
2304 IEEE COMMUNICATIONS LETTERS, VOL. 17, NO. 12, DECEMBER 2013

Network Selection in Cognitive Heterogeneous Networks
Using Stochastic Learning

Li-Chuan Tseng, Feng-Tsun Chien, Daqiang Zhang, Ronald Y. Chang, Wei-Ho Chung, and ChingYao Huang

Abstract—Coexistence of multiple radio access technologies
(RATs) is a promising paradigm to improve spectral efficiency.
This letter presents a game-theoretic network selection scheme
in a cognitive heterogeneous networking environment with time-
varying channel availability. We formulate the network selection
problem as a noncooperative game with secondary users (SUs)
as the players, and show that the game is an ordinal potential
game (OPG). A decentralized, stochastic learning-based algo-
rithm is proposed where each SU’s strategy progressively evolves
toward the Nash equilibrium (NE) based on its own action-
reward history, without the need to know actions in other SUs.
The convergence properties of the proposed algorithm toward
an NE point are theoretically and numerically verified. The
proposed algorithm demonstrates good throughput and fairness
performances in various network scenarios.

Index Terms—Heterogeneous networks, cognitive radio, self-
organized network selection, stochastic learning.

I. INTRODUCTION

THE rapid increase of wireless applications has ren-
dered the single-network wireless system insufficient in

meeting the traffic demands due to the inefficient spectrum
utilization. A heterogeneous network, where multiple radio
access technologies (RATs) coexist, has emerged as a viable
alternative solution. In a heterogeneous network, users are
allowed to access the spectrum licensed to different spectrum
owners, which are called service providers (SPs), and as a
result a more efficient spectrum utilization can potentially
be achieved. In heterogeneous networks, one significant issue
is the network selection where each user determines which
network to associate with. Early works on heterogeneous
networks primarily focused on the study of vertical handover
procedures for mobile devices [1]. The handover decision
is made independently at each user according to the user’s
received signal strength (RSS) from different SPs and the
predicted trajectory of movement. However, even a user is
associated with an SP of good RSS, its achievable throughput
may degrade when the total number of users served by the
same SP increases.

To this end, recent works consider the joint behaviors
of users in the decision-making process for network se-

Manuscript received August 16, 2013. The associate editor coordinating
the review of this letter and approving it for publication was A. Rabbachin.

This work was supported in part by the National Science Council, Taiwan,
under grants NSC 102-2218-E-001-001, NSC 101-2219-E-009-018, and NSC
102-2220-E-009-042.

L.-C. Tseng, F.-T. Chien, and C. Y. Huang are with the Department of
Electronics Engineering, National Chiao-Tung University, Hsinchu, Taiwan
(e-mail: lctseng.ee90@nctu.edu.tw, {ftchien, cyhuang}@mail.nctu.edu.tw).

D. Zhang is with the School of Software Engineering, Tongji University,
Shanghai, China (e-mail: dqzhang@ieee.org).

R. Y. Chang and W.-H. Chung are with the Research Center for Information
Technology Innovation, Academia Sinica, Taipei, Taiwan (e-mail: {rchang,
whc}@citi.sinica.edu.tw).

Digital Object Identifier 10.1109/LCOMM.2013.102113.131876

lection, particularly from a game-theoretic perspective [2]–
[4]. Evolutionary game framework was applied to cognitive
heterogeneous networks in [2]. The proposed method therein
requires knowledge of other users’ actions and thus cannot
be implemented in a fully distributed manner. Khan et al.
[3] proposed a distributed hybrid learning method for 4G
heterogeneous networks. The convergence towards a pure
strategy profile was demonstrated without indicating whether
or not the achieved strategy profile is an equilibrium point. A
more extensive survey can be found in the work by Trestian
et al. [4].

