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An Adaptive, Low-Cost Wear-Leveling Algorithm for Multichannel
Solid-State Disks

LI-PIN CHANG, TUNG-YANG CHOU, and LI-CHUN HUANG, National Chiao-Tung University

Multilevel flash memory cells double or even triple storage density, producing affordable solid-state disks for
end users. As flash memory endures only limited program-erase cycles, solid-state disks employ wear-leveling
methods to prevent any portions of flash memory from being retired prematurely. Modern solid-state disks
must consider wear evenness at both block and channel levels. This study first presents a block-level wear-
leveling method whose design has two new ideas. First, the proposed method reuses the intelligence available
in flash-translation layers so it does not require any new data structures. Second, it adaptively tunes the
threshold of block-level wear leveling according to the runtime write pattern. This study further introduces
a new channel-level wear-leveling strategy, because block-level wear leveling is confined to a channel, but
realistic workloads do not evenly write all channels. The proposed method swaps logical blocks among
channels for achieving an eventually-even state of channel lifetimes. A series of trace-driven simulations
show that our wear-leveling method outperforms existing approaches in terms of wear evenness and overhead
reduction.
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1. INTRODUCTION

Solid-state disks employ flash memory as their storage medium. The physical charac-
teristics of flash memory differ from those of hard drives, necessitating new methods
for data accessing. Solid-state disks hide flash memory from host systems by emulating
a collection of logical sectors, allowing systems to switch from a hard drive to a solid-
state disk without modifying any existing software and hardware. Solid-state disks are
superior to traditional hard drives in terms of shock resistance, energy conservation,
random-access performance, and heat dissipation, attracting vendors to deploy such
storage devices in laptops, smart phones, and portable media players.

Flash memory is a kind of erase-before-write memory. Because any one part of flash
memory can only withstand a limited number of write-erase cycles, approximately
100K cycles under the current technology [Samsung Electronics 2006], frequent erase
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operations can prematurely retire a region in flash memory. This limitation affects the
lifetime of solid-state disks in applications such as laptops and desktop PCs, which
write disks at very high frequencies. Even worse, recent advances in flash manufactur-
ing technologies exaggerate this lifetime issue. In an attempt to break the entry-cost
barrier, modern flash devices now use multilevel cells for double or even triple density.
Compared to standard single-level-cell flash, multilevel-cell flash degrades the erase
endurance by one or two orders of magnitude [Samsung Electronics 2008].

Without wear leveling, localities of data access inevitably degrade wear evenness
of flash memory in solid-state disks. Partially wearing out a piece of flash memory
not only decreases its total effective capacity, but also increases the frequency of flash
erase for free-space management, which further speeds up the wearing out of the rest
of the flash memory. A solid-state drive ceases to function when the amount of its
worn-out space in flash exceeds what the drive can manage. Wear-leveling techniques
ensure that the entire flash wears evenly, postponing the first appearance of a worn-out
memory region. However, wear leveling is not free, as it moves data around in flash
to prevent solid-state disks from excessively wearing any one part of the memory. As
reported in Chang et al. [2010], these extra data movements can increase the total
number of erase operations by ten percent.

Wear-leveling algorithms include rules defining when data movement is necessary
and where the data to move to/from. These rules monitor wear in the entire flash
and intervene when the flash wear becomes unbalanced. Wear-leveling algorithms
are part of the firmware of solid-state disks, and thus they are subject to crucial
resource constraints of RAM space and execution speeds of solid-state disks’ microcon-
trollers (or simply controller).1 Prior research explores various wear-leveling designs
under such tight resource budgets, revealing three major design challenges. First,
monitoring the entire flash’s wear requires considerable time and space overheads,
which many controllers in present solid-state disks cannot afford. Second, algorithm
tuning for host-workload adaption and performance definition requires prior knowl-
edge of flash access patterns, online human intervention, or both. Third, high imple-
mentation complexity discourages firmware programmers from adopting sophisticated
algorithms.

Prior methods sort flash erase units in terms of their wear information. This re-
quires efficient access to the wear information of arbitrary erase units, and thus these
methods copy the wear information of the entire flash from flash to the RAM of the
disk controllers. However, many controllers at the present time cannot afford this RAM
space overhead. Chang and Du [2009] proposed caching only portions of wear infor-
mation in RAM. However, the miss penalty and write-back overhead of the cache can
scale up the volume of flash-write traffic by up to 10%. Instead of storing the wear
information of all flash erase units in RAM, Jung et al. [2007] proposed using the av-
erage wear of large flash regions. Nevertheless, the low-resolution wear information
suffers from distortion whenever flash wearing is severely biased. Chang et al. [2010]
introduced a bitmap that indicates whether a flash erase unit is recently erased or not.
However, using the recent erase history could blind wear-leveling algorithms, because
the recency and frequency of erasing operations on flash erase units are mutually
independent.

Existing wear-leveling designs subject wear evenness to tunable threshold param-
eters [Chang et al. 2010; Chang and Du 2009; Jung et al. 2007; Agrawal et al. 2008].
The system environment in which wear leveling takes place includes many conditions,

1For example, the GP5086 SSD controller from Global Unichip was rated at 150 MHz and has 64 KB of
SRAM for binary executables, data, and mapping tables [Global Unichip Corp. 2009].
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such as flash-translation layer designs, flash geometry, and host disk workloads.
Existing approaches require human intervention or prior knowledge of the system en-
vironment for threshold setting. However, there are problems of using manually tuned
threshold. A wear-leveling algorithm may have good performance with a threshold
in a system environment, but with the same threshold, it could cause unexpectedly
high wear-leveling overhead or unsatisfactory wear evenness in a different system
environment.

From a firmware point of view, implementation complexity primarily involves the ap-
plicability of wear-leveling algorithms. The dual-pool algorithm [Chang and Du 2009]
uses five priority queues of wear information and a caching method to reduce the
RAM footprints of these queues. The group-based algorithm [Jung et al. 2007] and the
static wear-leveling algorithm [Chang et al. 2010] add extra data structures to main-
tain coarse-grained wear information and the recent history of flash wear, respectively.
These approaches ignore the information already available in the disk-emulation al-
gorithm, which is a firmware module accompanying wear leveling, and unnecessarily
increase their design complexity.

This study presents a new wear-leveling design, called the lazy wear-leveling
algorithm, to tackle the three design challenges previously mentioned. First, this de-
sign stores only a RAM-resident counter indicating the average wear of the entire flash,
achieving a tiny RAM footprint. Second, even though this algorithm uses a threshold
parameter, it adopts an analytical model to estimate the overhead increase ratio with
respect to different threshold settings, and then automatically selects a threshold for
good balance between wear evenness and overhead. Third, the proposed algorithm
utilizes the address-mapping information available in the disk-emulation algorithm,
eliminating the need for adding extra data structures for wear leveling.

Modern solid-state disks are equipped with multiple channels for parallel flash
operations. In this study, a channel refers to a logical unit that independently
processes flash commands and transfers data. Multichannel designs boost the write
throughput but introduce unbalanced wear of flash erase units among channels. Prior
work address this issue by dispatching write requests to channels on a page-by-page
basis [Chang and Kuo 2002; Dirik and Jacob 2009] (a page is the smallest read/write
unit of flash). Dispatching data at the page level requires page-level mapping, whose
implementation requires considerable RAM space for large flash. Additionally, this
approach could map logically consecutive data to the same channel and degrade the
channel-level parallelism in sequential read requests. This study introduces a novel
channel-level wear-leveling strategy based on the concept of reaching eventually-
even channel lifetimes. The basic idea is to align channels’ lifetime expectancies
by remapping data among channels. The proposed approach has many benefits,
including that (1) it does not require a channel-level threshold for wear leveling, (2) it
incurs very limited overhead, and (3) it requires only a small RAM-resident data
structure.

In summary, this study has the following contributions.

(1) An efficient block wear-leveling algorithm with a tiny RAM footprint.
(2) A dynamic threshold-adjusting strategy for block wear leveling.
(3) An algorithm for wear leveling at the channel level.

The rest of this article is organized as follows. Section 2 reviews flash characteristics
and prior work on flash translation and wear leveling. Section 3 presents a block-
level wear-leveling algorithm, and Section 4 describes an adaptive tuning strategy for
this algorithm. Section 5 introduces a strategy for wear leveling at the channel level.
Section 6 reports our simulation results. Section 7 concludes.
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2. PROBLEM FORMULATION

2.1. Flash Management

2.1.1. Flash-Memory Characteristics. Solid-state disks use NAND flash memory (flash
memory for short) as their storage medium. A piece of flash memory is a physical array
of blocks, and each block contains the same number of pages. Typically, a flash page is
of 2,048 plus 64 bytes. The 2,048-byte portion stores user data, while the 64 bytes are
a spare area for mapping information, block aging information, error-correcting code,
etc. Flash memory reads and writes in terms of pages, and overwriting a page requires
erasing. Flash erases in terms of blocks, each of which consists of 64 pages. Under
the current technology, a flash block can only sustain a limited number of write-erase
cycles before it becomes unreliable. A single-level-cell flash block endures 100 K cycles
[Samsung Electronics 2006], while this limit is 10 K or less in multilevel-cell flash
[Samsung Electronics 2008].

