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ABSTRACT: The dynamics of a protein along a well-defined
coordinate can be formally projected onto the form of an
overdamped Lagevin equation. Here, we present a comprehensive
statistical-learning framework for simultaneously quantifying the
deterministic force (the potential of mean force, PMF) and the
stochastic force (characterized by the diffusion coefficient, D) from
single-molecule Förster-type resonance energy transfer (smFRET)
experiments. The likelihood functional of the Langevin parameters,
PMF and D, is expressed by a path integral of the latent smFRET
distance that follows Langevin dynamics and realized by the donor
and the acceptor photon emissions. The solution is made possible
by an eigen decomposition of the time-symmetrized form of the
corresponding Fokker−Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival
time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in
discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF
function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-
entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this
new method.

■ INTRODUCTION

A fundamental property of biomolecules such as proteins is
their conformational flexibility which allows for a diverse set of
physical and chemical processes. The physical origin of the
dynamics generally consists of two componentsthe deter-
ministic mean forces as a function of configurational variation
and the stochastic forces due to the thermal energy and
environmental noises. Resolving the manner by which these
two components contribute to governing dynamical behaviors
is thus at the core of elucidating the structure−dynamics−
function relationship of protein conformational changes.
The direct observation of individual proteins is possibly the

most straightforward way of dissecting the forces that drive
their conformational dynamics. From the physical chemistry
viewpoint, therefore, the objective of a single-molecule analysis
is to clarify and to quantify from the measured experimental
data the dynamics parameters of the probed degree of freedom.
Ideally, one would like to capture both the underlying free-
energy landscape of the protein conformation and the
stochastic diffusion coming from thermal fluctuations and
interactions with the unobserved degrees of freedom. Indeed,

the direct observation of the distribution and the dynamics that
a molecular system exhibitswhich are scrambled in ensemble-
averaged experimentsare the two unique pieces of
information that only single-molecule experiments can
provide.1,2 Yet, despite the vigorous development of single-
molecule spectroscopy to date,3−5 the quantitative determi-
nation of single-molecule dynamics (not kinetics) has not been
achieved.
For an explicit illustration of the challenges in analyzing

single-molecule experiments, let us consider the time-depend-
ent single-molecule Förster-type resonance energy transfer
(smFRET) experiment of a protein.6−8 A typical setup uses a
pair of fluorescent dyes, a donor and an acceptor, to attach to
the ends of a surface-immobilized protein, Figure 1. Following
laser excitation, an electronically excited donor dye can relax to
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its ground state by emitting a “green” photon or by transferring
the energy to the nearby acceptor dye that may then emit a
“red” photon to go back to its ground state. Under favorable
circumstances,9 the energy-transfer efficiency between dyes
depends on the donor−acceptor distance r as ζ(x) = 1/(1 + x6)
with x = r/R0 and R0 being the Förster radius for the acceptor−
donor pair at which the energy-transfer efficiency is 50%. In this
case, the donor−acceptor distance r, or equivalently, x, is a
measure of the protein conformation and is the experimentally
accessible degree of freedom onto which the dynamics of the
protein is projected. The dynamics of x is naturally stochastic
owing to the omnipresent thermal agitations from the
experimentally unaccessible protein degrees of freedom and
the environmentthe first layer of stochasticity in a single-
molecule experiment comes from thermal fluctuations.
The signals from an smFRET experiment are the photons

emitted from the tagged protein, which can be captured by
confocal microscopy and recorded by a pair of avalanche
photodiodes.10 The statistics of photon arrival times follows
that of a Poisson process with the emission intensity depending
on x parametrically:

acceptor:

ζ= +I x I x B( ) ( )a a
0

a (1)

donor:

ζ= − +I x I x B( ) (1 ( ))d d
0

d (2)

Here, Ia,d
0 are the maximum intensities of the donor (subscript

d) and acceptor (subscript a), and Ba,d are the background
signals including the donor−acceptor cross talk.11 The

background, cross talk, and the Poisson photon-counting
statistics represent the three main sources of the apparent
“noise” in fluorescence single-molecule signals. Therefore, the
“noise” is explicitly taken into account in the theoretical
framework as well in the numerical simulations presented in
this work.
Since the arrival time of each emitted photon is recorded, the

waiting-time distributions of the acceptor (Δta) and donor
(Δtd) photons follow the exponential probability density
function with intensities Ia,d describing the coupling between
the latent variable, x, and the observed signals, Δta and Δtd,
through photon statistics:

Δ | = − Δp t I I( ) e I t
a,d a,d a,d

a,d a,d (3)

More specifically, within an infinitesimal time slice dt, one of
the three observations would occur with the probability
densities depending on the latent variable of the system state
at the moment, xt, which involve the parameter of total
intensity defined as I(xt) = Id(xt) + Ia(xt):
1. An acceptor photon arrives, and the probability density of

this event is:

Δ = | Δ > | = −p t t x p t t x I x( d ) ( d ) ( )et t t
I x t

a d a
( )dt (4)

2. A donor photon arrives, and the probability density of this
event is:

Δ = | Δ > | = −p t t x p t t x I x( d ) ( d ) ( )et t t
I x t

d a d
( )dt (5)

3. No photon arrives, in which the particular dt instance is
considered “dark,” and the probability of this event is:

Δ > Δ > | = −P t t t t x( d , d ) et
I x t

a d
( )dt (6)

The probability of observing both acceptor and donor photons
in dt → 0 is extremely small, and this event is hence ignored.
The information of protein dynamics along x is encoded in the
sequence of the colors and arrival times of photons that depend
on the system state probabilistically according to eqs 4−6. The
photon-detection statistics adds another layer of stochasticity to
the quantification of single-molecule dynamics from smFRET.
With the two layers of stochasticity explained abovethe
thermal fluctuations and the random photon-detection
eventsthe core difficulty of learning the protein dynamics
along x through such indirect measurements as smFRET is now
apparent: There is no explicit probabilistic structure to relate
the measured data with the dynamics parameters that
characterize the time propagation of the latent variable.
In principle, the dynamics of the latent variable x can be

recovered using a Bayesian-inference model. However, such
developments have so far been limited to a coarse-grained
description in which the system dynamics are treated as
“jumps” between discrete states.12−18 In fact, it is necessary to
assume an ad hoc number of states to construct a Bayesian-
inference model. Though the number of stable states along the
x coordinate is in general unknown a priori and is actually one
of the primary goals of a single-molecule analysis. Furthermore,
the discrete-state and the “jump” assumptions imply a time
scale separation in that the each “jump” is considered
instantaneous and that the dynamics within each discrete
state is ignored. Treatments like this in essence mix the
contributions from the deterministic and the stochastic forces
of protein dynamics into a rate constant matrix connecting
different states. As a result, the dynamics are completely
omitted, and the ensemble averaged kinetics is obtained instead.

Figure 1. A schematic representation of photon-by-photon smFRET
experiments. (a) A typical smFRET experimental scheme for a protein
using the dye-attached structure of Mycobacterium tuberculosis protein
tyrosine phosphatase, PtpB,20 as a generic example for graphical
illustration purposes. (b) The Jablonski diagram of the energy states in
the FRET flourophores and the energy transfer event. The efficiency
of energy transfer depends on the interdye distance r and the Förster
radius R0. The dimensionless distance x is r/R0. (c) The graphical
model of the continuous Bayesian inference for Langevin dynamics
from smFRET measurements. Clear circles represent the latent
dynamic variables of the system trajectory, X(t), that gives the value of
x at a specific time t, i.e., xt. The filled circles represent Y(t), the
experimentally realized and recorded photon trajectory. At a specific
time, the readout of the photon trajectory, yt, is either a donor photon,
an acceptor photon, or darkness. Horizontal arrows represent the
conditional probability densities of the time evolution of x, p(xt+dt|xt),
and vertical arrows represent the probabilities of photon emission, p(yt|
xt).
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Analysis methods that are objective and driven by data rather
than by the more subjective modeling would be more
satisfactory for learning continuous stochastic dynamics from
indirect measurements for the model-independent methods
could afford unexpected discoveries from the otherwise noisy
single-molecule data.
The maximum information method (MIM) is one such