In this letter, we consider the problem of network selection
in a heterogeneous network featuring cognitive radio (CR).
Specifically, we consider the primary network access scenario
[5] where both primary users (PUs) and secondary users (SUs)
are served by the primary networks. We model the network
selection by SUs as a noncooperative game, where the number
of residual channels (determined by the time-varying demands
of PUs) is considered as the external state. With our proposed
utility function, the game is shown to be an ordinal potential
game (OPG) [6]. A stochastic learning algorithm (SLA) is
proposed to perform network selection independently at each
SU based only on its action-reward history; the knowledge of
other SUs’ actions is not needed. The convergence property
of the algorithm to a Nash equilibrium (NE) point is verified
theoretically and numerically. To the best of our knowledge,
this work presents the first application of SLA to OPGs in
wireless networks. Notably, formulating an OPG poses fewer
constraints on the design of utility functions as compared with
the exact potential game (EPG) [6], and thus facilitates map-
ping practical resource management problems in distributed
networks into proper game-theoretic formulations.

II. SYSTEM MODEL

We consider a cognitive heterogeneous network with M
SPs and N SUs. The sets of SPs and SUs are denoted by M
and N , respectively. SPm owns Km channels. At time instant
j, after resource allocation for PUs, SPm has Cm(j) residual
channels that can be used to serve the SUs. Fig. 1 presents an
exemplary heterogeneous network where two RATs coexist.

To reflect a practical wireless heterogeneous network, our
system model incorporates the following considerations:

1) Due to hardware and protocol limitations, each SU can
subscribe to only one SP at a given time.

2) Each SU selects the SP independently. There is neither
central control nor negotiation among SUs.

3) The statistics of the number of residual channels owned
by each SP are fixed but unknown to the SUs.

4) The number of SUs in the system, N , is unknown.
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Fig. 1. An exemplary heterogeneous network with 2 SPs, 3 PUs, and 4 SUs.
The filled and blank blocks in the licensed band of each SP denote the busy
channels currently used by the PUs and the residual channels available for
serving the SUs, respectively.

TABLE I
SUMMARY OF SYMBOLS FOR GAME-THEORETIC FORMULATION

Symbol Meaning
N the set of SUs
M the set of SPs
C external state space (channel availability)
Cm(j) number of available channels of SPm at time j
Ai ⊆ M the set of actions of player i
si ∈ Ai an element of Ai

ai(j) ∈ Ai the action (SP selection) of player i at time j
a−i(j) ∈ Ai actions of players except for i at time j
Pi := Δ(Ai) the set of probability distribution over Ai

pi(j) ∈ Pi mixed strategy of player i at time j
ri(j) ∈ R instantaneous reward of player i at time j

Notably, the only information available for decision making
is the action-reward history of individual players (SUs).

Let Nm(j) = {i ∈ N|ai(j) = m} be the set of SUs
associated with SPm at time j, where ai(j) is the action (i.e.,
network selection) of SUi at time j. Here, we consider the
case where the SUs are of the same priority class, and thus the
residual channels are equally divided (can be in both frequency
and time domain) to them. Then, if ai(j) = m, the throughput
of SUi at time j is given by

ri(j) = Cm(j)Rm,i/nm(j), ∀i ∈ Nm (1)

where nm(j) � |Nm(j)| and Rm,i is the per-channel through-
put of SUi when SUi is the only user associated with SPm.
The value of Rm,i is determined by the modulation order (e.g.,
Rm,i = 4 when 16-QAM is adopted). For notational brevity,
we hereafter discard the timing dependence in occasions
without ambiguity.

III. SELF-ORGANIZED NETWORK SELECTION

In this section, we present the game-theoretic formulation
of the self-organized network selection problem. The notations
used in the formulation are summarized in Table I.

A. Game Model

We model the network selection problem as a noncooper-
ative game where the SUs are the players, and the number
of residual channels (after the resource allocation of PUs) is
considered as the external state. The game is represented as:

G =
(
C,N , {Ai}i∈N , {ui}i∈N

)

where C is the space of external states, N is the set of players,
{Ai}i∈N is the set of actions (network selection) that player
i can take, and {ui}i∈N is the utility function of player i that
depends on the actions of itself as well as other players.