Solid-state disks emulate disk geometry using a firmware layer called the flash-
translation layer (FTL). FTLs update existing data out of place and invalidate old
copies of the data to avoid erasing a flash block every time before rewriting a piece
of data. Thus, FTLs require a mapping scheme to translate disk sector numbers into
physical flash addresses. Updating data out of place consumes free space in flash, and
FTLs must recycle flash space occupied by invalid data with erase operations. Before
erasing a block, FTLs copy all valid data from this block to other free space. Garbage
collection refers to a series of copy and erase operations for reclaiming free space.

2.1.2. Flash Translation Layers (FTLs). Flash-translation layers are part of the firmware
in solid-state disks. They use RAM-resident index structures to translate logical page
numbers into physical flash locations. Mapping resolutions have direct impact on RAM-
space requirements and write performance. Many entry-level flash-storage devices,
like USB thumb drives, adopt block-level mapping, which requires only small map-
ping structures. However, low-resolution mapping suffers from slow response when
servicing small write requests. Page-level mapping [Gupta et al. 2009] better handles
random write requests, but requires large mapping structures, making its implemen-
tation difficult when flash capacity is high. This article considers logical pages as the
smallest mapping unit as large as a flash page.

Hybrid mapping combines both page and block mapping. This method groups con-
secutive logical pages into logical blocks as large as physical blocks. It maps logical
blocks to physical blocks on a one-to-one basis using a block-mapping table. If a physi-
cal block is mapped to a logical block, then this physical block is called the data block
of this logical block. Initially, physical blocks other than data blocks are spare blocks.
Hybrid mapping uses spare blocks as log blocks to serve page updates, and uses a
page-mapping table to redirect read requests to the latest versions of data in the log
blocks.

Figures 1(a) and 1(b) show two different FTL designs using hybrid mapping. Hybrid
mapping creates groups of logical blocks and allocates (flash) spare blocks as log blocks
for these logical-block groups. Let lbn and pbn stand for a logical-block number and a
physical-block number, respectively. Let lpn represent a logical-page number, and let
disp be the block offset in terms of pages. The bold boxes stand for physical blocks, each
of which has four pages. The numbers in the pages indicate the lpns of their storage
data. The BMT and the PMT are the block-mapping table and the page-mapping table,
respectively. In Figure 1(a), every group has two logical blocks, while a group can
be allocated to up to two log blocks. This mapping scheme, developed by Park et al.
[2008], is called set-associative mapping (SAST). This scheme uses two parameters N
and K to specify the group size and the largest number of log blocks that a group can
have, respectively. Figure 1(b) depicts another mapping scheme, developed by Lee et al.
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Fig. 1. Two flash-translation layer designs based on hybrid mapping. (a) The set-associative mapping scheme
with N = 2 and K = 2. Every group has two logical blocks, and a group is allocated to up to two log blocks.
(b) The fully-associative mapping scheme. All logical blocks are in one big group, and all the log blocks are
shared by the logical blocks in this big group.

[2007], called fully-associative mapping (FAST). This method put all logical blocks in
one big group and has all the logical blocks in this big group sharing all the log blocks.

The FTL consumes spare blocks for serving incoming write requests. When the
amount of spare blocks becomes low, the FTL starts erasing log blocks. Before erasing
a log block, the FTL finds all logical blocks related to the valid data in this log block.
For each of the found logical blocks, the FTL collects valid data from the log block and
the data block of this logical blocks, copies these valid data to a new spare block, and
remaps the logical block to the copy-destination spare block. Finally, the FTL erases all
the involved data blocks and the log blocks into spare blocks. This procedure is referred
to as merge operations or garbage collection. For example, in Figure 1(a), for garbage
collection, the FTL collects the valid data scattered in the data blocks at pbns 0 and 2
and in the log blocks at pbns 6 and 3, writes them to the spare blocks at pbns 7 and 8,
and then erases the four old flash blocks at pbns 0, 2, 6, and 3 into spare blocks.

Hybrid mapping FTLs exhibit some common behaviors in the garbage-collection
process regardless of their designs, that is, garbage collection never involves a data
block if none of its page data have been updated. In Figure 1(a), erasing the data blocks
at pbn 5 cannot reclaim any free space. Similarly, in Figure 1(b), erasing any of the
log blocks does not involve the data block at pbn 5. This is a potential cause of uneven
flash wear.

2.2. The Need for Wear Leveling

This section first introduces prior methods, discusses their drawbacks, and then points
out how the proposed method improves upon these shortcomings.

2.2.1. Block-Level Wear Leveling. Block-level wear leveling considers the wear evenness
of a collection of flash blocks. Let the erase count of a flash block denote how many write-
erase cycles this block has undergone. There have been three representative techniques
for this problem: static wear leveling, hot-cold swapping, and cold-data migration.
Static wear leveling moves static/immutable data away from lesser worn flash blocks,
encouraging the flash-translation layer to start erasing these blocks. Flash vendors,
including Micron R© [2008] and Spansion R© [2008], recommend using this approach.
Chang et al. [2010] described a design of static wear leveling. However, Chang and Du
[2009] found that static wear leveling failed to achieve even block wear on the long
term, because static wear leveling could (1) move static/immutable data back and forth
among lesser worn blocks and (2) erase a flash block even if its erase count is relatively
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Table I. Comparison of Existing Algorithms for Block-Level Wear Leveling

Threshold
Algorithm Principle RAM-resident data structures required tuning
Static wear leveling
[Chang et al. 2010]

Static wear leveling A block erase bitmap Manual

Group wear leveling
[Jung et al. 2007]

Hot-cold swapping Average erase counts of block groups Manual

Dual-pool wear
leveling [Chang and
Du 2009]

Cold-data migration All blocks’ erase counts and their recent
erase counts

Manual

Remaining-lifetime
leveling [Agrawal
et al. 2008]

Cold-data migration All blocks’ age information (remaining
lifetimes) and block-data temperature
(update frequencies)

Manual

Lazy wear leveling
(this study)

Cold-data migration An average erase count of all blocks Automatic

large. Hot-cold swapping exchanges data in a lesser-worn block with data from a badly-
worn block. Jung et al. [2007] presented a hot-cold swapping design. However, because
the oldest block has a very large (and perhaps still the largest) erase count, Chang
and Du [2009] found that hot-cold swapping risks erasing the most worn flash block
pathologically.

Cold-data migration relocates infrequently-updated data (i.e., cold data) to
excessively-worn blocks to protect these blocks against garbage collection. Preventing
badly-worn blocks from aging further is not equal to increasing the wear of lesser-worn
blocks (as static wear leveling does). This is because frequently updated data occupy
only a small portion of the disk space. Prior work reported that the disk fullness of
productive systems was only about forty percent [Agrawal et al. 2007]. In other words,
stoping aging the small amount of badly-worn flash blocks mapped to frequently-
updated data is more efficient than starting wearing the large amount of lesser-worn
flash blocks. Cold-data migration has been proven more effective than static wear
leveling and hot-cold swapping [Agrawal et al. 2008; Chang and Du 2009]. Based on
cold-data migration, Agrawal et al. [2008] proposed storing the remaining lifetimes
and data temperatures of all flash blocks in RAM, and Chang and Du [2009] proposed
storing all blocks’ erase counts and their recent erase counts in RAM. These designs,
however, impose large RAM-space requirements on disk controllers. Consider a 32GB
flash-storage device with 512KB flash blocks, storing a four-byte wear information for
every block costs the disk controller 256 KB of RAM. This figure is higher than that
which a typical disk controller can afford (64 KB, mentioned in the Introduction). Re-
ducing the RAM footprint is always beneficial, no matter how much RAM the controller
can afford, because the saved RAM space can be used by the mapping tables and the
disk write buffer. Table I is a summary of comparison among prior methods and our
algorithm. Our design stores only an average erase count in RAM, achieving a tiny
RAM footprint. However, our design does not sacrifice wear-leveling performance to
footprint reduction. Our experimental results will show that it outperforms existing
methods in almost all cases.

Block-level wear leveling controls the wear variance in all flash blocks within an
acceptable threshold. Existing approaches have difference definitions of this variance:
Chang et al. [2010] adopted the ratio of the total erase count to the total number of the
recently erased blocks, Jung et al. [2007] and Chang and Du [2009] used the difference
among blocks’ erase counts, and Agrawal et al. [2008] employed the difference among
blocks’ remaining lifetimes. With a smaller threshold, wear leveling aims at a more
level wear in flash blocks, but inevitably introduces more frequent data movement.
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Wear-leveling overhead can be affected by many conditions of flash management, in-
cluding the host workload, flash-translation layer, flash geometry, and flash capacity.

