

)m
, zR < z < zout,R,

(17)

where zL and zR are the left and right boundaries at which the central computation domain con-
tacts the left and right PMLs, respectively; zout,L (zout,R) is the leftmost (rightmost) boundary of
the whole computation domain; m (≥ 1) indicates the order of complex-stretched coordinates
in PMLs; and hz and κ are some length scales. In accordance to the definition of the complex-
stretched coordinate in Eq. (17), the corresponding partial derivative with zs is related to that
with the real-space one (z) as ∂zs = ∂/∂ zs = [sz(z)]−1∂z, where the stretching parameter sz(z) is
defined as sz(z) = ∂ zs(z)/∂ z [7]. We note that outgoing waves exp(±ikzzs) propagating along
±z directions become exponentially decreasing toward z →±∞ with the factor exp[−kz|zI(z)|]
once they enter PMLs. If these PMLs are sufficiently thick, outgoing waves become exponen-
tially small before they reach the outmost boundaries of the computation domain and virtually
do not reflect back. Under such circumstances, results of calculations would be insensitive to
the true BC at the outmost boundaries, and we can choose whatever BCs that are convenient
for our numerical implementations, for example, the null Dirichlet (hard-wall) BC.

Suppose that in the space of zs, the field F̂(n,kt)
j,l (zs,ω ′) is generated by a finite-extent source
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Ĵ(n,kt)

j,l̃
(zs), namely, F̂(n,kt)

j,l (zs,ω ′) is the solution to Eq. (16) in the presence of Ĵ(n,kt)

j,l̃
(zs) as z is

changed to zs. We then carry out the transformation of zs(z) in Eq. (17) and write two resulted

fields F(n,kt,s)
j,l (z,ω ′) and J(n,kt,s)

j,l̃
(z) in the real space of z as

F(n,kt,s)
j,l (z,ω ′) = F̂(n,kt)

j,l (zs(z),ω ′), J(n,kt,s)
j,l̃

(z) = Ĵ(n,kt)

j,l̃
(zs(z)), (18)

where the superscript “s” means that the fields originate from the space of zs. The field

F(n,kt,s)
j,l (z,ω ′) and source J(n,kt,s)

j,l̃
(z) satisfy the following differential equation in the real space:

8

∑
l=1

{
Hl̃l

[
kt,kzs =−i[sz(z)]

−1∂z
]− (En,kt + h̄ω ′+ iη)δl̃l

}
F(n,kt,s)

j,l (z,ω ′) = J(n,kt,s)
j,l̃

(z), (19)

where the effect of PMLs comes into play through the stretching parameter sz(z). Since the pa-
rameter sz(z) is unity in the central computation domain (zL < z < zR), the differential equation

in Eq. (19) is identical to that in Eq. (16) in this region. Furthermore, if we set J(n,kt,s)
j,l̃

(z) to the

counterpart J(n,kt)

j,l̃
(z) in Eq. (16) and assume that both sources are solely present in the central

computation domain, the field F(n,kt,s)
j,l (z,ω ′) there would resemble the very field F(n,kt)

j,l (z,ω ′)

in Eq. (16) that is radiated into free spaces. In this way, the integrand J(n,kt)∗
i,l (z)F(n,kt)

j,l (z,ω ′)

in Eq. (14) can be well approximated with J(n,kt,s)∗
i,l (z)F(n,kt,s)

j,l (z,ω ′), which is then solely inte-
grated in the central computation domain.

In practical computations, we impose the hard-wall BC on the envelop function of bound
valence subbands n at boundaries z = zL and z = zR. This setup does not significantly alter the
properties regarding to bound subbands as long as the central computation domain is decently

large. In addition, the penetration of J(n,kt)

j,l̃
(z) into PMLs is avoided so that the aforementioned

procedures are applicable. Numerically, we use the FD method to discretize Eq. (19) in the
computation domain including PMLs. The resulted system of linear equations is then arranged
in the matrix form and solved.

3. Results and discussions

As an example, we calculate the bound-to-continuum absorption spectra of GaAs0.7Sb0.3/GaAs
type-II coupled QWs under different widths of GaAs0.7Sb0.3 layers at room temperature. The
features associated with the tunneling effect are also investigated and discussed. The axial ap-
proximation is adopted in calculations of bound valence subbands, which reduces the depen-
dence on the full transverse wave vector kt to that on its magnitude kt. Details of this approx-
imation are shown in appendix B. Here, it is sufficient to know that under the approximation,
states can be further classified into two groups labeled by an index σ = U,L indicating whether
they originate from the upper (U) block-diagonal Hamiltonian matrix operator or lower (L)
one. For states in subband n′ from either group, they are represented by four envelop functions

φ ′(σ ,n′,kt)
v (z) [v = 1− 4, and the superscript (′) means the joint space of two block-diagonal

Hamiltonian matrix operators]. These four envelop functions consecutively characterize the
conduction, HH, LH, and SO components.