The SUs are selfish and rational players with the objective
of maximizing their individual throughput. Thus, we define the
instantaneous reward of player i at time j as the throughput
specified in (1). The reward function captures the dynamics of
the behavior of PUs as well as the joint behaviors of multiple
SUs. Then, we define the utility function as the expected
reward of player i over the channel availability1, i.e.,

ui(ai, a−i) � ECai

[
ri|(ai, a−i)

]
=
Rai,i

nai

Kai∑
k=1

xai,k · k (2)

where xai,k is the probability of Cai = k with
∑Kai

k=1 xai,k =
1, and nai is the number of players taking action ai, which
depends on the action of player i (ai) as well as other players’
actions (a−i). Formally, the game can be expressed as

(G) : max
ai∈Ai

ui(ai, a−i), ∀i ∈ N . (3)

B. Analysis of Nash Equilibrium

With the utility function in (2), we show the existence of
an NE point for the considered game here.

Proposition 1. The game G is an OPG.

Proof: Consider the function Φ : ×i∈NAi → R+:

Φ(a1, . . . , aN ) =

M∏
m=1

nm∏
l=1

νm(l) ·
N∏
i=1

Rai,i (4)

where

νm(l) � 1

l

Km∑
k=1

xm,k · k (5)

is the average number of channels allocated by SPm to each
of its SUs when there are l SUs associated with SPm. Now,
consider that player i changes its action unilaterally from ai
to ăi. Let nai and năi be the number of SUs associated with
SPai and SPăi before the change, respectively. If this change
improves the ui, from the definitions in (2) and (5), we have

ui(ăi, a−i) > ui(ai, a−i)

⇔νăi(năi + 1) · Răi,i > νai(nai) ·Rai,i. (6)

Meanwhile, since player i’s change merely affects resource
allocations in SPai and SPăi , the change in Φ caused by player
i’s unilateral deviation is given by

Φ(ăi, a−i)

Φ(ai, a−i)
=
νăi(năi + 1) ·Răi,i

νai(nai) · Rai,i
> 1. (7)

From (6) and (7) we find that the variations in ui and Φ due
to player i’s unilateral deviation have the same sign, i.e.,

ui(ăi, a−i)−ui(ai, a−i) > 0 ⇔ Φ(ăi, a−i)−Φ(ai, a−i) > 0.
(8)

1The same formulation can be applied under fading channels, where the
time-varying Rm,i is considered as part of the external state and its average
value is adopted in ui. A longer learning period may be required in this case.
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Therefore, G is an OPG with potential function Φ [6].
The existence of a pure-strategy NE is always guaranteed

and it coincides with a local maximum of the potential
function [6]. Note that an EPG formulation [7] requires

ui(ăi, a−i)− ui(ai, a−i) = Φ(ăi, a−i)− Φ(ai, a−i). (9)

Comparing (8) and (9), it is observed that the constraint on
the utility function is relaxed in OPG, which facilitates game-
theoretic developments.

C. Stochastic Learning Procedure

Here, we discuss obtaining the NE via stochastic learning.
As the channel availability is time-varying and the action is
selected by each player simultaneously and independently in
each play, previously developed algorithms requiring complete
information (e.g., better response dynamics [6]) may not be
applicable. To this end, we propose a decentralized algorithm
based on stochastic learning (SL) [8], by which the SUs learn
toward the equilibrium strategy profile from their individual
action-reward history.

To facilitate the development of the SL-based algorithm,
let the mixed strategy pi(j) =

[
pi,1(j), . . . , pi,M (j)

]T
be

the network selection probability vector for player i, where
pi,si(j) is the probability that player i selects strategy si ∈ Ai

at time j. The proposed self-organized network selection
(SoNS) algorithm is described in Algorithm 1.