Unfortunately, it is almost impossible to find a universally applicable threshold set-
ting for various applications of flash storage. For example, in our two tests with Dual-
pool algorithm [Chang and Du 2009] with a threshold of 14, under the workloads of
a multimedia appliance and a Windows desktop, it increased the total erase count by
0.8% and 3.9%, while the resultant standard deviations of all blocks’ erase counts were
5.4 and 10.5, respectively.2 The latter case shows that the same threshold setting re-
sulted in more data movement but did not achieve a better wear evenness. This study
identifies that the overhead of wear leveling is not linearly related to the threshold
value, and the overhead will significantly increase when the threshold is becoming
smaller than a certain critical value. This critical threshold value will be different
for various conditions of flash management. Thus, we propose subjecting the threshold
value to the overhead increase ratio and introduce a runtime strategy that dynamically
sets the threshold value to the critical value.

2.2.2. Channel-Level Wear Leveling. In this study, a channel refers to a logical unit
that independently processes flash commands and transfers data. Channel-level wear
leveling is concerned with the wear evenness of flash blocks from different channels.
This issue is closely related to channel binding of logical pages, that is, the allocation
of free flash pages to host data. Dynamic channel binding globally manages free pages
across all channels. Chang and Kuo [2002] proposed dispatching page write requests
to channels based on the update frequencies of these page data. Dirik and Jacob [2009]
proposed allocating channels to incoming page write requests using the round-robin
policy. Even though dynamic channel binding has better flexibility of balancing the
block wear across all channels, it has two drawbacks: (1) it adds extra channel-level
mapping information to every logical page, resulting in larger mapping tables, and
(2) it could map consecutive logical pages to the same channel, severely degrading the
channel-level parallelism in sequential-read requests.

Instead of dynamic channel binding, this study considers static channel binding.
Static channel binding uses fixed mapping between logical pages and channels. With
static mapping, effectively every channel manages its free flash pages with its own
instance of flash-translation layer. The most common strategy for static channel binding
is the RAID-0-style striping [Agrawal et al. 2008; Park et al. 2010; Seong et al. 2010].
RAID-0 striping achieves the maximum channel-level parallelism in sequential reads
because it maps a collection of consecutive logical pages to the largest number of
channels. We must point out that RAID-0 striping cannot automatically achieve wear
leveling at the channel level. This is because, as reported in Chang [2010], hot data
(i.e., frequently updated data) are small, usually between 4 KB and 16 KB. RAID-0
striping statically binds small and hot data to some particular channels, resulting in
imbalanced write traffics among channels. We found that, under the disk workload of a
Windows desktop, a four-channel architecture had the largest and a smallest fractions
of channel-write traffic of 28% and 23%, respectively. Thus, flash blocks from different
channels wear at different rates. Extending the scope of block-level wear leveling to
the entire storage device is not a feasible solution here, because it requires dynamic
channel binding.

3. BLOCK-LEVEL WEAR LEVELING

This section presents an algorithm for wear leveling at the block level. This algorithm
does not deal with channels, so logically, all flash blocks are in the same channel.

2These disk workloads were used in our experiments. See Section 6.1.
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Fig. 2. Physical blocks and their erase recency and erase counts. An upward arrow indicates that a block is
recently increasing its erase count.

3.1. Observations

This section defines some key terms for the purpose of presenting our wear-leveling
algorithm in later sections. Let the update recency of a logical block denote the time
length between the current time and the latest update to this logical block. The update
recency of a logical block is high if its latest update is more recent than the average
update recency. Otherwise, its update recency is low. Analogously, let the erase recency
of a physical block be the time length since the latest erase operation on this block.
Thus, immediately after garbage collection erases a physical block, this block has the
highest erase recency. A physical block is a senior block if its erase count is larger than
the average erase count. Otherwise, it is a junior block.

Temporal localities of updating logical blocks affect the wear of physical blocks. As
previously mentioned, if a physical block is mapped to an unmodified logical block, then
garbage collection will avoid erasing this physical block. On the other hand, updates
to logical blocks produce invalid data in flash blocks, and thus physical blocks mapped
to recently modified logical blocks are good candidates for garbage collection. After a
physical block is erased by garbage collection, it either serves a data block or a log block.
Either way, this physical block is again related to recently modified logical blocks. So if
a physical block has a high erase recency, then it will quickly accumulate many erase
counts. Conversely, physical blocks lose momentum in increasing their erase counts if
they are mapped to logical blocks having low update recency.

Figure 2 provides an example of eight physical blocks’ erase recency and erase counts.
Upward arrows mark physical blocks recently increasing their erase counts, while an
equal sign indicates otherwise. Block a is a senior block with a high erase recency, while
block d is a senior block but with a low erase recency. The junior block h has a high erase
recency, while the erase recency of the junior block e is low. Blocks should keep their
erase counts close to the average. Two kinds of block wear can require intervention
from wear leveling. First, the junior blocks e and f have not recently increased their
erase counts. As their erase counts fall below the average, wear leveling has them start
participating in garbage collection. Second, the senior blocks a and b are still increasing
their erase counts. Wear leveling has garbage collection stop further wear in these two
senior blocks.

3.2. The Lazy Wear-Leveling Algorithm

This study proposes a new wear-leveling algorithm based on a simple principle: when-
ever a senior block’s erase recency becomes high, relocate (i.e., remap) a logical block
having a low update recency to this senior block. This algorithm, called the lazy wear-
leveling algorithm, is named after its passive reaction to excessive flash wear.
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Lazy wear leveling must be aware of the recent wear of all senior blocks, because
senior blocks retire before junior blocks. However, physical blocks boost their erase
recency only via garbage collection. The flash-translation layer can notify lazy wear
leveling of its decision on victim selection. This way, lazy wear leveling captures senior
blocks whenever their erase recency become high without repeatedly checking all senior
blocks’ wear information.

How to prevent senior blocks from further aging is closely related to the behaviors
of garbage collection. As previously mentioned in Section 2.2, if a logical block has a
low update recency, then garbage collection has no interest in erasing the flash block(s)
mapped to it. Therefore, remapping logical blocks of low update recency is a key to
preventing senior blocks from aging further. Lazy wear leveling considers logical blocks
not related to any page-mapping information as having low update recency, because
recent updates to logical blocks leave mapping information in the the page-mapping
table. The logical blocks at lbn 3 in Figures 1(a) and 1(b) are such examples.

To remap a logical block from one physical block to another, lazy wear leveling
moves all valid data from the source physical block to the destination physical block.
Junior blocks are the most common kind of source blocks, for example, blocks e and f in
Figure 2, because storing immutable data keeps them away from garbage collection. As
moving all valid data out of the source blocks makes them good candidates for garbage
collection, selecting logical blocks for remapping is related to the wear of junior blocks.
To give junior blocks even chances of wear, it is important to uniformly visit every
logical block when selecting logical blocks for remapping.

Temporal localities of writes change occasionally. New updates to a logical block can
neutralize the latest remapping effort involving this logical block. In this case, lazy
wear leveling will be notified that a senior block is again selected as a victim of garbage
collection and will perform another remapping operation for this senior block.

3.3. Interacting with Flash-Translation Layers

This section describes how lazy wear leveling interacts with its accompanying firmware
module, the flash-translation layer. Algorithm 1 shows the pseudocode of lazy wear lev-
eling. The flash-translation layer calls Algorithm 1 after it moves all valid data out of a
garbage-collection victim block and before it erases this block. The input of Algorithm 1
is v, the pbn of the victim block. This algorithm performs remapping whenever nec-
essary and then returns a pbn. Note that this output pbn may be different from the

ALGORITHM 1: Lazy Wear-Leveling Algorithm
Input: v: the victim block for garbage collection
Output: p: a substitute for the original victim block v
1: ev←eraseCount(v)
2: if (ev − eavg) > � then
3: repeat
4: l ← lbnNext()
5: until lbnHasPageMapping(l) =FALSE
6: erase(v);
7: p ← pbn(l)
8: copy(v, p); map(v, l)
9: ev ← ev + 1
10: eavg ← updateAverage(eavg, ev)
11: else
12: p ← v
13: end if
14: RETURN p
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input pbn. The flash-translation layer erases the flash block at the pbn returned by
Algorithm 1. The discussion in this section is based on hybrid mapping. See later
sections for using lazy wear leveling with page-level mapping.