The material parameters of GaAs and GaSb are listed in Table 1 [17, 18, 27–31]. Their pres-
ences in the eight-band Hamiltonian are shown in appendix A, and some related remarks are ad-
dressed here. The Luttinger parameters of GaAs [27] are chosen to avoid spurious solutions [28]
in eight-band calculations, and valence-band offset (VBO) energies of the two materials are ob-
tained from the model-solid theory [32] or empirical method [29, 30]. Linear interpolations
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Table 1. Material parameters in eight-band calculations

Parameter Symbol (unit) GaAs [18, 27] GaSb [17]
Lattice constant a (Å) 5.6533 6.0854
Band gap at 300K Eg (eV) 1.424 0.73 [29]
Spin-orbit split-off energy Δ (eV) 0.34 0.81
Deformation potentials ac (eV) −7.17 −7.5

av (eV) 1.16 0.8
b (eV) −1.7 −2.0

Elastic stiffness constants C11 (1011ba) 11.879 8.842
C12 (1011ba) 5.376 4.026

Optical matrix parameter Ep (eV) 25.7 22.4
Conduction effective mass mc (m0) 0.0665 0.0412
Inverse of bare relative γc 1.0 [28] 1.0 [28]
conduction effective mass
Luttinger parameters [17, 27] γL

1 7.65 11.84
γL

2 2.41 4.25
γL

3 3.28 5.01
Bare Luttinger parameters γ1 2.078 4.37

γ2 −0.376 0.52
γ3 0.494 1.28

Valence-band offset energy [29, 30] VBO (eV) 0.48 1.16
Dielectric constant [18, 31] εr,b 13.1 14.5

between the parameters of GaAs and GaSb are used to obtain those of GaAs0.7Sb0.3 except for
the bandgap energy Eg(x) and valence bandedge Ev(x) at an antimony composition of x = 0.3,
where the bowing parameters are set to −1.2 eV [29,33] and 1.08 eV (fitting to the experimental
data) [29], respectively.

We first consider type-II coupled QWs composed of a 5 nm central GaAs region and two 2
nm GaAs0.7Sb0.3 layers. The free spaces, including PMLs, are modeled as two GaAs regions
with a thickness of 16 nm outside the type-II nanostructure. The strained conduction bandedge
Ec,s and valence counterpart Ev,s (red lines) as a function of position z near these coupled QWs
are depicted in Fig. 1. The valence bandedge Ev,s of bulk GaAs is set to 0 eV as a reference.
The energies of these bound valence subbands at the BZ center are also marked (blue lines).
The two GaAs0.7Sb0.3 layers play the role of QWs for valence electrons or holes, but the high
conduction bandedges there turn them into barriers for conduction electrons. Unlike carriers in
bound valence subbands, conduction electrons only tentatively stay in some metastable states
of the central GaAs region but eventually leak out from the nanostructure.

In Fig. 2(a), we show bandstructures EU
n′,kt

of the bound valence subbands versus kt. The
spectrally dense valence subbands (black lines), of which the corresponding BZ centers are
below the valence bandedge of bulk GaAs (0 eV), originate from the ideally unbound space.
However, these subbands are significantly affected by the finite size of the computation do-
main, and the associated absorption would not be discussed here. For bound valence subbands,
there are four HH-like (HH envelop functions dominate, blue lines) and two LH-like ones (LH
counterparts dominate, red lines), and each of them is doubly degenerate (no splittings between
two groups of states labeled by σ = U,L). The first two HH-like subbands (HH1 and HH2) are

close in energies. Figures 2(b) and 2(c) show the envelope functions φ ′(U,n′,kt)
v (z) (v = 1−4) at

kt = 0 for the first and third bound valence subbands (n′ = 1,3). All these envelop functions can
be set real. At the BZ center, due to a nanostructure with the inversion symmetry, the envelop