Algorithm 1 Self-organized Network Selection (SoNS)
1: Initially, set j = 0, and the network selection probability

vector as pi,si(j) = 1/|Ai|, ∀i ∈ N , si ∈ Ai.
2: At every time j, each player selects an action ai(j) as the

outcome of a probabilistic experiment based on pi(j).
3: The SUs receive the instantaneous reward ri(j) specified

by (1) from the SPs.
4: Each SU updates its network selection probability vectors

according to the following rule:

pi,si(j + 1) = pi,si(j) + b · r̃i(j)(1l{si=ai(j)} − pi,si(j))
(10)

where 0 < b < 1 is the learning rate, 1l{·} is the indicator
function, and r̃i(j) is the normalized reward.

The instantaneous reward (throughput) serves as a reinforce-
ment signal so that a high reward brings a high probability
in the next strategy update (Step 4). Also note that network
selection based on a probabilistic experiment (Step 2) might
result in handover between different networks in the begin-
ning of the learning procedure. However, a stable long-term
network selection strategy will be yielded after the learning
period (Proposition 2) and the time required for convergence
is a small fraction of the total operation time.

Proposition 2. The SoNS Algorithm converges to NE when
the learning rate b is sufficiently small.

Proof: Let P = (p1, . . . ,pN ) be the mixed strategy pro-
file of all players. Define ψi(P) � EP[ui] and Ψ(P) � EP[Φ]
be the expected reward function of player i and the expected
potential function, respectively, over the mixed strategy P. Let

esi be a unit probability vector (of appropriate dimension)
with the si-th component being unity and all others zero,
and P−i be the mixed strategy of players except for i. We
have Ψ(P) =

∑
si
pi,siΨ(esi ,P−i), and ∂Ψ(P)/∂pi,si =

Ψ(esi ,P−i). Also, the sequence pi,si(j) converges to the
solution of the ODE [8, Theorem 3.1]:

dpi,si(t)

dt
= pi,si(t)

∑
s′i

pi,s′i(t)
[
ψi(esi ,P−i)− ψi(es′i ,P−i)

]

for all i, si, where pi,si(t) is the continuous time extension of
pi,si(j). Consider the derivative of Ψ(P) with respect to t:

dΨ(P)

dt
=

∑
i

∑
si

∂Ψ(P)

∂pi,si

dpi,si(t)

dt

=
∑
i

∑
si,s′i

pi,si(t)pi,s′i(t)Ψ(esi ,P−i) ·Di,si,s′i

=
1

2

∑
i

∑
si<s′i

pi,si(t)pi,s′i (t)Ei,si,s′i ·Di,si,s′i ≥ 0

(11)

where Di,si,s′i = ψi(esi ,P−i) − ψi(es′i ,P−i), Ei,si,s′i =
Ψ(esi ,P−i)−Ψ(es′i ,P−i), and the last inequality holds since
from the condition of OPGs in (8), Di,si,s′i and Ei,si,s′i always
have the same sign. Since Φ is upper bounded and nondecreas-
ing along the trajectories of the ODE, the convergence to an
NE is guaranteed [8, Theorem 3.2, 3.3].

While the convergence to an NE is guaranteed as b → 0,
a smaller value of b leads to a slower convergence rate. A
proper value of b can be numerically determined to strike the
desired tradeoff between the accuracy and rate of convergence
for practical operations of the algorithm.