For the example of SAST in Figure 1(a), suppose that the flash-translation layer
decides to merge data of the logical blocks at lbns 0 and 1. The flash-translation layer
calls Algorithm 1 before erasing each of the four physical blocks at pbns 0, 2, 6, and 3.
For the example of FAST in Figure 1(b), because FAST recycles the oldest log block at a
time, the flash-translation layer calls Algorithm 1 before erasing the log block at pbn 6
and the two related data blocks at pbns 0 and 2. The rest of this section is a detailed
explanation of Algorithm 1.

In Algorithm 1, the flash-translation layer provides the subroutines with leading
underscores, and wear leveling implements the rest. In Step 1, eraseCount() obtains
the erase count ev of the victim block v by reading the victim block’s page spare area,
in which the flash-translation layer stores the erase count. Step 2 compares ev against
the average erase count eavg. If ev is larger than eavg by a predefined threshold �, then
Steps 3 through 10 will carry out a remapping operation. Otherwise, Steps 12 and 14
return the victim block v intact. The loop of Steps 3 through 5 finds a logical block whose
update recency is low. Step 4 uses the subroutine lbnNext() to obtain l the next logical
block number to visit, and Step 5 calls the subroutine lbnHasPageMapping() to check
if the logical block l has any related mapping information in the page-mapping table.
As mentioned previously, to give junior blocks equal chances of getting erased, the
subroutine lbnNext() must evenly visit all logical blocks. At this point, it is reasonable
to assume that lbnNext() produces a linear enumeration of all lbns.

Steps 6 through 8 remap the previously found logical block l. Step 6 erases the original
victim block v. Step 7 uses the subroutine pbn() to identify the physical block p that
the logical block l currently maps to. Step 8 copies the data of the logical block l from
the physical block p to the original victim block v, and then remaps the logical block l
to the former victim block v using the subroutine map(). After this remapping, Step 9
increases ev since the former victim block v has been erased, and Step 10 updates the
average erase count. Step 14 returns the physical block p, which the logical block l
previously mapped to, to the flash-translation layer as a substitute for the original
victim block v. In spite of the average erase count eavg, Algorithm 1 is only concerned
with the erase count of the victim block. Thus, this algorithm needs not store all blocks’
erase counts in RAM. Instead, it reads the spare area of a victim block before garbage
collection erases it.

3.4. Wear-Leveling Enhancements

This section presents two enhancements that lazy wear leveling can use. The first
is specific to sequential-write workloads, and the second is particularly useful if the
flash-translation layer is FAST.

3.4.1. Workload-Specific Enhancement. Algorithm 1 calls lbnNext() to select logical blocks
for remapping. This function can linearly visit all logical blocks. However, this simple
strategy could result in many ineffective remapping operations if the host workload
consists of a lot of long write bursts. This is because files systems try to allocate
contiguous disk space when writing large files. This behavior coincides with linearly
enumerating logical blocks and can neutralize prior remapping operations on a set of
consecutive logical blocks.

To solve this problem, this study proposes using a Linear Congruential Generator
[Rosen 2003] for logical-block selection. Let the total number of logical blocks be nl.
Let p be the smallest prime number larger than nl. Let s be an integer and 0 <
s < nl. Let li be the logical-block number produced by the ith selection, and let l0 be an
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arbitrary number in [0, nl). Lazy wear leveling selects logical blocks using the following
recurrence relation.

li+1 = (li + s)%p,

where % is the modulo operator. Notice that any li ≥ nl are not used. Because s and
p are prime to each other, the period of selecting the same logical-block number is
exactly nl. Here, s is the skip factor, which should be larger than the total number of
logical blocks that typical large files can have. This prevents lazy wear leveling from
successively visiting two logical blocks belonging to the same large file. Our current
implementation adopts s = 1000 when the logical block size is 128 KB.

The loop in Algorithm 1 (i.e., Steps 3 to 5) checks whether a logical block has re-
lated mapping information in the page-mapping table. This check becomes difficult if
the flash-translation layer caches a partial mapping table. To address this problem,
Algorithm 1 can adopt an optional bitmap lbMod[] of logical blocks. For any logical
block at lbn l, lbMod[l] = 0 initially, and the flash-translation layer sets lbMod[l] = 1
if a write request modifies any of its logical pages. For example, in Figure 1(a), all bits
of this bitmap are 1’s except lbMod[3]. Garbage collection clears lbMod[l] after erasing
the flash blocks related to the logical block at lbn l, because merging this logical block
removes all its mapping information from the page-mapping table. With this bitmap,
lbnHaspageMapping(l) at Step 5 reports TRUE if lbMod[l] = 1, or else reports FALSE.

3.4.2. FTL-Specific Enhancement. On garbage collection, FAST erases one log block at a
time, that is, the oldest log block. Thus, FAST can delay merging a logical block until
a valid logical page of this logical block appears in the oldest log block. Consider that
FAST has a very large number of log blocks and the host frequently modifies a logical
block. On the one hand, FAST can indefinitely postpone merging this logical block. On
the other hand, lazy wear leveling does not use this logical block for remapping because
its page updates keep leaving information in the page-mapping table. As a result, the
(flash) data blocks mapped to this logical block can never attract attention from both
garbage collection and wear leveling.

A simple enhancement based on the bitmap lbMod[] deals with this problem. When
FAST erases the oldest log block, for every piece of page data in this log block, regardless
of whether it is valid or not, FAST finds the the logical block number of this logical
page and clears the corresponding bit in lbMod[], as if FAST did not delay merging
logical blocks. Note that SAST does not require this enhancement, because to improve
log-block space utilization, SAST will not indefinitely delay merging logical blocks.

3.5. Lazy Wear Leveling and Page-Level Mapping

Although lazy wear leveling is primarily designed for hybrid mapping, its concept is
applicable to page-level mapping. Like in hybrid mapping, in page-level mapping, lazy
wear leveling copies data having low update recency to senior blocks to prevent these
blocks from aging further. However, different from hybrid mapping, page-level mapping
does not use logical block [Gupta et al. 2009], so lazy wear leveling needs a different
strategy to find data having low update recency.

This study proposes using an invalidation bitmap. In this bitmap, one bit is for a flash
block, and each bit indicates whether a flash block recently receives a page invalidation
(i.e., 1) or not (i.e., 0). All the bits are 0 initially, and there is a pointer referring to the
first bit. The bit of a flash block switches to 1 if any page in this block is updated (i.e.,
invalidated). Whenever lazy wear leveling finds the erase count of a victim block larger
than the average by �, it advances the pointer and scans the bitmap. As the pointer
advances, it clears bits of 1’s until it encounters a bit of 0. Lazy wear leveling then
copies valid data from the flash block owning this zero bit to the victim block. This
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Fig. 3. Erase counts of flash blocks right before the lazy wear-leveling algorithm performs (a) the first
remapping operation and (b) the nbh + 1-th remapping operation.

scan-and-copy procedure repeats until it writes to all pages of the victim block. Notice
that garbage-collection activities do not alter any bits in the bitmap.

The rationale behind the design is that in the presence of temporal localities of write,
if a flash block does not receive page invalidations recently, then this block is unlikely
to receive more page invalidations in the near future. The invalidation bitmap resides
in RAM, and it requires one bit per flash block. Compared to the page-level mapping
table, the space overhead of this bitmap is very limited.

4. SELF TUNING FOR BLOCK-LEVEL WEAR LEVELING

Lazy wear leveling subjects the evenness of block wear to a threshold parameter �. A
small value of � targets even wear in flash blocks but increases the frequency of data
movement. This section presents a dynamic tuning strategy for � for achieving good
balance between wear evenness and overhead.

4.1. Overhead Analysis

Consider a piece of flash memory consisting of nb physical blocks. Let immutable logical
blocks map to nbc out of these nb physical blocks. Let the sizes of write requests be
multiples of the block size, and let write requests be aligned to block boundaries.
Suppose that the disk workload uniformly writes the mutable logical blocks. In other
words, the flash-translation layer evenly increases the erase counts of the nbh = nb −nbc
physical blocks.

Let the function f (x) denote how many blocks garbage collection erases to process
a workload that write x logical blocks. Consider the case x = i × nbh × �, where i is a
nonnegative integer. As all request sizes are multiples of the block size and requests
are block-aligned, erasing victim blocks does not cost garbage collection any overhead
in copying valid data. Therefore, without wear leveling, we have

f (x) = x.

Now, consider wear leveling enabled. For ease of presentation, this simulation revises
the lazy wear-leveling algorithm slightly: the revised algorithm compares the victim
block’s erase count against the smallest erase count instead of the average erase count.
Figure 3(a) shows that right before lazy wear leveling performs the first remapping,
garbage collection has uniformly accumulated nbh × � erase counts in nbh physical
blocks. In the subsequent nbh erase operations, garbage collection erases each of these
nbh physical blocks one more time and increases their erase counts to � + 1. Thus, lazy
wear leveling conducts nbh remapping operations for these physical blocks at the cost
of erasing nbh blocks. These remapping operations redirect garbage-collection activities
to another nbh physical blocks. After these remapping operations, lazy wear leveling
stops until garbage collection accumulates another nbh × � erase counts in the new nbh

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 55, Publication date: December 2013.