#196164 - $15.00 USD Received 22 Aug 2013; revised 3 Nov 2013; accepted 24 Nov 2013; published 6 Dec 2013
(C) 2013 OSA 16 December 2013 | Vol. 21,  No. 25 | DOI:10.1364/OE.21.030778 | OPTICS EXPRESS  30787



0 1 2
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
(a)

 = U

HH1
HH2
LH1

LH2
HH3

HH4

kt (nm-1)

E
ne

rg
y 

(e
V

)

-10 -5 0 5 10-0.1

0

0.1

0.2
(b)HH1  = U

Fu
nc

. (
A

-1
/2

)

-10 -5 0 5 10-0.1

0

0.1

0.2
(c)LH1  = U

z (nm)

Fu
nc

. (
A

-1
/2

)
Fig. 2. (a) The valence subband structures EU

n′,kt
versus kt. There are six bound subbands

which are doubly degenerate. Four of them are HH-like (blue lines), and others are LH-like

(red lines). (b) The envelope functions φ ′(U,n′,kt=0)
v (z) [v = 1− 4; conduction (red), HH

(blue), LH (green), and SO (cyan)] at the BZ center for the first (n′ = 1) valence subband
(HH1). Only the HH component is present. (c) The counterpart of the third (n′ = 3) valence
subband (LH1). The noticeable band mixing exists despite a significant LH part.

functions labeled by σ = L are similar to their counterparts labeled by σ = U except for proper
sign changes of some components, and hence they are not illustrated. From Fig. 2(b), only the
HH component is present in the HH1 (n′ = 1) subband at the BZ center. No couplings to other
components occur for this state. The envelop function of the HH1 subband at kt = 0 is symmet-
ric (even parity). On the other hand, the band mixing does occur in the first LH-like state which
have opposite parities (n′ = 3). As shown in Fig. 2(c), while the LH component of LH1 state is
dominant, its conduction and SO counterparts are not negligible. The significant band mixing
between conduction and valence bands often occurs in the narrow-bandgap semiconductors and
type-II nanostructures. That is the reason why the eight-band approach rather than that based
on the decoupled six-band and two-band Hamiltonians have to be utilized here.

In calculations of the response field F(n,kt,s)
j,l (z,ω ′), the two PMLs which model open re-

gions at two ends of the computation domain are 6 nm in thickness. The parameters of PMLs in
Eq. (17) are set as follows: m= 2; hz = 0.1 nm; and κ = 5 pm. For the absorption spectra αi(ω)
(i = x,y,z), the linewidth ϒkt and parameter η are set to 6.6 meV (corresponding to 0.1 ps) [34]
and 10 μeV, respectively. In addition, we focus on the term In,kt,ii(ω) rather than In,kt,ii(−ω)
in Eq. (7a) because the former is usually much more significant than the latter. Note that the
lineshape broadening related to In,kt,ii(ω) in Eq. (7b) and (7c) can be divided into two parts: the
Lorentzian broadening (ϒkt ) due to various incoherent relaxation and dephasing mechanisms;
and intrinsic tunneling broadening and interference characterizing Im[2Vn,kt,ii(ω ′)]. Figure 3(a)
shows the lineshapes of Im[2Vn,kt,xx(ω ′)] corresponding to the HH1 subband at different wave
vectors kt = ktx̂ along the [100] crystal axis near the BZ center. As kt increases, resonant en-
ergies of the lineshapes blueshift due to the larger energy differences between the metastable
states in the conduction band (turn higher in energy) and bound states in the valence subband
[become lower in energy, as indicated in Fig. 2(a)]. In addition, each lineshape in Fig. 3(a) is
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Fig. 3. (a) Lineshapes of Im[2Vn,kt,xx(ω ′)] corresponding to the HH1 subband at kt = ktx̂,
where kt ranges from 0 to 0.4 nm−1 at an interval of 0.04 nm−1. All the lineshapes are
skew symmetric and exhibit coherent dips at blue sides of their peaks. (b) The fitting func-
tion f (ω ′) (red) and Im[2Vn,kt,xx(ω ′)] (blue) of the HH1 subband at the BZ center. The
background one fb(ω ′) (green) is also depicted.

skew symmetric and has a dip down to zero at the high-energy side of its peak. These charac-
teristics are commonly present in the Fano resonance due to the coupling between metastable
and continuum states [11]. The spectral width of the Fano resonance is a measure of the cou-
pling strength (due to tunneling in this case), and the skewness of the lineshape describes the
interferences between the absorptions related to the metastable and continuum states, respec-
tively. If the absorption strengths corresponding to these two types of states are comparable,
the skewness of the lineshape becomes prominent. In fact, the zero dip on the lineshape is
just a consequence of the coherent interference which happens to be completely destructive at
that frequency. Such phenomena, however, are washed out if other incoherent relaxation and
mechanisms come into play [convolution with the Lorentzian in Eq. (7b)].