approach that explicitly takes into account photon-counting
statistics but does not require any presumed model about the
underlying dynamics or modes of states.11 For a given time-
stamped photon trajectory, the method operates under the
assumption that the unknown x is stagnant until a sufficient
number of photons is collected such that the latent variable can
be evaluated with a satisfactory precision. In other words, the
photon trajectory is binned adaptively (information binding) to
produce a distance-time trajectory (thus the x dynamics is
followed) in which all of the distance measures have the same
uncertainty related to photon-counting statistics. This approach
in turn permits the quantitative removal of the photon-counting
uncertainty in the distance histogram to unambiguously
determine the number of states as well the quantitative
evaluation of the entire distribution.19 Although this approach
is general, free from limiting x to a set of discrete states, and
readily applicable to processing experimental data,10,20

resolution loss is inevitable because of the coarse-graining to
a single distance value within each time bin, thereby limiting the
capacity to rigorously quantify the dynamics. In fact, any
binning of the trajectory (time averaging) will inevitably lose
information for the dynamics. Furthermore, it is generally
difficult to quantify dynamics from fluorescent single-molecule
data based on the correlation-based approach because of the
poor statistics due to limited trajectory lengths.21,22 Never-
theless, the maximum-information method represents the
current state-of-the-art in the quantitative evaluation of distance
fluctuations in smFRET experiments and has allowed the direct
comparison with molecular mechanics modeling23 as well the
development of empirical force fields for coarse-grained
modeling.24 Therefore, it is used for comparing with the
results of the new path-integral statistical learning method
presented here.
From the discussions above, it is clear that the dynamics and

the quantitative evaluation thereof from smFRET data are the
key missing pieces toward realizing the full potential of time-
dependent single-molecule spectroscopy. The primary goal of
this work is to show the feasibility of solving this problem.
Particularly, we aim to go beyond the simple correlation
analysis and provide a framework for the quantitative evaluation
of the deterministic and stochastic forces in a molecular system
from the indirect measurement of dynamics.
To begin, one recognizes that the dynamics of x is the

projection of the movements of all degrees of freedom of the
system, including those of the single molecule in question and
its surrounding solvent. Following Zwangzig’s projection-
operator formalism,25 the dynamics of x can be described by
the Langevin-type equation of motion,

= +x DF x t D Wd ( )d 2 dt t t (7)

in which the overdamped form implies a separation of time
scale between the slow smFRET accessible x and the other fast
unobserved degrees of freedom and is consistent with the
dynamics in low Reynolds number media. In this model, The
mean force F(x) = −∇xV(x) constitutes the deterministic
component in the equation of motion. The PMF, V(x), is

related to the equilibrium probability density of x, peq(x), as
V(x) = −ln(peq(x)). The stochastic force component is
parametrized by the diffusion coefficient D. The Weiner
process dWt has a mean ⟨dWt⟩ = 0 and variance ⟨dWt·dWt′⟩
= δ(t − t′)dt. [Throughout the text, the physical variables
presented are nondimensionalized by the thermal energy kBT at
a fixed temperature T as the characteristic energy and the
Förster radius R0 as the characteristic length. That is, V̅(r/R0)/
kBT→ V(x), F̅(r/R0)R0/kBT→ F(x), D̅/R0

2 → D, and Ia̅,d(r/R0)
→ Ia,d(x). Variables with an overbar are the actual quantities
before nondimensionalization. D and Ia,d(x) have the unit of
s−1.] The Langevin equation in eq 7 captures the spatial and
temporal continuity of molecular mechanics and dynamics. The
study of single-molecule dynamics thus becomes the
quantitative eduction of the F(x) profile and the diffusion
coefficient D in eq 7 from the experimentally recorded photon-
arrival time trajectory. In practice, however, the difficulties of
two-layers of randomness in such experiments, the infinite
dimensionality, the nondifferentiability in time, and the path
integral implied in eq 7 must be overcome for it to be useful for
analyzing realistic experimental data.
This work presents our analytical, numerical, and statistical

developments that make possible this goal by overcoming the
aforementioned difficulties. Although the method was devised
for the specific case of using smFRET to study protein
conformational changes, the foundation for statistical leaning of
continuous stochastic dynamics established here may also be
applicable to other single-molecule methods such as pulling
using atomic force microscope or optical tweezer through
molecular tags to transmit forces. Since the free-energy
landscape and diffusion coefficient of conformational dynamics
can also be constructed from the bottom up via computer
molecular dynamics simulations with path-based methods of
sampling and optimization,26,27 the availability of the same type
of data from experiments could greatly facilitate experiment-
theory cross-validation, tracing the atomistic origin of protein
dynamics and ultimately the control thereof.
The rest of this paper is organized as the following. We first

present the Bayesian inference framework we employed for the
statistical learning of Langevin dynamics from smFRET data.
Theoretical developments for calculating the likelihood func-
tional of PMF and D through a trajectory path integral are
presented next. This procedure can also be used to infer the
probability densities of the latent trajectory, X(t), from a
recorded photon trajectory, Y(t). X(t) is a continuous function
of time that gives the value of x at a specific time t, that is, xt.
On the other hand, Y(t) is a function of time that gives discrete
outcomes. At a specific time, the readout of the photon
trajectory, yt, is either a donor photon, an acceptor photon, or
darkness. We then derive the functional derivatives of the
likelihood function with respect to the Langevin dynamics
parameters given the observed photon trajectory. With these
elements established, an expectation-maximization (EM)
optimization of the Langevin model can be devised to deduce
the optimal PMF and diffusion coefficient that best describe the
data of photon sequence. This work thus advances the
applicability of the EM statistical learning algorithm from
discrete-state systems to extracting a continuous profile from
data. Application of this method to a highly nontrivial test case
is presented at the end.
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■ THE BAYESIAN INFERENCE FRAMEWORK FOR
CONTINUOUS STOCHASTIC DYNAMICS WITH
smFRET

The trajectory of the tagged protein degree of freedom, X(t), is
not observed directly. The statistics regarding the PMF profile
and diffusion coefficient are thus not explicit in the photon
trajectory. The structure of this convolution is best represented
via a Bayesian graphical model (BGM) as shown in Figure 1c.
The vertical arrows in the BGM link the conditional probability
density of p(yt|xt) with the experimental observable at time t,
yt = donor, acceptor, or darkness, and the latent protein
conformation variable at the same time, xt. Following eqs 4−6,
there are two classes of observations. The instantaneous event
of observing a photon is represented by taking the limit of dt→
0, and the position-dependent probability density functions of
p(yt|xt) are:

| =
=

=⎪
⎪⎧⎨
⎩

p y x
I x y

I x y
( )

( ) acceptor photon

( ) donor photont t
t t

t t

a

d (8)

Alternatively, if the state of darkness was observed over the
infinitesimally small, but nonzero interval dt, performing time
integration in the BGM framework paints a dark duration of the
specified size along the trajectory. This observation also
depends on x with the probability of:

| = =−P y x y( ) {e darknesst t
I x t

t
( )dt

(9)

We note that it is important to explicitly incorporate the
intermediate times of “dark” periods because the “dark” periods
also carry information about the latent dynamics. The
horizontal arrows in the BGM of Figure 1 indicate the
conditional probability densities p(xt+dt|xt) for the time
propagation of the indirectly observed degree of freedom.
With this construction, the inversion of smFRET data into

PMF and D comes down to solving the following two problems
consecutively in an iteration loop:

Inference. What is the probability density of the dynamic
trajectory of the protein degree of freedom of interest, that is,
X(t), given a sequence of photon arrival times and colors
recorded via smFRET, Y(t)? In other words, with a trial mean
force profile F(x) and diffusion coefficient D of the Langevin
equation, one aims to calculate:

|P X t Y t F x D( ( ) ( ); ( ), ) (10)

Optimization. What is the optimal profile of the mean force
F(x) and diffusion coefficient D for describing the observed
photon trajectory? The answer is finding the supremum of
(maximizing) the likelihood functional:

Y t F x Dsup ( ( ); ( ), )
F x D( ), (11)

Solving the inference and optimization problems stated
above requires a path integral over the coordinate space of the
probability density of a system trajectory X(t) given the
smFRET observation of Y(t):

∫=Y t F x D X t X t Y t F x D( ( ); ( ), ) ( ) ( ( ), ( ); ( ), )

(12)