An Adaptive, Low-Cost Wear-Leveling Algorithm 55:13

physical blocks. Figure 3(b) shows that lazy wear leveling is about to spend nbh erase
operations for remapping operations. Now let function f ′(x) be analogous to f (x), but
with wear leveling enabled. We have

f ′(x) = x +
⌊ x

�

⌋
= x + i × nbh.

Under real-life workloads, the frequencies of erasing these nbh blocks may not be uni-
form. Thus, f ′(x) adopts a real-number coefficient K to take this into account:

f ′(x) = x + i × nbh × K.

The coefficient K depends on various conditions of flash management, such as flash
geometry, host workloads, and flash-translation layer designs. For example, dynamic
changes in temporal localities of write can increase K because the write pattern might
start updating new logical blocks and neutralize the prior remapping operations on
these blocks. Notice that the value of K can be measured at runtime, as will be explained
in the next section.

Let the overhead function g(�) denote the overhead ratio with respect to �:

g(�) = f ′(x) − f (x)
f (x)

= i × nbh × K
i × nbh × �

= K
�

.

It shows that the overhead of wear leveling is inversely proportion to �. Now recall
that lazy wear leveling compares victim blocks’ erase counts against the average erase
count rather than the smallest erase count. Thus, we use 2� as an approximation of
the original �. Because both nb and nbh are constant, the difference between using the
average and the smallest can be accounted for by a constant ratio, which is further
included in the runtime-measurable coefficient K. Thus, we have

g(�) = K
2�

. (1)

When � is small, a further decrease in � rapidly increases the overhead ratio. For
example, decreasing � from 4 to 2 doubles the overhead ratio.

4.2. A Strategy of Tuning �

Small � values are always preferred in terms of wear evenness. However, decreasing
the � value could cause an unexpectedly large increase in overhead. The rest of this
section introduces a �-tuning strategy based on the overhead growth rates.

Under realistic disk workloads, the coefficient K in g(�) may vary over time. Thus,
wear leveling must first determine the coefficient K before using g(�) for �-tuning.
This study proposes tuning � on a session-by-session basis. A session refers to a time
interval in which lazy wear leveling contributed a predefined number of erase counts.
Refer to this number as the session length. The basic idea is to find Kcur of the current
session and use this value to find �next for the next session.

The first session begins with � = 16 (in theory it can be any number). Let �cur be
the � value of the current session. Figure 4 illustrates the concept of the �-tuning
procedure. During a runtime session, lazy wear leveling separately records the erase
counts contributed by garbage collection and wear leveling. At the end of the current
session, the first step (in Figure 4) computes the overhead ratio f ′(x)− f (x)

f (x) , that is, g(�cur),
and solves Kcur of the current session using Equation (1), that is, Kcur = 2�cur ×g(�cur).

The second step uses g(�next) = Kcur/(2�next) to find �next for the next session. Basi-
cally, lazy wear leveling tries to decrease � until the growth rate of the overhead ratio
becomes equal to a user-defined limit λ. In other words, we are to find the � value
at which the tangent slope to g(�next) is λ. Let the unit of the overhead ratio be one
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Fig. 4. Computing �next subject to the overhead growth limit λ for the next session according to �cur and
the overhead ratio g(�cur) of the current session.

Fig. 5. Handling three write requests w1, w2, and w3 using (a) synchronized channels and (b) independent
channels. In this example, using synchronized channels doubles the flash wear, while using independent
channels results in unbalanced flash wear among channels.

percent. Therefore, λ = −0.1 means that the overhead ratio increases from x% to (x +
0.1)% when decreasing � from y to (y −1). Now solve d

d�
g(�next) = λ

100 for the smallest
� value subject to λ. Rewriting this equation, we have

�next =
√

100
−λ

√
g(�cur)�cur.

For example, when λ = −0.1, if the overhead ratio g(�cur) and �cur of the current session

are 2.1% and 16, respectively, then �next for the next session is
√

100
0.1

√
2.1% × 16 = 18.3.

The �-tuning procedure uses the limit on the overhead-ratio growth rates and the
session length. Because g(�) is very large when � is small, λ can be set to the boundary
between near-linear and super-linear growth rates. Our experiments will show that
−0.1 is a good choice of λ, and wear-leveling results are not sensitive to the lengths of
sessions because workloads have temporal localities of write.

5. CHANNEL-LEVEL WEAR LEVELING

5.1. Multichannel Architectures

Advanced solid-state disks use multichannel architectures for high data transfer rates
[Agrawal et al. 2008; Kang et al. 2007; Seong et al. 2010; Park et al. 2010]. In this
study, a channel stands for a logical unit which can individually handle flash commands
and perform data transfer. Parallel hardware structures, such as gangs, interleaving
groups, and flash planes, are part of channels because flash chips in these structures
might not be individually programmable.

From the point of view of wear leveling, channels can be synchronized or independent.
Figure 5 is an example. Let the mapping between logical pages and channels use the
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Fig. 6. Aligning the lifetime expectancies of two channels Ci and C j for channel-level wear leveling.
(a) These two channels reach their end-of-life at different times. (b) Change channel utilizations uci and
uc j to u′

ci
and u′

c j
, respectively, such that the lifetime difference becomes zero (i.e., d = 0).

RAID-0 style striping. Figure 5(a) depicts that all the channels write synchronously,
even if a write request does not access all the channels. Lazy wear leveling directly ap-
plies to a set of synchronized channels because these channels are logically equivalent
to a single channel. A major drawback of synching channel operations is the reduced
device lifetime. As Figure 5(a) shows, the channels writes 16 flash pages to modify only
eight logical pages. Independent channels need not copy unmodified data for synching
channel operations, as shown in Figure 5(b). However, using independent channels
inevitably introduces unbalanced flash wear among channels.

This study focuses on independent channels because they alleviate the pressure
of garbage collection and reduce flash wear compared to synchronized channels. Let
every independent channel adopt an instance of flash-translation layer, and let every
channel perform wear leveling on its own flash blocks. Provided that the block-level
wear leveling is effective, the problem of channel-level wear leveling refers to how to
balance the total block erase counts of all channels.

Our design of channel-level wear leveling respects the property of maximum paral-
lelism [Shang et al. 2011] for the highest parallelism among page reads. A data layout
satisfies maximal parallelism if and only if a set of consecutive logical pages are mapped
to the largest number of channels. This study uses the RAID-0 style striping as the
initial mapping between logical pages and channels, and data updates and garbage
collection do not change this mapping [Park et al. 2010].

5.2. Aligning Channel Lifetime Expectancies

Provided that block wear leveling is effective, the erase counts of blocks in the same
channel will be close, and the wear of a channel can be indicated by the sum of all block
erase counts in this channel. Recall that the utilization of a channel stands for the
fraction of host data arriving at this channel. Even though data updates are out of place
at the block level, they do not change the mapping between logical pages and channels,
so temporal localities have affinity with channels. Thus, channel utilizations do not
abruptly change, and the wear of channels increase at steady (but different) rates.

This study proposes adjusting channel utilizations to control the wear of channels
for an eventually-even state of channel lifetimes. In other words, the idea is to project
channels’ lifetime expectancies to the same time point. Figure 6 is an example of two
channels Ci and C j . Let every channel have the same total number of flash blocks nb.
Let a flash block endures ē write-erase cycles, and let the erase count of the channel
Ci, denoted by eci , be the sum of all block erase counts in this channel. Let a channel
reaches its end of life when its erase count becomes ē × nb. Let t be the current time,
and let w be the total amount of host data written in the time interval [t−, t). Let uci ≤ 1
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Table II. Symbol Definitions

Symbol Description
w The total amount of data written to the flash storage during [t−, t)
ē The write-erase cycle limit of flash blocks
nb The total number of flash blocks in a channel
y The total number of channels
Ci The ith channel
eci The sum of all block erase counts in the channel Ci

uci The utilization of the channel Ci . Note that
∑

uci =1
u′

ci
The expected utilization of the channel Ci

ri The erase ratio of the channel Ci

x The total number of stripes
Si The ith stripe
usi The utilization of the stripe Si . Note that

∑
usi =1

ui, j The utilization of the logical block at the stripe Si and the channel C j

Note that
∑x−1

i=0 ui, j = uc j and
∑y−1

j=0 ui, j = usi

be the utilization of the channel Ci. Thus, in this time interval, the total amount of
host data arriving at the channel Ci is uci w. Let the erase counts of the channel Ci at
time t− and t be et

ci
and et−

ci
, respectively. Let the erase ratio of Ci during [t−, t) be ri,

defined as ri =
et

ci
−et−

ci
uci w

. As Figure 6(a) shows, eci increases by riuci w = et
ci

− et−
ci

in this
time period. Table II is a summary of symbols.