To quantify various characteristics of the Fano resonances, we use the following functional
form f (ω ′) to fit Im[2Vn,kt,ii(ω ′)] and extract parameters describing couplings between the
metastable and continuum states [11]:

f (ω ′) = fF(ω ′) fb(ω ′),

fF(ω ′) =
(ω ′ −ωr + γFq/2)2

(ω ′ −ωr)2 +(γF/2)2 , fb(ω ′) =
{

f0(ω ′/ωb −1)nb , ω ′ > ωb,
0, ω ′ ≤ ωb,

(20)

where fF(ω ′) is a function characterizing the Fano resonance; ωr is the resonant frequency of
the transition; γF is a linewidth directly related to the coupling strength (tunneling rate); and q
is the Fano parameter which measures the relative transition strengths between the metastable
and continuum states; fb(ω ′) is a function which phenomenologically models the background
transitions due to continuum states; f0 is a factor describing the magnitude of fb(ω ′); ωb is
an onset energy, beyond which the transitions to continuum states occur; and nb is an order
describing the behavior of fb(ω ′) at ω ′ � ωb. As an example, Fig. 3(b) illustrates the function
Im[2Vn,kt,xx(ω ′)] of the HH1 subband at the BZ center, its fitting function f (ω ′), and back-
ground one fb(ω ′) around the onset frequency ωb. The agreement between the target lineshape
and fitting function are decently satisfactory, which justifies the extractions of various parame-
ters of the Fano resonances through these procedures.
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Fig. 4. Parameters of the Fano lineshapes Im[2Vn,kt,xx] (kt = ktx̂) for the HH1 (blue) and
LH1 (red) subbands as a function of kt: (a) the resonant energy h̄ωr; (b) linewidth γF; and
(c) the Fano parameter q.

With Eq. (20), we extract various parameters related to Fano resonances of the HH1 and
LH1 subbands at different wave vectors kt = ktx̂ and present them in Fig. 4. From Fig. 4(a), the
resonant energies h̄ωr of the HH1 and LH1 subbands both increase with kt due to the higher
energy differences between the initial and final (metastable) states at the larger kt. The resonant
energies of the LH1 subband are larger than those of the HH1 subband due to the lower ener-
gies of the LH1 subband, as shown in Fig. 2(a). On the other hand, Fig. 4(b) indicates that the
linewidth γF becomes smaller as kt increases. Equivalently, it means that the metastable states at
the larger kt tunnel through the conduction barrier more slowly. This nonintuitive phenomenon
may be a result of the more significant effective barrier for conduction states with the larger kt.
From the decoupled two-band model, an electron with a nonvanishing kt in the conduction band
effectively experiences a variation of the barrier potential for tunneling due to the mismatch of
the effective masses mc in neighboring materials. The effective barrier variation ΔVc(kt) can be
written as ΔVc(kt) = (m−1

c,GaAsSb−m−1
c,GaAs)h̄

2k2
t /2, where mc,GaAsSb and mc,GaAs are the effective

masses of GaAs0.7Sb0.3 and GaAs, respectively, which can be obtained from Table 1. Since the
effective mass mc,GaAsSb is smaller than the other one mc,GaAs, the barrier variation seen by an
electron in the GaAs region is positive and increases with kt. As a result, the corresponding tun-
neling rate decreases as kt increases, which qualitatively agrees with the trend in Fig. 4(b). Note
that the trend in Fig. 4(b) is merely the outcome of coherent tunneling. In the presence of other
tunneling processes assisted by various scattering mechanisms, the overall tunneling rate is not
necessarily a decreasing function of kt. In Fig. 4(c), the magnitudes of the Fano parameters |q|
are around 3.1 to 3.5. From these Fano parameters, the ratios between the absorptions due to
the metastable and continuum states (within the bandwidths γF), which are roughly πq2/2 [11],
range from 15 to 19 at kt ∈ [0, 0.4] nm−1 for this type-II nanostructure.