IV. NUMERICAL RESULTS

In order to evaluate the performance of the proposed
scheme, we conduct a series of simulations. We consider a
heterogeneous network in which there are 2 SPs each owning
3 channels. There are 10 SUs in the network, and the per-
channel throughput is set to Rm,i = {2, 4, 6} to reflect the
modulation orders adopted under different RSS conditions.
Fig. 2 shows the evolution of the choice probabilities of
the actions (i.e., mixed strategy) for network selection us-
ing the proposed stochastic learning algorithm. With equal
initial probabilities, it is observed that the network selection
probabilities converge to pure strategies in around 300 and
100 cycles for b = 0.2 and b = 0.5, respectively. Note that
SU #10 takes different strategies in the two cases. In Fig.
3, we test the deviation of the network selection of each of
the 10 players. It is shown in Fig. 3(a) that when b = 0.2,
unilateral deviation results in lower throughputs for all players,
suggesting an NE point is reached by the learning algorithm.
On the other hand, when b = 0.5, as shown in Fig. 3(b), SU
#10 achieves a higher throughput by unilateral deviation, and
thus the resulting strategy is not an NE point.

In Table II, we compare the performance of the proposed
network selection scheme with two other approaches, namely,
best RSS and (centralized) exhaustive search, which are de-
scribed as follows:
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Fig. 2. Evolution of the mixed strategies (choice probability of actions) of
some players, using different learning rates.
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Fig. 3. Test of unilateral deviation from the resulting strategy profile of each
of the 10 players, using different learning rates.

TABLE II
COMPARISON OF THE ACHIEVABLE EXPECTED SYSTEM THROUGHPUT OF

THREE NETWORK SELECTION SCHEMES

Proposed Best RSS Exhaustive

Scenario 1, usum 24.9662 24.4521 27.0621
Scenario 1, JFI 0.8974 0.7759 0.3822
Scenario 2, usum 25.9379 14.8554 25.9379
Scenario 2, JFI 0.9986 1.0000 0.8894

• In the best RSS scheme, each SU chooses the SP with the
best per-channel throughput (i.e., ai = argmaxmRm,i).
If there are more than one best SP, choose arbitrarily.

• In the exhaustive search, the channel availability statistics
and the number of SUs are known to a centralized
controller, and the action profile is selected so as to
maximize the system throughput usum =

∑N
i=1 ui.

The performance of different network selection schemes are
evaluated by the system throughput usum and the fairness
among SUs, measured by the Jain’s fairness index (JFI),
J = u2sum/(N

∑N
i=1 u

2
i ). We consider two scenarios for the

simulation. In scenario 1, the SUs are randomly distributed. An
SU may have better RSS from SP1 (R1,i > R2,i), from SP2

(R1,i < R2,i), or similar RSS from both SPs (R1,i = R2,i).
In scenario 2, we set R1,i = 6 and R2,i = {2, 4}, ∀i ∈ N .
This describes a two-tier network where SP1 is a small-cell
serving indoor SUs, while SP2 is a macro-cell located far
apart. We observe that the efficiency of the learned NE strategy
(ratio between usum of the proposed and exhaustive search
methods) is above 90% for both scenarios. In addition, the
exhaustive search method results in best usum, but suffers
from poor fairness in scenario 1. This is due to the winners-
first property of exhaustive search: If m can be found so that
Rm,i = 6, SUi is usually assigned to SPm; on the other hand,
those SUs with lower Rm,i in both networks may be assigned
to a less crowded SP instead of their own preference. The
best RSS scheme has good system throughput in scenario
1 but not in scenario 2, since in this extreme case, all SUs
are crowded in SP1 and the resources of SP2 are wasted. In
contrast, the proposed method performs well in terms of both
throughput and fairness under both scenarios. The results show
the advantage of the proposed method: through the learning
procedure towards equilibrium, the throughput of each SU is
considered and the fairness can be maintained.

V. CONCLUSION

In this letter we have studied the problem of self-organized
network selection in heterogeneous networks with time-
varying channel availability and unknown number of sec-
ondary users. We formulated the network selection problem by
an ordinal potential game. A decentralized stochastic learning-
based algorithm has been proposed. Simulation results have
demonstrated the convergence of the algorithm towards a
pure strategy Nash equilibrium point. The proposed method
outperforms the best RSS scheme in terms of average through-
put, while the performance loss compared to the centralized
exhaustive search is limited. Moreover, the proposed method
achieves good fairness in various network scenarios.
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