The differential volume of the trajectory space is X(t). The
integrand is the joint probability density of X(t) and Y(t) given

by the BGM of Figure 1, which is also the complete likelihood
functional of F(x) and D. The theoretical development
presented later illustrates how to perform such calculations
given the time stamps and colors of the recorded photons.
Based on the BGM of Figure 1 and the conditional

independencies of the Markov probabilities prescribed therein,
the complete likelihood functional can be factorized as:

= |X t Y t F x D Y t X t X t F x D( ( ), ( ); ( ), ) ( ( ) ( )) ( ( ); ( ), )
(13)

The capability of performing smFRET inference with the entire
continuous profile of F(x) as the basis eliminates the
requirement of subjectively assuming the number of metastable
conformational states; this information would simply emerge as
a result of the optimization.
Without loss of generality, we perform analysis and

illustration of the statistical learning algorithm with the model
potential shown in Figure 2. The PMF contains two barriers of

around 5kBT, a magnitude that is biologically relevant for
protein conformational changes. The two barriers connecting
two metastable states correspond to a short and long interdye
distance with an intermediate region locating at the value of
Föster radius, x = r/R0 ≈ 1. The diffusion coefficient is set to D
= 500 s−1. Photon trajectories of smFRET experiments are
simulated by propagating the Langevin equation with the
aforementioned PMF and D coupled with a kinetic Monte
Carlo scheme for simulating the processes of photon emission;
the Supporting Information contains more details of this
numerical procedure.
Table 1 lists the default parameters for simulating typical

smFRET experiments. In this work, the resolution of a photon

Figure 2. Test case potential. (a) The potential of mean force and (b)
the corresponding equilibrium probability density of x used for the
simulated smFRET trajectories.

Table 1. Default Simulation Parameters of smFRET
Measurements Employed in This Worka

intensity

Ia
0 30000 s−1

Id
0 16000 s−1

Bd 10 s−1

Ba 20 s−1

NP 80000
⟨texp⟩ 3.3 s

aThese values were motivated by the typically encountered conditions
in experiments. Np is the number of photons observed before the first
photo bleaching event occurred, and ⟨texp⟩ is the average duration of
the trajectories with these intensities and the number of photons.
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trajectory is specified by referencing to the default values of dye
intensities listed in Table 1. If the intensities are 2× (two times)
of the values in Table 1, twice numbers of photon per time will
be received on average, and the resolution is thus doubled.
Furthermore, since the dimensionality of the likelihood
functional of eq 12, or, the information content of the latent
dynamics, is dictated by the total number of photons, the
comparison of data with different resolutions was conducted
with the same of number of photons. That is, the values of dye
intensities timing the duration of trajectory recording are
constant. For the case of 2× resolution, ⟨texp⟩ would become
1.65 s as compared to that in Table 1.

■ CALCULATION OF THE LIKELIHOOD FUNCTIONAL
OF PMF AND D AND INFERENCE OF THE LATENT
TRAJECTORY

Equation 13 indicates that the joint probability density of X(t)
and Y(t) can in theory be calculated based on the Langevin
equation of motion that sets (X(t); F(x),D) and the waiting
time distributions of experimental photon arrival events of eqs
8 and 9. At the time instances at which a photon is detected, {tτ|
∀τ ∈ [0,NP]} where NP is the total number of recorded
photons, the conditional probability density of eq 8 is used to
represent the likelihood of such an event. To express the
complete likelihood function, or (X(t),Y(t)), for a trajectory
of duration texp, we employ the following expansion based on
the BGM of Figure 1:

∏= | |
τ=

τ τ τ τ τ τ− −
X t Y t p x p y x p x y x( ( ), ( )) ( ) ( ) ( , )t

N

t t t t t t
1

a,d
[ , ]
dark

0

P

1 1

(14)

The notation of y[tτ,tτ−1]
dark in this equation indicates that during the

time window between the arrivals of photon τ and photon τ −
1, Δtτ = tτ − tτ−1, the recorded observation in the smFRET
experiment is darkness. On the other hand, ytτ

a,d denotes the
photon color (acceptor or donor) observed at the instance of
time tτ. A similar construction was offered in ref 28 for a
discrete-state Markov representation.
An important message from the above analysis is that, for the

statistical learning of smFRET measurements, observing the
dark period of Δtτ before receiving the τth photon also contains
certain dynamics information on the latent variable. Essential to
incorporating the complete information in the photon sequence
for extracting continuous stochastic dynamics is thus the
efficient and accurate calculation of p(xtτ,y[tτ,tτ−1]

dark |xtτ−1) that
inevitably involves a path integral.
The calculation involves dividing the dark period into Δtτ/dt

slices, and the coordinate at each slice is set to xti with i = (1,...,
(Δtτ/dt − 1)) and ti = tτ−1 + i(dt). One thus needs to perform
integration for all time slices between the photon arrival events:

∫ ∫ ∏

δ

| = ···

| × | Δ −τ

=

Δ −

τ τ τ τ

τ

τ

− −

−

p x y x x

p y x p x x X t x

( , ) d

( ) ( ) ( ( ) )

t t t t
i

t t

t

t t t t

[ , ]
dark

1

/d 1

dark

i

i i i

1 1

1 (15)

Here, p(xti|xti−1) is the latent dynamics propagator over a time
step dt. Taking the limit of dt → 0, the dimensionality of the
path integral in eq 15 becomes infinity. How to overcome this
seemly intractable task is a key challenge in inferring the
continuous latent trajectory from a recorded photon sequence.

Below, we overcome this challenge by devising a schemethe
first of its kindto evaluate p(xtτ,y[tτ,tτ−1]

dark |xtτ−1) via eq 15.
Since both the Langevin equation and the dark snapshot

probability (eq 9) do not have explicit time dependence, we
seek to propagate them forward in time together for calculating
the path integral of eq 15. Considering that p(ydark|xti) =

exp(−I(xti)dt) is the exponential of a Reimann integral over
time, eq 15 is transformed into a path expectation form:

δ| = Δ −

| =

τ
− ∫ ′ ′

τ τ τ τ

τ

τ

τ

− −

Δ

−

⎡
⎣⎢

⎤
⎦⎥

p x y x X t x

X x

( , ) e ( ( ) )

(0)

t t t t X t
t I X t

t

t

[ , ]
dark

( )
d ( ( ))t

1 1
0

1 (16)

Following the Feynman−Kac theorem in a similar context,29,30

the probability density defined in eq 16 can be obtained by
solving the following partial differential equation (PDE):

∂
∂

= ∇ − ∇ −
p x t

t
D DF x I x p x t

( , )
( ( ) ( )) ( , )2

(17)

Here, p(x,t) is a shorthand notation of p(xtτ,y[tτ,tτ−1]
dark |xtτ−1). The

variable x at time t corresponds to xtτ, i.e., tτ ≡ t, and is the
object of the gradient operators in eq 17. The initial
distribution of probability density p(x,0) represents the
condition at tτ−1 in eq 16, and tτ−1 ≡ 0.
Equation 17 is essentially the Fokker−Plank equation of the

Langevin equation of motion of eq 7 with the additional I(x)
term acting as an indicator the observation of darkness. The
incorporation of the dark operator with the Langevin time
propagation allows the path integral in eq 15 to be
accomplished by solving the partial differential equation of eq
17. It is thus not necessary to explicitly go through the infinite
dimensionality for including the information of each dark
period. This development for p(xtτ,y[tτ,tτ−1]

dark |xtτ−1) calculation is
one of the critical aspects devised this work for making possible
the statistical learning of continuous stochastic dynamics.
Another essential component is the recognition that a

symmetric version of the PDE in eq 17 can drastically simplify
the calculation of the likelihood functional of eq 12 through the
path integral over X(t). In particular, a new dependent variable

is defined as ρ(x, t) = p(x, t)/ ( )p xeq to transform the PDE to

a symmetric form with the Hermitian operator of time
propagation given below:

ρ ρ∂
∂

= −
t

x t x tH( , ) ( , )
(18)

= − ∇ + ∇ + +D D
F x

D
F x

I xH
( )

2
( )
4

( )2
2

(19)

The formal solution of this Hermitian PDE can be written as:

ρ ρ= −x t x( , ) e ( , 0)tH (20)

Along the same token, the photon arrival probability densities
of eq 8 can be expressed in an operator form. The bright
operator (photon detection event), yτ, would appear NP times
at the time instances of {tτ,τ ∈ [1,NP]}:
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=
≡ =