The alternative interpretation of linewidths γF extracted from Fano lineshapes is just the co-
herent tunneling rate, and their inverses are the tunneling lifetime of carriers in the metastable
states. Figure 5(a) shows the tunneling rate (linewidth) γF as a function of the width of
GaAs0.7Sb0.3 layers at kt = 0. In the presence of the thinner barrier, the conduction electrons in
the metastable states tunnel through the potential barriers more efficiently so that the tunneling
rate is higher. Also, the tunneling rate decreases exponentially as the barrier width increases. In
Fig. 5(b), we present the polarized absorption spectra αi(ω) (i = x,y,z) when the GaAs0.7Sb0.3

layer is 2 nm in width. The Lorentzian broadening with ϒkt = 6.6 meV is included in the calcu-
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Fig. 5. (a) The tunneling rate (linewidth) γF versus the width of GaAs0.7Sb0.3 layers at
the BZ center. The rate decreases exponentially as the barrier width increases. (b) The
polarized absorption spectra for type-II coupled QWs with a 2 nm GaAs0.7Sb0.3 layer. The
TE absorption (blue) is more significant than TM one (red) at low photon energies.

lation [Eq. (7b)]. The TE absorption is larger than the TM counterpart at low photon energies.
The phenomenon is a result of the optical transitions related to the first two HH-like subbands.
These transitions provide significant momentum matrix elements parallel to the QW plane at the
photon energies around the onset of the absorption. Therefore, the absorption of TE-polarized
fields become favored at those photon energies.

4. Conclusion

In summary, we have converted calculations of bound-to-continuum absorption spectra of type-
II coupled QWs into an effective source-radiation problem in the eight-band space of the LK
and BP Hamiltonians. We utilize PMLs in this multiband space to setup the presence of quasi-
bound states. In this way, the tunneling effect inherent in these states is fully taken into account
without interferences from the finite size of the computation domain. We further apply these
procedures to GaAs0.7Sb0.3/GaAs type-II coupled QWs and extract various important parame-
ters related to the Fano resonances in this structure. From these Fano lineshapes, the tunneling
rates of the metastable states and TE- and TM-polarized absorption spectra can all be obtained
unambiguously. In this way, the presented formulation can be helpful in evaluations of carrier
extraction efficiencies for type-II nanostructures in photovoltaic applications.

A. Bloch parts and matrix elements of eight-band effective Hamiltonian

The eight Bloch parts adopted in the multiband calculations can be presented in the form of
| jl ,ml〉 (l = 1− 8), where jl and ml are the total angular momentum and magnetic quantum
numbers of band l, respectively, which are analogous to those of hydrogen atoms in the presence
of spin-orbit coupling. These Bloch parts and their alternative forms are listed in table 2 [18].
Here, Bloch parts |u1〉 and |u2〉 are assigned as two conduction (C) bands; |u3〉 and |u6〉 as two
HH bands; |u4〉 and |u5〉 as two LH bands; and |u7〉 and |u8〉 as two SO bands.

The matrix elements Hl′l [k] of the eight-band effective Hamiltonian for bulk semiconductors
(indices l and l′ follow the order of Bloch parts in table 2) contain contributions from the LK
Hamiltonian [14] and BP strain terms [19]. In the matrix form, this effective Hamiltonian is
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Table 2. The eight Bloch parts adopted in the eight-band effective Hamiltonian. Symbols S,
X , Y , and Z indicate that the corresponding spatial distributions are similar to the s, x, y,
and z orbitals in hydrogen atoms, and ↑ and ↓ are the two spin states.

|ul〉 | jl ,ml〉 Alternative form Type
|u1〉 |1/2,1/2〉 |iS,↑〉 C
|u2〉 |1/2,−1/2〉 |iS,↓〉 C

|u3〉 |3/2,3/2〉 −
∣∣
∣X+iY√

2
,↑
〉

HH

|u4〉 |3/2,1/2〉 − 1√
3

∣∣∣X+iY√
2
,↓
〉
+
√

2
3 |Z,↑〉 LH

|u5〉 |3/2,−1/2〉 1√
3

∣∣∣X−iY√
2
,↑
〉
+
√

2
3 |Z,↓〉 LH

|u6〉 |3/2,−3/2〉
∣
∣∣X−iY√

2
,↓
〉

HH

|u7〉 |1/2,1/2〉
√

2
3

∣∣∣X+iY√
2
,↓
〉
+ 1√

3
|Z,↑〉 SO

|u8〉 |1/2,−1/2〉
√

2
3

∣∣∣X−iY√
2
,↑
〉
− 1√

3
|Z,↓〉 SO

expressed as [16]