Provided that channels’ erase ratios and utilizations remain steady, the lifetime
expectancies of the channels Ci and C j will be t+(ēnb−et

ci
)( t−t−

riuci w
) and t+(ēnb−et

c j
)( t−t−

rjuc j w
),

respectively. The lifetime difference d will be

d = (
ēnb − et

ci

) (
t − t−

riuci w

)
− (

ēnb − et
c j

) (
t − t−

rjucj w

)
.

To align these two channels’ lifetime expectancies (i.e., d = 0), the channel wear-
leveling algorithm computes the utilizations u′

ci
and u′

c j
which the channels Ci and C j

are expected to have after time t, respectively. Replacing uci , ucj , and d in the preceding

equation with u′
ci

, u′
c j

, and 0, respectively, produces u′
c j

= ri (ēnb−et
c j

)

rj (ēnb−et
ci

) u
′
ci

. Because the total

utilization is 100%, we have u′
ci

+ u′
c j

= 1. Now solve these two equations to obtain u′
ci

and u′
c j

. Figure 6(b) shows that, with these new expected utilizations u′
ci

and u′
c j

, the
lifetime expectancies of these two channels will be the same. In the general case of y
channels, solving the following system obtains the expect utilizations u′

c0
. . . u′

cy−1
:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∀k

(
(k ∈ {0, 1, 2, . . . , y − 1}) ∧

(
u′

ck
= r0(ēnb − et

ck
)

rk(ēnb − et
c0

)
u′

c0

))
y−1∑
k=0

u′
ck

= 1

.

The next section will present a method that swaps logical blocks among channels to
adjust channel utilizations for channel wear leveling.

5.3. Adjusting Channel Utilizations

Independent channels adopt their own instances of flash-translation layer to manage
their flash blocks. Suppose that the flash-translation layer is based on hybrid mapping.
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Recall that the initial mapping between logical pages and channels is the RAID-0-style
striping. Let logical blocks be numbered in the channel-major order. For example, if
there are four channels and a logical block is as large as four pages, then the logical
block at lbn 0 is in the first channel, and this logical block contains the logical pages at
lpns 0, 4, 8, and 12. The logical block at lbn 2 is in the third channel, and it contains the
logical pages at lpns 2, 6, 10, and 14. Let a stripe be a set of consecutive logical blocks
starting from the first channel and ending at the last channel. For example, the first
stripe contains the four logical blocks at lbns 0, 1, 2, and 3. Notice that these definitions
of logical blocks and stripes are also applicable to page-level mapping because they are
not related to space allocation in flash.

Because real workloads have temporal localities of write, swapping logical blocks
among channels can manipulate channels’ future utilizations. To retain the property
of maximum parallelism, this swapping is confined to logical blocks of the same stripe.
Let x be the total number of stripes. Let usj be the utilization of the stripe S j . Thus, we
have

∑
usj = 1. Let ui, j be the utilization of the logical block at stripe i and channel j.

Therefore, we have
∑x−1

i=0 ui, j = ucj and
∑y−1

j=0 ui, j = usi .
This study proposes invoking channel wear leveling periodically. On each invocation,

channel wear leveling computes the expected utilizations of channels and then starts
swapping logical blocks for minimizing

∑x−1
i=0 |uci − u′

ci
|. This problem of block swapping

is intractable, even for each invocation of channel wear leveling. We can reduce any
instance of the bin packing problem to this block-swapping problem. A key step of this
reduction is to let an item of size s in the bin packing problem be a stripe which has
only one logical block having a nonzero utilization s.

Channel wear leveling should reduce the total number of logical blocks swapped. We
found that in real workloads, a stripe of high utilization usually has two logical blocks
whose utilization difference is large. This is because frequently updated data are small
and they do not write to all channels [Chang 2010]. Thus, the swapping begins with the
stripe whose utilization is the highest. The following is a procedure to find and swap a
pair of logical blocks.

—Step 1. Find the two channels Cm and Cnwhich have the largest positive value of
(ucm-u′

cm
) and the smallest negative value of (ucn-u

′
cn

), respectively.
—Step 2. Find the stripe Si subject to the following constraints.

(a) Si have the largest utilization among all stripes.
(b) In this stripe Si, the two logical blocks at Cm and Cn have not yet been swapped

in the current invocation of channel-level wear leveling.
(c) ui,m > ui,n and (ui,m − ui,n) ≤ min(ucm − u′

cm
,|ucn − u′

cn
|).

—Step 3. Exchange the channel mapping of the two logical blocks found in Step 2.
—Step 4. Change ucm and ucn to (ucm − (ui,m − ui,n)) and (ucn+ (ui,m − ui,n)), respectively.
—Step 5. Swap ui,m and ui,n.

In each invocation, channel wear leveling repeats Steps 1 through 5 until (1) uci = u′
ci

for every i or 2) the total number of logical blocks swapped is larger than a predefined
limitation. Figure 7 is a numeric example of channel wear leveling. In this example,
the channel lifetime limit ēnb is 10,000. Figure 7(a) shows the initial data layout
and utilizations of logical blocks, channels, and stripes. Channel wear leveling solves
the expected channel utilizations using u′

c3
= 1.4×(10000−3000)

1.0×(10000−4000) = 1.63u′
c0

, u′
c2

= 1.07u′
c0

,
u′

c1
= 1.27u′

c0
, and u′

c3
+ u′

c2
+ u′

c1
+ u′

c0
= 1. It then selects the stripe S0 whose utilization

is the highest and swaps its two logical blocks at channels C2 and C3. This swap changes
uc2 from 0.25 to 0.22 and and uc3 from 0.3 and 0.33. Next, channel wear leveling selects
the stripe S3 whose utilization is the second highest and swaps two more logical blocks.
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Fig. 7. Swapping logical blocks among channels for channel wear leveling.

Table III. Characteristics of the Experimental Disk Workloads

Operating File Logical Total Avg. Req. Disk Disk
Workload System System Disk Size Written Size Coverage† Coverage‡

PC Windows XP NTFS 40 GB 81.2 GB 11.5 KB 41.57% 48.54%
PM Windows 7 NTFS 40 GB 43.3 GB 11.8 KB 2.93% 6.31%
MM Windows CE FAT32 20 GB 19.8 GB 59.6 KB 87.25% 87.26%
RND Ubuntu 9 Ext4 16 GB 18.6 GB 4 KB 68.56% 99.61%

† fractions of disk space written during workload generation (in terms of 512 B sectors) .
‡ fractions of disk space written during workload generation (in terms of 512 KB logical blocks).

Figures 7(b) shows the results after these swaps. The adjusted channel utilizations
match their expected utilizations.

This study proposes caching the utilization information of a small collection of most-
frequently written stripes. Our experiments will show that a small cache is sufficient
for effective channel wear leveling.

6. PERFORMANCE EVALUATION

6.1. Experimental Setup and Performance Metrics

We built a simulator and implemented various wear-leveling algorithms and
flash-translation layers for evaluation. The simulator provides three options of the
flash-translation layer: SAST [Park et al. 2008], FAST [Lee et al. 2007], and DFTL
[Gupta et al. 2009]. The former two are representative designs of hybrid mapping,
while the last one uses page-level mapping. The simulator also implements the
proposed lazy wear leveling, static wear leveling [Chang et al. 2010], and dual-pool
wear leveling [Chang and Du 2009]. Static wear leveling is widely used in the industry
[Micron R© 2008; Spansion R© 2008], while dual-pool wear leveling delivers better
performance [Chang and Du 2009].

Our experiments adopted four types of disk workloads, PC, PM, MM, and RND
(see Table III). The PC workload was collected from a 40GB hard drive in a Windows
desktop for three months. The disk drive was formatted in NTFS. The user activities
of this workload include Web surfing, word processing, video playback, and gaming.
Its write pattern consists of many temporal localities. The PM workload was produced
by a Windows desktop running Postmark 1.5 benchmark [Katcher 1997] with the
default settings except that the total number of transactions was set to 2,800,000.
This workload has intensive activities of creating/writing/deleting small files. The MM
workload was captured from a memory card of a Windows Mobile device. This workload
repeatedly copied/deleted MP3 and video files to/from a 20GB memory card formatted
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Table IV. Evaluation Results of Lazy Wear Leveling (LWL), Static Wear Leveling (SWL), and Dual-Pool
Wear Leveling (DP) under the PC, MM, and RND Workloads. “no WL” Stands for not using Wear Leveling

Workload Algorithm largest EC smallest EC mean STDDEV Threshold Stable

PC

no WL 939 0 270.1 283.1 — no
LWL 298 151 278.4 11.4 16 yes
SWL 586 50 278.7 64.3 14 no
DP 470 244 279.3 19.3 16 yes

PM

no WL 3960 0 270.3 885.5 — no
LWL 297 253 277.2 10.1 16 yes
SWL 973 42 278.2 38.4 30 no
DP 814 243 278.7 13.4 28 yes

MM

no WL 388 0 252.7 96.6 — no
LWL 299 198 260.3 11.4 16 yes
SWL 338 195 259.8 17 4 no
DP 338 227 254.8 6 14 no

RND

no WL 6746 0 6639.5 408.8 — no
LWL 6729 6108 6717.7 31.4 16 yes
SWL 6743 6316 6663.7 38.4 2 no
DP 6757 6661 6668.3 8.6 6 no

in FAT-32. This workload has many long write bursts. The RND workload was collected
from a Linux box running Iometer [Open Source Development Lab 2003] on a 16GB
hard drive formatted in ext4. The settings of Iometer were 100% random write with
4KB write requests.