≡ =τ
τ

τ

⎧
⎨⎪
⎩⎪

I x y

I x y
y

y

y

( ) acceptor photon

( ) donor photon

t

t

a
a

d
d (21)

Performing the path integral of eq 12 via the factorization
scheme in eq 14 in the evaluation of the likelihood functional of
the Langevin parameters, (F(x),D) ≡ θ, can now be
represented via the Dirac notation31 as a series of time
propagations in the dark followed by the events of recording a
photon:

θ θ

α β

= =

= ⟨ | | ⟩− Δ − Δ − Δ

Y t F x D Y t

y y y

( ( ); ( ), ) ( ( ); ) [ ]

e e ...et
t t t

N t
H H H

1 2
N

0
1 2 P

P exp (22)

In this representation, the “bra” state ⟨αtτ| carries the probability
amplitude of the system state at tτ given all the photon data in
past between [0,τ] and the “ket” state |βtτ⟩ contains the
probability density amplitude of the latent variable at the same
time given all of the photons arriving in the future of the
smFRET recording, [τ,texp]. The path integral across the entire
duration from smFRET initiation to the collection of the last
photon is just the inner product of these “bra-ket” pairs.
Therefore, inferring the trajectory of the latent variable x via all
of the recorded photon data, that is, solving the inference
problem defined in eq 10, one can follow the Copenhagen
interpretation in quantum mechanics32 to obtain:

θ
α β

θ
α β

| =
|

= ⟨ | ⟩⟨ | ⟩

x Y t
x y y x

Y t

x x

( ( ); )
( , ) ( )

( ( ))
1
[ ]

t

t t t t t

t t

[0, ] ( , ]exp

(23)

The dependence of the terms in eq 23 on the parameter set θ
has been omitted to avoid overcomplication of the notation.
Since there is no external forces, the initial and final state,

⟨αt0| and |βtexp⟩, respectively, are assumed to follow the

equilibrium distribution ρeq(x) = ( )p xeq ; that is,

α ρ β ρ⟨ | ⟩ = ⟨ | ⟩ =x x x x( ) and ( )t teq eq0 exp (24)

The initial and final states can also be constructed by using the
Hamiltonian propagator of the Langevin equation without the
dark operator, denoted as H0, and extending the temporal
domain to infinite times since

⟨ | | ⟩| →−
→∞e x p x1 ( )t

H
eq

t
0

(25)

As such, the likelihood function can be written as:

∏θ =
τ

τ
− ∞ − Δ − Δ − ∞τy[ ] tr[e e ( e )e ]t

N
tH H H H0

0
P 0

(26)

Much of this formulation resembles the structure of quantum
dynamics in the form of the density matrix.33

Progress in evaluating the path integral of eq 22 or the trace
operation of eq 26 can be made by seeking an eigen-
decomposition of the Hermitian operator of eq 18 to obtain
the eigenbasis ψi(x) that is consistent with the completeness
relationship, 1 = ∑i|ψi(x)⟩⟨ψi(x)| with 1 being the identity
operator. Inserting this identity in between each photon-arrival
operator in eq 22 transforms the path integral or trace
operation into matrix multiplications as:

∑ ∑ ∏θ ψ ψ ψ ψ= ⟨ | | ⟩⟨ | | ⟩
τ

τ
− Δ

τ τ

τ τ τ

τ
τ− +

y[ ] e
i j

N

i j j
t

i
H

{ } { }

P

1 1
(27)

In the summation at the arrival time of the τth photon, iτ and jτ
both vary from one to the total number of eigenvectors. [In this
work, 64 eignevectors where used in all calculations. However,
16 eigenvectors would also be adequate for numerical solutions
because the precision of the eigen decomposition converges
with spectral accuracy.] The iτ and jτ sets in eq 27 thus include
the indices of all of the eigenvectors associated with the system
state at the arrival of each of the NP photons. The initial
condition of eq 24 is also implied in the summation. In eq 27,
the joint probability density (Y, X;θ) appears as the product
of bra-ket groupings inside the double summation with the
specific eigenstate at each time dictated by the elements in the
iτ and jτ sets. Therefore, ∏τ⟨|⟩ is used as a shorthand notation
for the summand in eq 27, and

θ = Π ⟨|⟩τX Y( , ; ) (28)

This exploitation of the Hermitian nature of the time
propagator plays a critical role in making possible the statistical
learning of continuous stochastic dynamics. Although the
operation in eq 22 or 26 can be performed forward or backward
in time, we generally start from time zero with the vector given
by eq 24 and perform the matrix operation to the right with eq
27. Next, we present the procedure we devised for eigen-
decomposing the Hermitian time propagator, evaluating the
likelihood functional, and inferring the latent trajectory given a
recorded photon sequence.

■ DETERMINATION OF EIGENBASIS FROM H0 AND H
The procedure presented below for eigen-decomposition is not
unique but nonetheless allows for computational feasibility of
the path integral. Diagonalization of the operator was
performed by using a spectral finite element method.34 First,
we solve the symmetric Fokker−Planck equation of the
Langevin dynamics,

ρ ρ∂
∂

= −x t
t

x tH
( , )

( , )0
(29)

= − ∇ +D V xH ( )0 2
eff (30)

= ′ +V
DF x DF x( )

2
( )

4eff

2

(31)

We then use the resulting eigenbasis to solve the PDE of eq 18
with the dark operator.
The Hermitian H0 gives a set of orthonormal basis ⟨ψi

0| that
satisfies the completeness relationship, 1 = ∑i|ψi

0⟩⟨ψi
0|. The

time dependence of ρ(x,t) in eq 29 can be accounted for by:

∑ρ ψ= ⟨ | ⟩ λ−x t c x( , ) e
i

i i
t0 i

0

(32)

The coefficients ci’s are time invariant and can be determined,
for example, based on the initial distribution of ρ(x,0). The
eigenvalues satisfy:

ψ λ ψ| ⟩ = | ⟩H i i i
0 0 0 0

(33)

The finite-time propagation of H0 can be represented by
constructing the matrix Ψ0 that contains the eigenvectors as the
columns and the diagonal matrix Λ0 of the eigenvalues:
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= Ψ Ψ− Δ −Λ Δ †
e et tH 0 00 0

(34)

Given a set of PMF and diffusion coefficient of the Langevin
equation, we determine the eigenvalues and eigenvectors via a
highly accurate spectral finite element method with localized
polynomials as the interpolation function in the elements.
Details of this numerical solution are provided in the
Supporting Information. We found robust convergence with
NE = 256 elements with NL = 7 order polynomials for all of the
systems we have analyzed. In particular, the spectral elements,
un(x)’s, are used to expand the scaled eigenvectors by the
square root of the equilibrium probability density, ρeq(x):

ψ ρ ϕ=x x x( ) ( ) ( )i i
0

eq
0

(35)

∑ϕ =x c u x( ) ( )i
n

i n n
0

,
0

(36)

In this case, a generalized eigenvalue problem is solved:

∑ ∑ρ ρ λ⟨ | | ⟩ = ⟨ | | ⟩u u c u p u cH
n

m n n
n

m n neq
0

eq
0 0

eq
0

(37)

The Hamiltonian matrix Knm
0 = ⟨umρeq|H

0|ρequn⟩ and the
overlap matrix Snm

0 = ⟨um|peq|un⟩ are then calculated with
analytical differentiation of the interpolation functions, and
numerically integrate to solve the algebraic equation of K0c0 =
λ0S0c0. Some representative eigenbases are graphically displayed
in Figure 3.