H[k] =
⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

Ec+Pc 0 −√
3V+

√
2U V− 0 U

√
2V−

0 Ec+Pc 0 −V+

√
2U

√
3V−

√
2V+ −U

−√3V− 0 Ev−P−Q S −R 0 1√
2
S −√

2R
√

2U −V− S∗ Ev−P+Q 0 −R
√

2Q −
√

3
2 S

V+

√
2U −R∗ 0 Ev−P+Q −S −

√
3
2 S∗ −√

2Q

0
√

3V+ 0 −R∗ −S∗ Ev−P−Q
√

2R∗ 1√
2
S∗

U
√

2V− 1√
2
S∗

√
2Q −

√
3
2 S

√
2R Ev−P−Δ 0

√
2V+ −U −√

2R∗ −
√

3
2 S∗ −√

2Q 1√
2
S 0 Ev−P−Δ

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (21)

On the diagonal of H[k] in Eq. (21), energies Ec and Ev are the unstrained conduction and
valence bandedges, respectively, and Δ is the spin-orbit split-off energy. Other terms related to
the matrix elements within conduction bands or valence bands are [16, 18]

Pc = Pc,k +Pc,ε , P = Pk +Pε , Q = Qk +Qε , R = Rk +Rε , S = Sk +Sε , (22)

where the contributions Pc,k, Pk, Qk, Rk, and Sk from the LK Hamiltonian are related to the
inverse of the bare relative effective mass γc in conduction bands, bare Luttinger parameters
γi (i = 1,2,3), and various wave-vector components as

Pc,k =

(
h̄2

2m0

)
γc(k

2
t + k2

z ), Pk =

(
h̄2

2m0

)
γ1(k

2
t + k2

z ), Qk =

(
h̄2

2m0

)
γ2(k

2
t −2k2

z ),

Rk =

(
h̄2

2m0

)√
3
[−γ2(k

2
x − k2

y)+ i2γ3kxky
]
, Sk =

(
h̄2

2m0

)
2
√

3γ3k−kz,

k± = kx ± iky = kte
±iθ , θ = arg[k+], (23)

and the BP strain terms Pc,ε , Pε , Qε , Rε , and Sε are characterized by deformation potentials ac,
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av, b, and d and strain tensors εi j (i, j = x,y,z):

Pc,ε = ac(εxx + εyy + εzz), Pε =−av(εxx + εyy + εzz), Qε =−b
2
(εxx + εyy −2εzz),

Rε =

√
3b
2

(εxx − εyy)− idεxy, Sε =−d(εxz − iεyz). (24)

For QWs grown along the [001] (z) crystal axis on an infinitely thick substrate, the strain tensors
due to the lattice mismatch are εxx = εyy = (a0 −a)/a, εzz = −(2C12/C11)εxx, and εxy = εyz =
εxz = 0, where a0 and a are the lattice constants of the substrate and QWs, respectively, and C11

and C12 are the stiffness constants of QWs [18]. In addition to the terms in Eqs. (23) and (24),
those associated with the matrix elements between conduction and valence bands are

V± =
1√
6

(
h̄

m0

)
Pcvk±, U =

1√
3

(
h̄

m0

)
Pcvkz, Pcv = 〈iS|px|X〉= 〈iS|py|Y 〉= 〈iS|pz|Z〉, (25)

where Pcv is the interband momentum-matrix element.
The inverse of bare relative effective mass γc in conduction bands and bare Luttinger param-

eters γi (i = 1,2,3) in the eight-band effective Hamiltonian can be extracted from the effective
mass mc in conduction bands and typical Luttinger parameters γL

i (i = 1,2,3) in the scheme of
decoupled conduction and valence-band (six-band) effective Hamiltonians [17]:

γc =
m0

mc
− Ep(Eg +2Δ/3)

Eg(Eg +Δ)
,

γ1 = γL
1 − Ep

3Eg +Δ
, γ2 = γL

2 − 1
2

(
Ep

3Eg +Δ

)
, γ3 = γL

3 − 1
2

(
Ep

3Eg +Δ

)
, (26)

where Eg = Ec −Ev is the bandgap energy; and the optical matrix parameter Ep is 2|Pcv|2/m0.
Equation (26) is utilized to convert mc and γL

i (i = 1,2,3) which are commonly available in
literature into γc and γi (i = 1,2,3) in the eight-band case.