This study uses the standard deviation of all flash blocks’ erase counts to indicate
the evenness of flash wear. The smaller the standard deviation, the more even the flash
wear will be. This study also considers the mean (i.e., the arithmetic average) of all
erase counts. The the difference between the means with and without wear leveling
reveals the overhead of wear leveling. It is desirable for a wear-leveling algorithm to
achieve a small standard deviation and a small mean.

Unless explicitly specified, all the experiments adopted the following settings as the
default values. The flash page size and block size were 4 KB and 512 KB, respectively.
This is a typical MLC-flash geometry [Samsung Electronics 2008]. The input workload
was the PC workload, and the FTL algorithm was FAST. The over-provisioning ratio
was 2.5%, and thus the flash size under the PC workload was 40 GB*1.025 = 41 GB.
Each run of the experiments replayed the input workload until 4 TB of host data were
written. These replays help to differentiate the performance of different wear-leveling
algorithms, but they did not manipulate the experiments.

6.2. Experimental Results: Block-Level Wear Leveling

6.2.1. Lazy Wear Leveling vs. Existing Approaches. This part of the experiment compares
lazy wear leveling against static wear leveling and dual-pool wear leveling under the
three disk workloads. These three wear-leveling algorithms have different definitions
of their thresholds. For fair comparison, this experiment fixed � of lazy wear leveling
at 16, and adjusted the other two algorithms’ thresholds to align their final erase-count
means to that of lazy wear leveling. This experiment also adopts stability as a metric.
Let the stable interval of a wear-leveling algorithm be the longest time interval [t1,t2]
in which the standard deviations at t1 and t2 are the same. A wear-leveling algorithm
is stable in an experiment if its stable interval length increases during the experiment.
Otherwise it is unstable.

Table IV shows the experimental results. First, compare the results of using lazy
wear leveling and the results of not using wear leveling at all. The standard deviations
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Fig. 8. (a) The final erase-count distributions of lazy wear leveling and static wear leveling under the PC
workload (after writing 4 TB of data). (b) The runtime standard deviations of lazy wear leveling and dual-pool
wear leveling under the MM workload.

of the PC workload is very large without wear leveling, and lazy wear leveling reduced
the standard deviation by 96% (from 283 to 11), while increasing the mean by only 2.9%
(from 270 to 278). This is because lazy wear leveling is very effective in the presence of
temporal localities of write. Lazy wear leveling was even more successful under the PM
workload, and reduced the standard deviation by 99% (from 886 to 10). This is because
the PM workload confines the write traffic to only 6.3% of the entire disk space, and
thus its temporal locality is better than that of the PC workload. Compared to the PC
and PM workloads, the MM workload has a relatively small standard deviation without
wear leveling. This is because the MM workload has many sequential and long write
bursts. Lazy wear leveling is still useful in this case, reducing the standard deviation
from 96 to 11. The RND workload has the largest standard deviation without wear
leveling. Even though the write pattern of the RND workload is uniformly random,
the extremely high garbage-collection overhead under this workload exaggerated the
imbalance in flash wear. With lazy wear leveling, the standard deviation decreased
from 408 to 31.

Next, focus on the comparison among different wear-leveling algorithms. Lazy wear
leveling outperformed static wear leveling in terms of wear evenness in all cases.
Interestingly, static wear leveling was unstable under all workloads. Figure 8(a) shows
that under the PC workload, the final erase-count distribution of static wear leveling
is more imbalanced than that of lazy wear leveling. A closer inspection of static wear
leveling’s behaviors revealed two causes of this performance difference. First, static
wear leveling moves static data from a block to another, regardless of whether the
target block is junior or senior. Under the PC workload, there was a 70% probability
that static wear leveling would move data from a static block to a junior block. Second,
static wear leveling does not prevent the flash-translation layer from writing new data
to senior blocks. Thus senior blocks could repeatedly participate in garbage collection.
In contrast, lazy wear leveling neither remaps data to a junior block nor allows the
flash-translation layer to write new data to senior blocks.

Results in Table IV indicate that dual-pool wear leveling was unstable under the
MM and RND workload, while lazy wear leveling was stable. Figure 8(b) shows that
the standard deviation of dual-pool wear leveling became worse than that of lazy wear
leveling after the total amount of data written achieved was 13 TB. This is because
flash blocks of the same wear information (either the same erase count or the same
recent erase count) appear first-in first-out in the priority queues of dual-pool wear
leveling. Thus, under the MM workload, writing large files can neutralize the prior
efforts of wear leveling on a number of flash blocks (as mentioned in Section 3.4.1).
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Fig. 9. Runtime � values and standard deviations using the proposed dynamic �-tuning method under
(a) the PC workload, (b) the MM workload, and (c) the RND workload. The X-axes indicate the total amounts
of host data written to the flash-translation layer.

Under the RND workload, a not-recently-updated logical block has a better chance
of being updated, and thus this behavior coincides with the first-in first-out order in
the priority queues. Lazy wear leveling avoids this problem using a nonlinear block
selection policy. Even though dual-pool wear leveling is unstable, Table IV shows that
its overhead is smaller than that of lazy wear leveling. This is because after performing
data movement among blocks, dual-pool wear leveling hides these blocks for a while to
see whether this data movement is effective in terms of wear leveling. This protection
decreases the frequency of wear leveling operations and avoids some unnecessary data
movement. Contrarily, lazy wear leveling selects not-recently-updated logical blocks
for remapping, but under the random write pattern, these logical blocks have better
chances to get updated in the near future.

Now focus on the space overhead of the three algorithms in terms of RAM footprints
and flash space requirements. Let nb and nl

b be the total number of physical blocks
and logical blocks, respectively. Note that nb > nl

b. Suppose that storing an erase count
uses k bits. For RAM footprints, static wear leveling requires a block-erase bitmap of
nb bits. Dual-pool wear leveling uses knb bits to store all blocks’ erase counts in RAM.
It also requires five bit pyramids, each of which uses nb − 1 bits. Thus, its entire RAM
footprint is knb + 5(nb − 1) bits. Lazy wear leveling uses only k bits to store an average
erase count in RAM. Adopting the optional bitmap lbMod[] requires an extra nl

b bits.
Consider the experimental settings under the PC workload, we have nl

b = 81,920 and
nb = 83,968. Let k be 16. From the previous discussion, the RAM footprints of dual-pool
wear leveling, static wear leveling, and lazy wear leveling are 215 KB, 10.25 KB, and
16 bytes (plus 10 KB for the optional bitmap lbMod[]), respectively. For flash space
requirements, dual-pool wear leveling requires dedicated flash blocks for storing erase
counts. Lazy wear leveling stores erase counts in page spare areas, so effectively, it
does not cost extra flash pages. We had successfully implemented lazy wear leveling in
a real solid-state disk. Interested readers are referred to Chang and Huang [2011].

6.2.2. Dynamic �-Tuning for Lazy Wear Leveling. This experiment tested the proposed
�-tuning method under the three workloads. The session length for �-tuning was 200,
so � adjusts after lazy wear leveling erased every 200 blocks. The value of λ was −0.1.
Figure 9 depicts the runtime values of � and standard deviations during this experi-
ment. The X-axes denote the total amounts of host data written to the flash-translation
layer. These results show useful insights into how different types of workloads require
wear leveling: Figure 9(a) shows that under the PC workload, � and the standard
deviation were becoming stable after the workload produced about 1.2 TB of data. At
this time, the last flash block whose erase count was zero started contributing erase
cycles. Afterward, every flash block had been involved in wear leveling, and � and the
standard deviation steadily remained at around 80 and 50, respectively.
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Table V. Experimental Results of Using Lazy Wear Leveling (LWL) and Static Wear Leveling (SWL)
with Different Flash-Translation Layer Designs (i.e., SAST, FAST, and DFTL) under the PC

Workload

FTL algorithm WL algorithm Threshold Mean STDDEV Stable

SAST (hybrid mapping)
no WL — 268.5 280.1 no
LWL 16 279.1 10.8 yes
SWL 14 279.6 59.2 no

FAST (hybrid mapping)
no WL — 270.1 283.1 no
LWL 16 278.4 11.4 yes
SWL 14 278.7 64.3 no

DFTL (page-level mapping)
no WL — 250 461.9 no
LWL 16 230 29.7 yes
SWL 18 228 70 no

Figure 9(b) shows that, surprisingly, lazy wear leveling refrained from using small
� values under the MM workload. Small thresholds ought to be good choices, because
the standard deviation without wear leveling under the MM workload was not large,
as Table IV shows. However, the MM workload has few temporal localities which are
essential to the success of wear leveling. Thus, aggressive wear leveling unexpectedly
resulted in a high overhead. Figure 9(c) shows that under the RND workload, the
� values and the standard deviations were at around 100 and 110, respectively, and
barely varied. This is because the update frequencies of logical blocks never change (as
the RND workload is purely random), and thus the cost of wear leveling with respect
to the same � value almost remained constant in sessions.