The eigenbasis of H0 is then used to solve the eigenvalue
problem that involves the dark operator required for the
smFRET likelihood calculation:

ψ λ ψ+ | ⟩ = | ⟩H H( )I
i i i

0
(38)

Here, HI = I(x), and the new eigenvector is then constructed as
a linear combination of |ψi

0⟩, |ψi⟩ = ∑jcij|ψj
0(x)⟩. [The

Supporting Information details how the Jeffery’s prior, or
square root of Fisher information for the dye intensities of a
smFRET experiment, can be added to I(x) to account for the
disparity in the information content from the photons emitted

at different positions in the domain when the acceptor and
donor intensities are not equivalent.] The algebraic equation of
this problem, Kc = λc, is then solved. The matrix elements of K
are:

ψ ψ λ δ ψ ψ= ⟨ | + | ⟩ = + ⟨ | | ⟩K xH H H( )ij i
I

j i ij i
I

j
0 0 0 0 0

(39)

After obtaining the eigenbasis of H, the photon arrival
operators would have the matrix elements as:

∫ψ ψ ψ ψ⟨ | | ⟩ = x x I x xy d ( ) ( ) ( )i j i ja,d a,d (40)

With the theoretical and numerical tools developed thus far,
the likelihood function of eq 22 can now be evaluated via a
series of NP matrix operations starting at either the α or β end
via eq 27. The calculation of the likelihood functional is thus
proportional to the number of the collected photons. After each
matrix-vector multiplication, the state vector αt or βt is
normalized to prevent numerical underflow and these normal-
izations are collected according to eq 41 to record the log-
likelihood as well as the inferred trajectory of the latent
variable:35

∑θ θ
α

α

α β

α
= =

∥ ∥
∥ ∥

+
⟨ | ⟩

∥ ∥τ=

τ

τ− −

[ ] ln [ ] ln lnt

t

t t

t1

N N

N1

P P

P 1 (41)

where ∥·∥ indicates vector norm.

■ INFERRING THE PROBABILITY DENSITY OF THE
LATENT DYNAMIC VARIABLE AS A FUNCTION OF
TIME

Given the sequence of photon colors and arrival times in a
specific smFRET measurement, the probability density of the
latent variable at different times can be evaluated via eq 23. A
simulated sequence of photon emission of a smFRET process
using the PMF and diffusion coefficient outlined in Figure 2
was used as the data set to perform the inference calculation.
The resolution used in simulating the photon emission follows
the intensity values specified in Table 1 with a total length of
3.3 s. With the knowledge of the underlying PMF and D and a
sufficiently high resolution in the smFRET experiment, Figure
4 shows that the latent trajectory can indeed be accurately
inferred. The inferred probability density shown as contours
closely overlaps with the trace of the actual Langevin trajectory.
The figure also shows that the resulting statistics of the
equilibrium distribution quantitatively reproduces that given by
the underlying PMF. This result thus numerically validates the
inference scheme of eq 23 developed in the previous section. In
contrast, using the MIM method discussed earlier that involves
time binning gives a blurred histogram due to the resulting
information loss of the MIM method. (cf. the orange bars in
Figure 4) that deviates from the right answer. Other details of
the smFRET simulation and MIM analysis are reported in the
Supporting Information.
Obviously, without a prior knowledge of the true F(x) and/

or D, the inference would not be accomplished as accurately.
Using a default trial profile for the equilibrium probability
density, p0(x) = cos2(x/L), where L is the size of spatial domain
of x, in eq 23, Figure 5 shows that the inferred probability
densities of the latent trajectory has significant differences in
comparison to the actual trajectory of x, although the instances
of the transitions between metastable states can be captured
rather accurately. The simulated photon trajectories and x are

Figure 3. Eigenvectors and eigenvalues of the Langevin Hamiltonian
with the reference PMF (V(x)) shown in Figure 2 and D = 500 s−1.
The first eigenvector is the equilibrium density ρeq(x) with eigenvalue
λ1 = 0. The second eigenvector is the slowest reaction of the system
that is the transition between the state at x = 0.8 and x = 1.2, and the
eigenvalue of this process sets the apparent time-scale of system
relaxation, 1/λ2 = τ ≈ 0.5 ms. The third eigenvector is entrance and
escape from the intermediate state at x = 1.0.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp405983d | J. Phys. Chem. B 2013, 117, 15591−1560515597

http://pubs.acs.org/action/showImage?doi=10.1021/jp405983d&iName=master.img-003.jpg&w=226&h=149


the same as those in generating the results of Figure 4. The
time-averaged distribution of x from the inferred probability
densities, p̅(x) ∼ peq(x), also differs significantly from the three-
well PMF of the actual dynamics of the latent variable. The
default trial profile of p0(x) = cos2(x/L) is the least informative
dynamics model for a system of a fixed domain without any
prior knowledge of F(x).36 In this case, Figure 5 shows that the
MIM histogram with the information loss due to adaptive time-
binning gives a similar profile of x histogram as that of the
inference with p0(x) = cos2(x/L). In this illustration, the
maximum likelihood diffusion coefficient of D = 82 s−1 given
the p0 distribution was used.
The agreement between the inferred and the actual latent

trajectory without the prior knowledge of the underlying PMF
and D can be systematically improved by performing the
maximization step of statistical learning in eq 11. The remaining
sections of this paper detail the developments in this direction.

■ EXTRACTING THE LANGEVIN PARAMETERS
EMBEDDED IN SMFRET DATA VIA EXPECTATION
MAXIMIZATION

Maximization for the optimal parameter set requires taking
derivatives of the log-likelihood functional in eq 22 and solves
the resulting Euler−Lagrange equation:

∫δ θ
δ θ

δ
δθ

θ= =X t P X t Y t
[ ]
[ ]

ln ( ) ( ( ), ( ); ) 0
(42)

This task appears to be nearly impossible because the functional
dependence on the Langevin parameters is implicitly buried
within the path integral. To make the calculation trackable, we
generalize the expectation-maximization (EM) algorithm38,39

developed for discrete-state systems40 to handle the continuous
space of Langevin dynamics.
First, taking the natural log outside the integral in eq 42 is

moved inside to optimize a lower bound of the likelihood
function due to Jensen′s inequality. As shown later, this
expectation step of EM ensures that optimizing this lower
bound also improves the likelihood function itself. In particular,
the expectation is performed via the auxiliary function (X(t)|
Y(t);θk), the inferred probability density of the latent trajectory
with the parameter set at step k of the EM iteration, θk.39 The
expectation is thus defined as: EX|Y

k [·] = ∫ X(t)(·) (X(t)|
Y(t);θk). In this way, eq 42 is recast into:

δ
δθ

θ =| X t Y t[ln ( ( ), ( ); )] 0X Y
k

(43)

The key here is treating the parameter set θk in the weighting
function of eq 43 as constants in functional derivatives. Only
the complete likelihood being expected in eq 43 contains the θ
set as independent variables for increasing the likelihood
function via maximization. Solving eq 43 determines the
parameter set of the next EM iteration, θk+1.
The connection between eqs 43 and 42 can be expressed

alternatively as the following. First, the log-likelihood function
we aim to optimize can be split up into:

θ θ θ θ
θ

θ θ

= = −

= − |

Y Y X
Y X

Y

Y X X Y

[ ] ln ( ; ) ln ( , ; ) ln
( , ; )

( ; )
(44)

ln ( , ; ) ln ( ; ) (45)

The notation has been collapsed via setting Y = Y(t) and X =
X(t). The expectation over the latent trajectories with the
auxiliary function (X|Y;θk) described earlier is now taken to

Figure 4. Numerical validation of using eq 23 for inferring the
dynamics of x from the photon sequence recorded in a smFRET
experiment. In this case, PMF and D are assumed to be known a a
priori, and the EM algorithm was thus not applied. Note the
quantitative match of the inferred distance-time trajectory (dark-blue
shades) with respect to the “true” trajectory (solid black line). The
resolution used in simulating the photon emission follows the intensity
values specified in Table 1. The reference model parameters shown in
Figure 2 were used in simulating the photon-arrival trajectory. Only
the initial section of 0.04 s of the 3.3 s total trajectory is shown. (top)
The trace of photon arrivals per millisecond recorded in the donor and
acceptor channels. (bottom-right) Time-averaged probability density
of x in the inferred probability density of trajectories, peq(x) = (1/
t)∫ 0

tδ(x − x′). The dashed line is the reference distribution in Figure
2a. (bottom-left) The contours of the product of the inferred ⟨α(t)|x⟩
and ⟨x|β(t)⟩ vectors, that is, (X(t)|Y(t);F(x),D), with the color
intensity using the log-scale. Orange crosses are the MIM estimates via
adaptive time binning with a relative standard deviation of σ = 0.1.11,19

