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A Compact 2-D FDFD Method for Modeling
Microstrip Structures With Nonuniform

Grids and Perfectly Matched Layer

Jiunn-Nan Hwang

Abstract—Full-wave analysis of the microstrip structures is
performed by using the compact two-dimensional (2-D) finite-dif-
ference frequency-domain (FDFD) method with nonuniform
grids and perfectly matched layer (PML). The use of nonuniform
grids can significantly reduce the computational matrix size. Less
memory and CPU time are required as comparing with the orig-
inal compact 2-D FDFD method. For the analysis of the microstrip
structures with an absorbing boundary condition, the compact
2-D FDFD method with PML is presented. The performances of
different PML thickness are studied. Numerical examples are pre-
sented to demonstrate the accuracy and efficiency of this method.

Index Terms—Compact two-dimensional (2-D) finite difference
frequency domain (FDFD), nonuniform grids, perfectly matched
layer (PML).

1. INTRODUCTION

CCURATELY modeling the dispersion characteristics of
a microstrip is important at the design stage. This proce-
dure can be fulfilled by full-wave modeling approach. Among
the available full-wave techniques, the finite-difference time-
domain (FDTD) method has been widely used as an accurate
way to predict the electromagnetic behavior of many guided-
wave structures. To solve propagation problems, some research
has introduced the dispersive boundary condition or high order
boundary condition [1]-[3]. In these approaches, the phase of
electric-field components at different locations are compared
and the propagation constant can be extracted with knowledge
of wave propagation between these locations. Another study [4]
was performed by extracting equivalent-circuit components of
a microstrip to determine the propagation constant and charac-
teristic impedance. However, these approaches are limited to
extract single-mode parameters due to the Fourier transform
limit. The studies described in [5], [6] employed new methods
with high-resolution signal-processing techniques and have the
advantage of extracting multimode parameters. Unfortunately,
when the dispersion parameters are very close to each other or
extracting data at very low frequency, this method requires long
simulation time.
The finite-difference frequency-domain (FDFD) method
can also be used to calculate the dispersion parameters [7],
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[8]. In the existing FDFD method, the eigenfrequency can
be extracted with a given propagation constant. Recently,
a new compact two-dimensional (2-D) FDFD method [9],
[10] was introduced to determine the propagation constant of
guided-wave structures. Unlike the existing FDFD methods, the
propagation constant can be extracted with a given frequency.
This method can be used to accurately extract propagation
constants of dominant and higher order modes. However, when
studying guided-wave structures with fine geometry features,
the computational matrix will be increased if uniform grids
are used. Another problem is the boundary condition in [9] is
a perfect electric conductor (PEC). The compact 2-D FDFD
method with an absorbing boundary condition has not yet been
proposed.

In this paper, we propose a novel compact 2-D FDFD method
with nonuniform grids and a perfectly matched layer to deter-
mine the propagation constant. In this approach, the simulation
domain can be reduced significantly with nonuniform grids
[11], [12]. We will demonstrate the advantage of this method
by computing the dispersion characteristics of electrically large
microstrip structures. The propagation problem in open space
can be solved by introducing the perfectly matched layer (PML)
concept [13], [14]. The PML equation for the compact 2-D
FDFD method, which yields an eigenequation, is presented. We
will compare the absorbing efficiency and computer burden of
different PML thicknesses. The performances of the simulation
results are evaluated.

II. CompPACT 2-D FDFD METHOD

The compact 2-D FDFD method can find the propagation
constant J with a given frequency kq. In this method, only four
transverse fields are involved in the final equation. The compact
2-D FDFD equations are given by [9]
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where Az and Ay are the grid space in the z- and y- directions.
Equation (1)—(4) can be concluded as an eigenproblem as

[A]- {z} = Ma} (5)

where A\ = B/ko, {z} = {E.,E,, H,,H,}", and [A] is a
sparse matrix and its matrix coefficients are listed in (1)—(4).

To save the memory resource, the computational matrix can
be decreased by using coarse grids in simulation. However, the
grid size will influence the accuracy of numerical results. In
the FDTD method [15], the grid size should be smaller than
Ay /10 in the material medium, where )\, is the wavelength
of the highest frequency in the simulated frequency spectrum.
In Section II, we will propose a new scheme to reduce the
computational matrix while the numerical accuracy can still be
maintained.

III. CoMPACT 2-D FDFD WITH NONUNIFORM GRIDS

In the compact 2-D FDFD method, the computational do-
main depends on the size of the modeled structure. To simulate
guided-wave structures with fine geometry features, fine grids
are often used to accurately model the local field phenomena.
This results in global refinement of the mesh density if uniform
grids are used. Such a high level of refinement will increase the
computational matrix size. To reduce the computational matrix
size, the compact 2-D FDFD method with nonuniform grids is
presented.
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Fig. 1.
grids.