These results suggest that wear leveling is very useful to the PC workload, because
this kind of workload has temporal localities of write. In contrast, wear leveling under
the sequential-write workloads, such as the MM workload, is not as easy as we thought.
Aggressive wear leveling could incur an unexpectedly high overhead.

This experiment also tested different settings of λ and the session length under
the PC workload. When the session lengths were 200, 400, and 800, the final stan-
dard deviations were 47.1, 47.5, and 45.8, respectively. The overhead ratios (defined in
Section 4.1) of using these three session lengths were 0.84%, 0.86%, and 0.94%, respec-
tively. These results are not sensitive to different session lengths. When the values of
λ were −0.1 and −0.3, the standard deviations were 47.1 and 32.5, and the overhead
ratios were 0.84% and 1.4%, respectively. The improvement upon standard deviation
of using λ smaller than −0.1 seems not worth the large overhead increase.

6.2.3. Lazy Wear Leveling with Different FTL Algorithms. Table V presents the results of
evaluating lazy wear leveling and static wear leveling with FAST, SAST, and DFTL
[Gupta et al. 2009]. SAST adopted N = 16 and K = 32 as its best settings.

When wear leveling was disabled, the large standard deviations show that flash
wear was severely imbalanced under SAST, FAST, and DFTL. Compared to static wear
leveling, lazy wear leveling achieved smaller standard deviations in this experiment.
Additionally, lazy wear leveling was stable with the three flash-translation algorithms
while static wear leveling was not. Results also show that in DFTL, using wear leveling
even achieved lower erase-count means compared to not using wear leveling, because
lazy wear leveling and static wear leveling can cluster infrequently updated data in
flash blocks, and this behavior benefits garbage collection for page-level mapping in
terms of overhead reduction.

6.2.4. Lazy Wear Leveling with Different Over-Provisioning Ratios. Figure 10 shows the results
of using different over-provisioning ratios of flash space, ranging from 2.5% to 50%.
First, focus on the block wear evenness shown in Figure 10(a). Lazy wear leveling
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Fig. 10. Results of varying the over-provision ratios of flash space (a) the block wear evenness, (b) the
overhead of garbage collection, and (c) the overhead ratio (as defined in Section 4.1) of wear leveling.

Fig. 11. Runtime channel erase counts and final distributions of block erase counts under the PC workload.
(a) Not using channel-level wear leveling, (b) using channel wear leveling with a period length of 512 MB,
and (c) using channel wear leveling with a period length of 1 TB.

achieved better wear evenness with large over-provisioning ratios. This is because,
as shown in Figure 10(b), increasing the ratio will reduce the intensity of garbage-
collection activities and thus alleviate the imbalance among block wear. Consequently,
the overhead of wear leveling reduced accordingly, as shown in Figure 10(c). But in
Figure 10, the results under the MM workload are an exception. To explain why, first
notice that the disk coverage of the MM workload is 87% (as Table III indicates). Thus,
the amount of senior physical blocks will be larger than that of infrequently updated
logical blocks. Because lazy wear leveling insists on performing remapping for every
senior block, in this case, it will incur extra overhead. Nevertheless, lazy wear leveling
can gracefully cope with this problem using dynamic threshold adjustment. As pointed
out in Section 6.2.2, lazy wear leveling backs off from aggressively intervening in block
wear under the MM workload, because the large disk coverage of the MM workload
automatically achieves wear leveling to a certain degree. Like the MM workload, the
RND workload also has an almost full disk coverage (99%), and using large over-
provisioning ratio will also increase the overhead of wear leveling. However, the RND
workload requires little wear leveling, and Figure 10(c) shows that the increase in
wear-leveling overhead is not noticeable.

6.3. Experimental Results: Channel-Level Wear Leveling

This part of the experiment evaluates the proposed channel-level wear leveling al-
gorithm. The experimental settings are as follows. The total number of channels was
eight. Each channel adopts its own instance of flash-translation layer and wear-leveling
algorithm. The flash-translation layer was FAST, and the wear-leveling algorithm was
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lazy wear leveling. Lazy wear leveling enabled its dynamic tuning of �. This experiment
replayed the PC workload until 4 TB of host data were written to the flash-translation
layer. The block endurance ē was set to an experimental value 450, because the average
block-erase counts was near this number by the end of this experiment. The rest of the
experimental settings are the same as those in Section 6.2.2.

Figure 11 shows the runtime channel erase counts and the final distribution of block
erase counts. Flash blocks are labeled by pairs (channel number, pbn). For example,
(7,10496) refers to the last flash block in the channel number seven. The upper half of
Figure 11(a) shows that without channel-level wear leveling, channels 4 and 5 were the
most-worn and the least-worn channels, respectively. The bottom half of Figure 11(a)
also indicates that even though the block wear in every channel was even, the erase
counts of flash blocks from channels 4 and 5 noticeably deviated from the overall
average.

Figures 11(b) and 11(c) show the results of enabling the proposed channel wear-
leveling algorithm. In Figures 11(b) and 11(c), channel wear leveling was invoked after
the workload produced every 512 MB and 1 TB of data, respectively, and channel wear
leveling could swap up to 50 logical blocks for each invocation. The upper halves of
Figures 11(b) and 11(c) show that the channel-erase counts gradually converged at the
end-of-life of channels, that is, ē × nb = 450 × 10,752 = 4,838,400. This convergence
in Figure 11(b) was faster than that in Figure 11(c), because in Figure 11(b), channel
wear leveling was invoked more often. In the bottom halves of Figures 11(b) and 11(c),
the final distributions of block erase counts were both even. Regarding the overhead,
the total numbers of logical blocks swapped were 260 and 150 when the period lengths
were 512 MB and 1 TB, respectively. Compared to the overhead of serving 4 TB of host
data, these overheads were almost negligible.

The proposed strategy requires a table for caching the utilization information of the
most-frequently written stripes and that of their logical blocks. In this experiment, the
table stored 100 stripes, and the table size was 100 × (1 + 8) × 4 = 3,200 bytes.

7. CONCLUSION

This study tackles three problems of wear leveling: block-level wear leveling, adaptive
tuning for block wear leveling, and channel-level wear leveling. Block-level wear lev-
eling monitors the wear of all flash blocks and intervenes when block wear develops
imbalanced. The tuning of block-level wear leveling seeks good balance between wear
evenness and overhead under various workloads. Channel-level wear leveling aims at
even channel lifetimes for maximizing the device-level lifespan.

This study presents lazy wear leveling for block-level wear leveling. Lazy wear lev-
eling prevents senior blocks from further aging by moving infrequently updated data
to these senior blocks. We found its implementation can be very simple based on two
observations. First, flash blocks increase their erase counts via garbage collection only.
Thus, lazy wear leveling can identify senior blocks whenever garbage collection is about
to erase a victim. Second, frequently updated logical blocks will leave mapping infor-
mation in the page-mapping table, so lazy wear leveling can find these infrequently
updated data by checking the mapping table. Lazy wear leveling subjects block-wear
evenness to a threshold, and using the same threshold value may produce different
costs and wear-evenness under various workloads. This study derives the overhead as
a function of the threshold and proposes decreasing the threshold until the overhead
can significantly increase. Our results show that wear level should refrain from using
small thresholds for sequential and random workloads.

Multichannel architectures has became mandatory in the design of solid-state disks.
Real workloads do not evenly write to all channels and inevitably introduce imbalanced
flash wear in different channels. For wear leveling at the channel level, we propose a
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strategy that swaps logical blocks among channels. The goal of this swapping is to
reach an eventually-even state of channel lifetimes. Results show that this strategy is
very successful and that its overhead is nearly negligible.

A recent study [Balakrishnan et al. 2010] suggests that SSDs in RAIDs should
reach their end-of-life at different times for the convenience of drive replacement. Our
future work is directed to optimizing the drive-replacement periods using the proposed
lifetime projection technique.
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