Figure 5. Inferring the dynamics of x from the photon sequence
recorded in a smFRET experiment with the maximum likelihood D =
82 s−1 is the case of having no information on PMF. The EM
algorithm was not yet applied. The trial PMF used for inference is
p0(x) = cos2(x/L) that gives least informative dynamics with a fixed
domain.37 The trial PMF is thus different from the actual profile used
to generate the photon trajectory. Only the initial section of 0.04 s of
the 3.3 s total trajectory is shown. (top) The trace of photon arrivals
per millisecond recorded in the donor and acceptor channels.
(bottom-right) Time-averaged probability density of x in the inferred
probability density of trajectories, peq(x) = (1/t)∫ 0

tδ(x − x′). (bottom-
left) The contours of the product of the inferred ⟨α(t)|x⟩ and ⟨x|β(t)⟩
vectors, i.e., (X(t)|Y(t);F(x),D), with the color intensity using the
log-scale. The solid line is the “true” x trajectory based on the free
energy surface shown in Figure 2b. Points (x) are the MIM estimates
via adaptive time binning with a relative standard deviation of σ =
0.1.11,19
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both sides of eq 45. The log-likelihood in the lefthand side
remains unchanged with no X dependence. The expectation
transforms the first term on the righthand side into the
expected log of the complete likelihood in eq 43. The second
term on the righthand side of eq 45 after the expectation is
recognized as an “entropy” function for X. Therefore, the
following decomposition can be achieved:

θ θ θ= +Q S[ ] ( ) ( )k k
(46)

∫θ θ θ= |Q X X Y Y X[ ] ( ; )ln ( , ; )k k
(47)

∫θ θ θ= − | |S X X Y X Y[ ] ( ; )ln ( ; )k k
(48)

By setting θ = θk in eq 46 and taking the difference of Δ k = −
k, one obtains:

θ θ θΔ = Δ + ΔQ S[ ] [ ] [ ]k k k
(49)

Here, ΔQk[θ] = Q[θ] − Qk[θk], and ΔSk[θ] is defined
similarly. Since the Gibbs inequality ensures that ΔSk[θ] ≥ 0 ∀
θ, the following inequality holds:

θ θΔ ≥ ΔQ[ ] [ ]k k
(50)

Therefore, the update of EM optimization for systematically
improving [θ] can be achieved via:

θ θ=
θ

+ Qargmax [ ]k k1

(51)

Next, the EM theory for the continuous stochastic dynamics via
eq 51 is translated into a practical algorithm via the eigenbasis
decomposition presented earlier.
Following the transformation of eq 22 into eq 27, eq 45 is

written with the eigenbasis decomposition as:

∏θ
θ

= ⟨|⟩ −
∏ ⟨|⟩

τ

τ[ ] ln ln
[ ] (52)

The expectation over the latent trajectories via the parameter
set at the kth iteration, θk, now involves taking the following
sum for the righthand side of eq 52:

∑ ∑· ≡
∏ ⟨|⟩

·τ
|

τ τ

 [ ]X Y
k

i j

k

k
{ } { } (53)

Here, the likelihood and bra-operator-ket terms are indexed by
k to indicate that it is the expectation step of the EM algorithm.
As such, eq 51 is translated into the following expression based
on eq 47:

∑ ∑ ∏θ =
∏ ⟨|⟩

⟨|⟩
θ

τ

τ

+

′τ τ

argmax lnk

i j

k

k
1

{ } { } (54)

In this equation, the dependence on θ is implied in the ∏τ′⟨|⟩
term as in eq 28.
The representation of Qk[θ] via the eigenbasis in eq 54 can

be more concretely expressed as:

∑θ α β= ⟨ | | ⟩
τ

− Δ
τ

τ
τ+

Q [ ]
1

ek
k t

k t
t
kH

1
(55)

The θ dependence is now implied in H. The expected states in
eq 55 are:

∑α τ ψ⟨ | = ⟨ |
τ

a x( ) ( )t
k

j
j
k

j
(56)

∑β τ ψ| ⟩ = | ⟩
τ

b x( ) ( )t
k

i
i
k

i
(57)

The coefficients in these states for the system at the arrival of
the τth photon are inferred from the eigen-representation of the
path integral:

∑ ∏τ ψ ψ= ⟨|⟩⟨ | | ⟩
τ τ τ τ

τ
′< ′<

′
τ

τ
′

′
a y( )j

k

i

k

j i
{ , } (58)

∑ ∏τ ψ ψ+ = ⟨|⟩⟨ | | ⟩
τ τ τ τ

τ
′> ′>

′
τ

τ
′

′
b y( 1)i

k

j

k

j i
{ , } (59)

A similar construction has been developed for Markov state
models and the forward−backward Baum-Welch algorithm.41

Finally, we derived in the Supporting Information that the
Gibbs inequality of ΔSk(θ) ≥ 0 ∀ θ still holds in the eigen-
decomposition form of the path integral. It is different from the
typical analysis with probability distributions that only positive
values are involved because the coefficients of eigenvectors at a
particular time can be negative.

■ EVALUATION OF FUNCTIONAL DERIVATIVES

With the parameter dependence implied in H in eq 55, the
maximization step of the EM algorithm comes down to solving
the following equation for the parameter set θk+1 of the next
iteration:

∑ δ
δθ

α β= ⟨ | | ⟩|
τ

θ
− Δ

τ
τ

τ+
+0

1
ek t

k t
t
kH

k
1

1

(60)

Unfortunately, the functional dependence on the θ set that
involves F(x) and D is buried within the exponential of the time
propagation operator H and a direct extraction of the functional
derivatives is prohibitive. To overcome this difficulty, we
derived an line-integral approach to evaluate the derivative
kernel42 for which the details are provided in the Supporting
Information. In summary, the functional derivatives are
calculated as:

∫

δ
δθ

α β

α δ
δθ

β

⟨ | | ⟩ =

− ′⟨ | | ⟩

− Δ

Δ
− ′ − Δ − ′

τ
τ

τ

τ

τ
τ
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+

+
t

H

e

d e e

t
k t

t
k

t

t
k t t t

t
k

H

H H

0

( )

1

1 (61)

The operator derivative is thus defined through a moving
window from τ to τ + 1. By inserting 1 = ∑i|ψi⟩⟨ψi| and using
⟨ψi|e

−Ht|ψj⟩ = δije
−λit, we obtain the derivatives as:

∫∑ α ψ
δ ψ ψ

δθ
ψ β− ′⟨ | ⟩

⟨ | | ⟩
⟨ | ⟩λ λ

Δ
− ′ − Δ − ′τ

τ
τ

τ+
t

H
d e e

i j

t

t
k

i
t i j t t

j t
k

, 0

( )i j

1

(62)

Since only the two exponentials in the above equation have
dependence on t′, we define the transfer functions Γij

τ after
performing the time integration as:
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(63)

Putting the result of eq 62 in eq 60 and applying eqs 56 and 57,
one can recognize that performing the sum over τ in eq 62
leads to the following expectation:

∑ τ τ= Γ +
τ

τ
| a b a b[ ] ( ) ( 1)X Y

k
i j ij i

k
j
k

(64)

Finally, we obtain the equation of derivatives required for
performing the maximization step in EM:

∑δ θ
δθ

δ ψ ψ

δθ
= −

⟨ | | ⟩
|

Q
a b

H[ ] 1
[ ]

k

k
i j

i j
X Y
k

i j
, (65)

With the eigenbasis, the functional derivatives in eq 65 can be
performed with the Euler−Lagrange equation:

δ ψ ψ

δ

ψ ψ ψ ψ⟨ | | ⟩
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∂
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(66)

Imposing the form of the Hamiltonian of eq 19 gives the
functional derivative with respect to the mean-force profile:

δ ψ ψ

δ
ψ ψ ψ ψ

⟨ | | ⟩
= −⎜ ⎟⎛

⎝
⎞
⎠F x

D
F x x x
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d
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( ( ) ( ))i j
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(67)

Since the Hamiltonian and its eigenvalues scale linearly with the
diffusion coefficient, the derivative is simply

ψ ψ λ
δ

⟨ | | ⟩
=

D D

Hd

d
i j i

ij (68)

■ EM ALGORITHM FOR LEARNING LANGEVIN
DYNAMICS FROM SMFRET MEASUREMENTS

With the functional derivatives attained, the maximization step
is accomplished by setting the derivatives of eq 65 to zero. First,
the functional derivatives with respect to the mean force F(x)
in eq 67 is applied to eq 65 to reach the final form of the
maximization step:

ψ ψ ψ ψ− =|
+⎡

⎣⎢
⎤
⎦⎥ F x

D
x x

D
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x x( )
2

( ) ( )
2
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1

(69)

Therefore, the update equation for the mean-force profile in an
EM iteration is:

δ
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(70)

In this case, it is convenient to update the equilibrium
probability density in EM:

∑

δ

ϕ ϕ

= −

=

+
|

|





p x x X
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eq
1

eq
,

The optimization for the scalar D is then performed by a line
search43 for the maximal likelihood with the new peq

k+1(x) and eq
68. This EM scheme is summarized in Algorithm 1.