B. Axial approximation

Under the axial approximation [18], we approximate the term Rk in Eq. (23) as Rk �
−h̄2

√
3(γ2 + γ3)k2−/(4m0). Based on this approximation, we carry out the basis transforma-

tion that eliminates the in-plane directional dependence on wave vector kt [the θ dependence in
Eq. (23)] and block-diagonalizes the Hamiltonian matrix H[k]: |u′a〉 = ∑l [U

T(θ)]al |ul〉, where
UT(θ) means the transpose of the unitary transformation matrix U(θ), which is written as

U(θ)=
1√
2

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜⎜⎜⎜
⎝

e−iθ/2 0 0 0 e−iθ/2 0 0 0
ieiθ/2 0 0 0 −ieiθ/2 0 0 0

0 e−i3θ/2 0 0 0 e−i3θ/2 0 0
0 0 ie−iθ/2 0 0 0 −ie−iθ/2 0
0 0 −eiθ/2 0 0 0 −eiθ/2 0
0 −iei3θ/2 0 0 0 iei3θ/2 0 0
0 0 0 −ie−iθ/2 0 0 0 ie−iθ/2

0 0 0 −eiθ/2 0 0 0 −eiθ/2

⎞

⎟
⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟
⎠

. (27)

If the BP strain terms Rε and Sε vanish, the matrix U(θ) transforms the effective Hamiltonian
H[k] of bulk semiconductors in Eq. (21) into a block-diagonal Hamiltonian H′[kt,kz] that is
independent of angle θ : [15, 16]

H′[kt,kz] = U(θ)†H[k]U(θ) =
(

HU[kt,kz] 04×4

04×4 HL[kt,kz]

)
, (28)
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where 04×4 is the 4-by-4 null matrix; and the upper and lower 4-by-4 Hamiltonian matrices
HU[kt,kz] and HL[kt,kz] are

HU[kt,kz]=

⎛

⎜⎜⎜⎜
⎝

Ec +Pc −√
3Vρ −Vρ + i

√
2U −√

2Vρ − iU
−√

3Vρ Ev −P−Q Rρ + iSρ
√

2Rρ − i 1√
2
Sρ

−Vρ − i
√

2U Rρ − iSρ Ev −P+Q −√
2Q− i

√
3
2 Sρ

−√
2Vρ + iU

√
2Rρ + i 1√

2
Sρ −√

2Q+ i
√

3
2 Sρ Ev −P−Δ

⎞

⎟⎟⎟⎟
⎠
, (29)

and HL[kt,kz] = HU∗[kt,kz], where the terms Vρ , Rρ , and Sρ are θ -independent and are given as

Vρ =
1√
6

(
h̄

m0

)
Pcvkt, Rρ =−

(
h̄2

2m0

)√
3

(
γ2 + γ3

2

)
k2

t , Sρ =

(
h̄2

2m0

)
2
√

3γ3ktkz. (30)

We denote the 8-by-1 column vector composed of envelop functions φ (n,k)
l in band n of the

bulk Hamiltonian matrix H[k] as ΦΦΦ(n,k), namely, [ΦΦΦ(n,k)]l,1 = φ (n,k)
l [the factor exp(ik ·r) is not

included in envelop functions here]. The vector ΦΦΦ(n,k) is an eigenvector of H[k] in Eq. (21).
The eigenvectors ΦΦΦ′(n,kt,kz) corresponding to H′[kt,kz] can be classified based on whether they
are merely composed of the 4-by-1 eigenvectors of HU[kt,kz] or those of HL[kt,kz]:

ΦΦΦ′(n,kt,kz) =

(
ΦΦΦ′(U,n′,kt,kz)

04×1

)
or

(
04×1

ΦΦΦ′(L,n′,kt,kz)

)
, (31)

where 04×1 is the 4-by-1 null vector; the band label n = (σ ,n′) now includes an index σ in-
dicating the upper (U) or lower (L) eigenvectors and another one n′ referring to other types
of splittings; and ΦΦΦ′(U,n′,kt,kz) and ΦΦΦ′(L,n′,kt,kz) are eigenvectors of HU[kt,kz] and HL[kt,kz], re-
spectively. Inspections of Bloch parts |u′v〉 indicate that the first to the last envelop functions of
ΦΦΦ′(σ ,n′,kt,kz) belong to the conduction, HH, LH, and SO bands, respectively. Once the eigenvec-
tors ΦΦΦ′(n,kt,kz) and their energies En,kt,kz ≡ Eσ

n′,kt,kz
are solved, we then transform these vectors

back to ΦΦΦ(n,k): ΦΦΦ(n,k) = U(θ)ΦΦΦ′(n,kt,kz), where the θ dependence of ΦΦΦ(n,k) merely originates
from matrix U(θ) under the axial approximation.