The proposed statistical learning problem of Langevin
dynamics from smFRET data is naturally underdetermined
because we attempt to extract a continuous profile from a finite
number of photons. A Bayesian prior is thus required to break
the degeneracy in the parameter set (such a device was used in
a different context for the number of discrete states.40,44 With
the prior, the posterior function for parameter optimization
becomes:

θ θ θ= Y t
Y t

( ) ( ( ); )
( )

( ( )) (73)

A criterion for choosing the prior is to guide the optimization
toward F(x) profiles that imply the least amount information of
dynamics. The goal is to prevent the statistical learning from
overfitting and overinterpreting the measured data. As such, we
select the prior based on maximum trajectory entropy. For
Langevin dynamics at equilibrium, the trajectory entropy has
been derived,36 and the prior is hence:

= =η η− − ⟨ ⟩F x D( ( ), ) e eS F x D D F x[ ( ), )] ( )F F
2

eq (74)

S[·] is the trajectory entropy functional, and ηF is the effective
temperature specifying the regularization weighting in the
optimization. The temperature is set heuristically to the lowest
possible value sufficient for maintaining a numerically stable
EM iteration. For the test cases examined in this work, ηF = 2 ×
10−7 was found to be sufficient to ensure numerical stability,
and an order of magnitude higher or lower provides nearly
equivalent results.
To incorporate the prior into the EM framework, the

ensemble average of force squared in eq 74 is approximated by
the path expectation at each EM iteration:

η η− ⟨ ⟩ ≃ − |D F x DF x( ) [ ( )]F F X Y
k2

eq
2

(75)

The modified update function for the log posterior is then
found by setting the expected functional derivative with respect
to force to zero

δ
δ

η= −|
F

F x DF x0 [ [ ( )] ( )]X Y
k

F
2

(76)

We then solve for the modified EM update equation for
equilibrium probability

δ= − η+
|

+p x x X( ) ( [ ( )])k
X Y
k D

eq
1 1/(1 )F

(77)
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In practice, only the equilibrium probability is required to
construct the eigenvector basis at each iteration and eq 77
shows that the net effect of the prior is to smooth the maximum
likelihood EM equation by taking the profile to an exponent
just slightly less than 1. For the finite domain used in the
spectral finite element method, the probability is initialized to a
∝ cos2(xπ/2L) distribution of maximum trajectory entropy
with zero probability at the boundary of the domain.
The calculation of |X Y [δ(x − X)] as well as its derivative if

needed can be performed simply by matrix multiplication if the
matrix Ψ is constructed with the eigenvectors oriented in the
columns and the inferred state matrix |X Y

k [aibj]:

ψ ψ=+
|

†p x a b( ) tr( [ ] )k
X Y
k

i jeq
1

(78)

For trajectories composed of 80 000 photons, convergence in
likelihood typically requires an exhaustive number of 50 000
iterations due to the sublinearity of the EM algorithm.45

Figure 6 shows a typical sequence of photon data and the
corresponding trajectory of the latent variable in the simulation.

The comparison of the optimized profile of equilibrium
distribution with that corresponds to the reference PMF
indicates the ability of the EM scheme we devised to learn
about the continuous profile of PMF from the photon
sequence. Figure 6 also shows that the latent trajectory can
be inferred accurately with the optimized parameter set. With
an explicit consideration of each arrived photon, including the
dark period waited before, much of the information of the
underlying dynamics can indeed be extracted from the indirect
measurement of smFRET. On the other hand, time-binning of
any kind inevitably leads to information loss; even the MIM
method cannot retrieve this level of mechanistic details as seen
in Figure 6.

■ RESULTS AND DISCUSSION
The EM algorithm we developed for continuous stochastic
dynamics has many similar features as in the self-consistent
mean field theory in polymer physics that both aim to search
for the extrema of a functional. The fundamental property of
EM that the likelihood is a strictly increasing quantity ensures
that the optimization is stable, robust, and reliable, despite the
fact that the convergence rate is sublinear.45

To illustrate the robustness of EM against the stochasticity in
smFRET data, 12 independent photon trajectories were
simulated at four different resolutions to compare their results
of statistical learning. The total number of EM optimization for
generating the results of this section is thus forty eight. The
behaviors of learning the Langevin parameters and kinetic
behaviors are summarized in Figures 7−10.
The optimized probability densities of the equilibrium

distribution and PMFs for each of the 12 trajectories are
plotted in Figures 7 and 8, respectively for the cases of 1× and

5× intensity, cf. Table 1. The averaged and reference profiles
are also shown in the figures for comparison. It can be seen that
at both resolutions, there exhibits considerable variation in the
results of statistical learning due to the noise in stochastic
trajectories and photon statistics. Nonetheless, the number of
metastable states and their locations are consistently repro-
duced. Since resolving the dynamics associated with the middle
state requires a higher temporal resolution, its inference shows
more significant deviation from the “true” values as compared
to the short-distance (x = 0.8) and the long-distance (x = 1.2)
states as seen in Figures 7 and 8. It is also clear from Figures 7a
and 8a that at the typical resolution of smFRET experiments
(1× intensity), the middle state can barely be resolved.
Although each EM optimization for an individual trajectory
does predict higher barriers and have the middle-state more
resolved, variances among the 12 trajectories, and hence their

Figure 6. EM statistical learning of PMF and D from the photon-
arrival time trajectory of a simulated smFRET experiment. Only the
initial section of 0.04 s of the 3.3 s total trajectory is shown. (top) The
trace of photon arrivals per millisecond recorded in the donor and
acceptor channels. (bottom-right) Time-averaged probability density
of x in the inferred probability density of trajectories, peq(x) = (1/
t)∫ 0

tδ(x − x′). (bottom-left) The contours of the product of the
inferred ⟨α(t)|x⟩ and ⟨x|β(t)⟩ vectors, i.e., (X(t)|Y(t);F(x),D), with
the color intensity using the log-scale. The solid line is the “true”
distance trajectory. The orange crosses are the MIM estimates via
adaptive time binning with a relative standard deviation of σ = 0.1.11,19

Figure 7. peq(x) profiles of the converged results of EM optimization
for 12 independent trajectories of 80 000 photons. The trajectories
were simulated with the PMF and D shown in Figure 2 at different
resolutions of the smFRET experiment. (a) The results using the
default smFRET parameters listed in Table 1, i.e., the 1× intensity. (b)
The results using the 5× intensity. ηF = 2 × 10−7 was employed for all
runs of EM optimization.
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inferred locations of metastable states and barrier heights,
muddle these information in the averaged result. If the
resolution of the photon data was reduced to 0.5× intensities,
the ability of resolving the middle state in Figure 2 disappears.
The corresponding EM results for the other resolutions
examined in this work are shown in Supporting Information.
With 5× intensities, Figures 7b and 8b show that the same
number of photons in a 5 times shorter duration carries more
information for resulting the finer details of the local shapes and
curvatures of the profiles of the PMF and equilibrium
probability density. The averaged profiles resulting from the
5× EM capture the answer quite closely. Next, we present the
results of learning dynamical properties of D, mean first passage
times, and kinetic rates.
The statistically learned diffusion coefficients for the

trajectory sets simulated at different resolutions are summarized
in the boxplot of Figure 9. The boxplot represents the variation
in a data set by showing the average as the red horizontal line,
the 25% quartile of the data above and below the average by the
unfilled blue bar, the upper and lower bounds of the continuous
spread of data as black caps, and the outliers as red crosses. It
can be seen that the maximum entropy prior for regularizing
the EM optimization causes systematic bias of D toward lower
values. Without sufficient information in the data, the trajectory
entropy penalty of ⟨F2(x)⟩ tends to lower PMF barriers, and
the diffusion coefficient is hence underestimated. On the other
hand, Figure 9 also shows that if the data does provide
information for resolving the PMF barriers, such as in the case
of 5× intensities, the resulting D would have a higher value.
The PMF and D work in balance to control the transition time-
scales of the system, and the estimation of kinetic rates is
actually much less biased (as presented later). Although the
Bayesian prior approach overcomes the degeneracy issue
associated with learning a continuous function, it does
introduce bias into the final solution under data deficiency.46