As to the axial approximation for QW nanostructures in which the BP terms Rε(z) and Sε(z)
vanish, the above procedures still apply even if the hermitian forms in Eq. (3) are used. The only
difference is that the kz dependencies of various envelop functions and eigenenergies En,kt ≡
Eσ

n′,kt
are converted to the real-space dependence of z and incorporated into label n′, respectively.

Once the eigenenergy problem corresponding to envelop functions φ ′(σ ,n′,kt)
v (z) (v = 1− 4) of

the eigenvector ΦΦΦ′(σ ,n′,kt)(z) is solved:

4

∑
v=1

Hσ
v′v[kt,kz =−i∂z]φ

′(σ ,n′,kt)
v (z) = Eσ

n′,kt
φ ′(σ ,n′,kt)

v′ (z), (32)

we then transform the vectors ΦΦΦ′(n,kt)(z) which are composed of ΦΦΦ′(σ ,n′,kt)(z) back to ΦΦΦ(n,kt)(z):

ΦΦΦ(n,kt)(z) = U(θ)ΦΦΦ′(n,kt)(z). In this way, the envelop functions φ (n,kt )
l (z) that constitute

ΦΦΦ(n,kt)(z) are obtained.

C. Matrices ΓΓΓ, Q, and ΛΛΛ[kt]

For simplicity, rather than representing the 8-by-8 matrices ΓΓΓ, Q, and ΛΛΛ[kt] with their carte-
sian components, of which the corresponding matrix elements are complex, we rearrange them
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partially in terms of the circularly-polarized [ê± = (x̂± iŷ)/
√

2] and z components as

ΓΓΓ = ΓΓΓ+ê++ΓΓΓ−ê−+ΓΓΓzẑ,

Q = Q+ê++Q−ê−+Qzẑ,

ΛΛΛ(kt) = ΛΛΛtkt +[ΛΛΛ1 +ΛΛΛ2]k+ê++[ΛΛΛ−1 +ΛΛΛ−2]k−ê−+[ΛΛΛz,+k++ΛΛΛz,−k−]ẑ. (33)

The expressions of some matrices in Eq. (33) are [25, 26]

ΓΓΓ+=
Pcv√

3

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 −√3 0 0 0 0 0
0 0 0 −1 0 0

√
2 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0

√
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0√
2 0 0 0 0 0 0 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

, ΓΓΓz=
Pcv√

3

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0
√

2 0 0 1 0
0 0 0 0

√
2 0 0 −1

0 0 0 0 0 0 0 0√
2 0 0 0 0 0 0 0

0
√

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

,

Q+=γ3

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0

√
6 0 0 0 0 0

0 0 0 0 0 0 −3 0
0 0 0 0 −√6 0 0

√
3

0 0
√

3 0 0 0 0 0
0 0 0 −3 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

, ΛΛΛ1=
γ2+γ3√

2

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0

√
3 0 0 0 0 0

0 0 0
√

3 0 0 −√6 0
0 0 0 0 0 0 0 0
0 0

√
6 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

ΛΛΛt=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

γc 0 0 0 0 0 0 0
0 γc 0 0 0 0 0 0
0 0 −γ1−γ2 0 0 0 0 0
0 0 0 −γ1+γ2 0 0

√
2γ2 0

0 0 0 0 −γ1+γ2 0 0 −√2γ2

0 0 0 0 0 −γ1−γ2 0 0
0 0 0

√
2γ2 0 0 −γ1 0

0 0 0 0 −√2γ2 0 0 −γ1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

,

and Qz = ΛΛΛt[γ2 → −2γ2], ΛΛΛ2 = ΛΛΛT
1 (γ2−γ3)/(γ2+γ3), ΛΛΛz,+ = Q+/

√
2. In addition, we have

ΓΓΓ− = ΓΓΓT
+; Q− = QT

+; ΛΛΛ−1 = ΛΛΛT
1 ; ΛΛΛ−2 = ΛΛΛT

2 ; and ΛΛΛz,− = ΛΛΛT
z,+. Note that the factor γ2 − γ3 is

dropped in the axial approximation, and therefore matrices ΛΛΛ±2 are not required in that case.
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