Further investigation indicates that the converged diffusion

coefficient is relatively insensitive to the ηF parameter over a
wide range of values from 10−5 to 10−7 after the establishment
of numerical stability. Figure 9 shows that with a 5× intensity,
the bias in D can start to be overcome by the richer dynamics
information carried in the photon data.
The kinetic rates of transition between the metastable states

can be determined by calculating the mean first passage times
(MFPTs) as a postprocessing step after the PMF and D being
optimized with EM. It is important to emphasize the number
and locations of metastable states are read off from the EM
converged profiles without assuming prior knowledge. We
calculate the MFPT from state A at position xA ≈ 0.8 to state B
at position xB ≈ 1.2 via:47

∫ ∫→ = = × ′→
− − ′x x k

D
x xMFPT( )

1
d e d e

x

x
V x

x

x
V x

A B A B
1 ( ) ( )

A

B

L

(79)

where the subscripts L and R denote the left and right ends of
the domain of the system dynamics, respectively. For the
reverse transition, the formula reads

∫ ∫→ = = ′→
− − ′x x k

D
x xMFPT( )

1
d e d e

x

x
V x

x

x
V x

B A B A
1 ( ) ( )

B

A

R

(80)

Or, recognizing ∫ xR
x = ∫ xR

xL − ∫ xL
x , kB→A

−1 can be calculated
alternatively as:

∫ ∫ ∫= ′ − ′→
− − ′ − ′⎛
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By using the reference PMF and diffusion coefficient of
Figure 2, we calculate the MFPTs and kinetic rates for the
transition between states A and B. These values of the actual
latent dynamics are summarized in Table 2. The same
postprocessing evaluation of MFPT is also performed on the
converged PMF and D from the EM optimization of the
aforementioned set of 12 trajectories at each data resolution.
The results are summarized in the boxplots of Figure 10.
Despite the variance in the diffusion coefficients deduced from
these trajectories as seen in Figure 9, the kinetic rates are

Figure 8. PMF profiles of the converged results of EM optimization
for 12 independent trajectories of 80 000 photons. The trajectories
were simulated with the PMF and D shown in Figure 2 at different
resolutions of the smFRET experiment. (a) The results using the
default smFRET parameters listed in Table 1, i.e., the 1× intensity. (b)
The results using the 5× intensity. ηF = 2 × 10−7 was employed for all
runs of EM optimization.

Figure 9. Boxplots of the converged diffusion coefficients from EM
optimization for the 12 independent trajectories of 80 000 photons
simulated at each photon resolution. At each level of intensity, the
averaged value of D over the statistical learning of 12 trajectories is
represented as the red horizontal line, the 25% quartile of the values
above and below the average is shown by the unfilled blue bar, the
upper and lower bounds of the continuous spread of D are labeled as
black caps, and the outliers are denoted as red crosses. ηF = 2 × 10−7

was employed for all runs of EM optimization.
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quantitatively reproduced with high accuracy even at the lowest
resolution. The little bias, if any, in the inferred kinetic rate can
be understood as a nice consequence of the balance between
PMF and D in the EM statistical learning discussed earlier.

■ CONCLUSION
In this work, we have developed a Bayesian inference
framework to learn about the continuous stochastic dynamics
of Langevin equation from time-dependent single-molecule
FRET experiments. Our theory explicitly and rigorously
incorporates the two layers of stochasticity separating the
dynamics information of interest from the fluorescence single-
molecule datathe statistical photon detections and the
stochastic thermal fluctuations. The resulting EM algorithm
hence allows the entire PMF profile and diffusion coefficient of
protein conformational changes to be extracted from the
photon colors and arrival times recorded in a smFRET
experiment, without any presumed profile shape nor kinetic
models; this method thus enables unanticipated discoveries.
The capability to extract the conformational diffusion
coefficient means that the forces that govern the stochastic
dynamics can now be quantified directly from single-molecule
data and is a significant milestone. Together with the
deterministic force given by the PMF profile, the conforma-
tional dynamics can now be quantitatively determined at the
single-molecule level. This work thus represents an important
step forward advancing single-molecule spectroscopy.
A series of analytical and numerical advances has been

accomplished to achieve the capability of Bayesian inference for
continuous dynamics. First, the numerical path integration of

the likelihood functional, which would have involved book-
keeping infinite terms for continuous dynamics, is made
possible by integrating forward the time-independent terms
and incorporating the operator of observing darkness into the
Fokker−Planck equation of Langevin dynamics, eq 17. Second,
the Fokker−Planck equation with the dark operator is
transformed into a time-symmetrized form of eqs 18 and 19.
The Hermitian property of this representation allows
eigenvectors with orthonormality and completeness to be
acquired for convenient decomposition of the Langevin time
propagation coupled with photon statistics in eq 22. The eigen
decomposition reduces the otherwise infinite operations in
continuous space to the finite number of basis sets. Combining
these two aspects transforms the path-integral calculations of
the likelihood functional into matrix operations. Third, we
generalized the EM scheme originally developed for discrete-
state statistical learning to the space of continuous profiles by
deriving the analytical derivatives of the likelihood functional
with respect to the PMF profile, eqs 67 and 68. Our EM
algorithm for continuous stochastic dynamics, Algorithm 8, is
also analogous to generalizing the Kalman filter for the
statistical inference on linear dynamical systems (linearity in
the sense that the time propagator is independent of the system
position48,49) to handle arbitrary potentials of x and arbitrary
probabilistic information from the experimental observations.
Lastly and equally importantly, a trajectory-entropy motivated
prior is imposed to ensure the numerical stability of EM for
Langevin dynamics by breaking the solution degeneracy within
the space of continuous PMF profiles.
As a result, extracting the governing PMF and diffusion

coefficient of protein dynamics from smFRET experiments can
now be accomplished. Conversely, an experimentalist can also
use this framework to establish the data quality required for
resolving such mechanistic features as the number and location
of metastable states as well the kinetic rates connecting them.
The ability to acquire the mechanistic details of protein
dynamics may facilitate the engineering of the functionalities of
enzymes and protein machines.50

The derivation presented in this work exemplifies the
manner by which the specific features of smFRET experiments
are utilized to construct the operators associated with photon
statistics. Although the theoretical development and numerical
illustration presented in this work focus on the Langevin
dynamics with a constant diffusion coefficient, the general-
ization to x-dependent diffusion is expected to be relatively
uncomplicated. The framework can also be extended
straightforwardly into multiple dimensions if several separate
signals of the system could be measured simultaneously.51,52 An
essential requirement for such applications is that time
propagation of the system can be made symmetric so that an
eigenbasis set can be constructed for transforming a continuous
path integral into matrix multiplications. Extension of our
developments to other classes of data types obtained
experimentally or computationally can also be achieved readily
provided that the information (observation) operator y is
defined. Examples of other data types include the force and
position trajectories measured in single-molecule pulling
experiments,53 the many short bursts of trajectories in specific
types of molecular simulations,54,55 and potentially quantum
dynamics measurements due to the similarities in the path-
integral framework.33

Table 2. Mean-First-Passage-Times (MFPTs) and Reaction
Rates for the Reference Potential Shown in Figure 1 with D
= 500 s−1

MFPT(xA →xB) 1.959 × 10−3 s
MFPT(xB →xA) 0.939 × 10−3 s
kA→B 0.510 × 103 s−1

kB→A 1.064 × 103 s−1

kA→B/kB→A 0.480

Figure 10. Boxplots of the kinetic rate kA→B and kB→A from mean-first-
passage-time calculations using the converged PMF and D of EM
optimization. The data include 12 independently simulated trajectories
with 80 000 photons at each data resolution. For each level of
intensity, the average values of kinetic rates over 12 trajectories are
represented as the red horizontal lines, the 25% quartile of the rate
data above and below the average is shown by the unfilled blue bar, the
upper and lower bounds of the continuous spread of the rates are
labeled as black caps, and the outliers are denoted as red crosses. ηF =
2 × 10−7 was employed for all runs of EM optimization.
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