Spatial arrangement of the field components with 2-D nonuniform

Fig. 1 shows the spatial layout of the field components with
2-D nonuniform grids. When Yee’s grid is reduced to a compact
2-D grid, we can obtain
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where h, is set as the average of the grid size in the two regions,
ie., hy = (Ayl + Ay2)/2.
After substituting F, into (6), we can obtain
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Other field components can also be derived with similar pro-
cedures. When using the nonuniform grids, the grid space Ax
and Ay in (1)—(4) are replaced by fine or coarse grid space de-
pending on the electromagnetic fields’ positions.

IV. CompACT 2-D FDFD METHOD WITH
PML IMPLEMENTATION

The PML equations for the compact 2-D FDFD method are
presented here. The original unsplit form of the PML equations
in the frequency domain are given by [14]
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where ¢ and o* denote electric and magnetic conductivity,
respectively.

The waves in the z- direction do not need to be absorbed, i.e.,
0, = o = 0. After some algebraic manipulations, (9)—(14)
become the following forms:

. . . . ad . 1
JwuoHa (i, 5) = =jBEy(i,§) = - B (i, ) 77—~
b ()
1—5——
WU
(15)
) . . . 0 . 1
JwuoHy (i, j) = +iBE. (i, j) + 5-E(i.]) :
T .ok
(1)
wup
(16)
. . a . 1
JwuoH(i, j) = 5 Bu(is ) 75~
G
1—75——
wUg
0 . 1
(1)
wugy
. . . . 0 . 1
Jw<€0€rEz(%J) :+J/8Hy(7’7j)+a_Hz(Z7]>
Y 1—; %y
< U}EOET)
(13)
. o . .. 0 o 1
]w&‘oETEy(Z,j) = _]/HHz(Zv])_a_Hz(Zv])
X 1— Oy
< TUEOET>
(19)
. . 0 . 1
]wEOETEZ(Zv.]) = _a_Hz(Zvj)
Y . Oy
(1-522)
WEQE,
L H i) 0)
) y\2,J . o,
WEES

By normalizing the field components with a square root of the
free-space wave impedance such that H' = H - \/19 and F' =
E/ /Mo, we can obtain

1
Ha(icd) = = LBy i) + i [ +1) = E2G.9)]

2y

H?J(iaj):-"kﬁoE (Z'vj) JkO—Aw[Ez(Z-FlJ)_Ez(ZaJ)}
« 1 (22)
(1-5%)
wug
1 .. o 1
H.(i, ) _—Jm[Em(%J‘i‘l) —Em(zyj)} o7
(1)
1 ) . .
Ay Bl 10) = By )]
X L (23)

Vi) =+ Hy (5) g [Hi. )~ (=)

ko
x ;U 24)
(i)
VB i) =~ E H) + e [HaG9) = Hi=1,9)]
ot 25)

. Oy
(i)
WEQYE,
E’I‘EZ(Z7]) :+]— |:Hm(l7])_H$(’L?]_1)i|

k‘o Ay
1 1

—-J
<1—j Oy ) k‘oA:E
WEYE

x [Hy (i, ) = Hy(i = 1,5)] <

X

. Og )
J
WEQES

(26)

F. and H, are substituted into (21) and (22) and (24) and (25),
respectively, the PML equations for the compact 2-D FDFD
method can be obtained as (27)—(30) as follows:
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The directional electric conductivity in the PML is defined as

U n
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where w is either x or y, 6 is the thickness of the PML, and o, is

the maximum electric conductivity at the outer side of the PML.

When studying the surface of conductors, it can be done by
inserting the boundary condition £, = 0 into (21)—-(26) and
systematically modifying (27)—(30) accordingly. For example,
E.(i+ 1,7) = 01in (22) and (27) will become
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V. NUMERICAL EXPERIMENTS

Numerical examples are used to verify the proposed method.
In the first example, a dual-plane triple microstrip line on an
anisotropic substrate, shown in Fig. 2, is studied. The modeled
structure reported in [6] consists of 40 x 24 uniform grids, and
the corresponding sparse matrix size [A] is {3968 x 3968}. The
computational domain can be reduced with nonuniform grids.
The configuration of the modeled structure with nonuniform
grids is shown in Fig. 3. The fine grid A is chosen as 0.25 mm
and the coarse grids Az1, Az2, Ayl, and Ay2 are chosen as
0.4, 0.46, 0.4, and 0.48 mm, respectively. As shown in Fig. 4,
the simulation results of the normalized effective dielectric con-
stant are compared with those in [16]. Good agreement can be
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Fig. 2. Cross section of dual-plane triple microstrip lines. @ = 10.0 mm,
by = b, = 1.0mm, b3 = 4.0 mm, ¢,, = 9.4,¢,, = 11.6,¢,. = 9.4,
W, =W, =W; =1.0mm, and S = 2.0 mm.
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Fig. 3. Cross section of dual-plane triple microstrip lines with nonuniform
grids.
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Fig. 4. Simulation results of the normalized propagation constants for
dual-plane triple microstrip lines.

observed. The computational matrix size has been reduced to be
{2134 x 2134} with nonuniform grids.

The second analyzed structure is a coupled microstrip lines
with finite strip thickness ¢, as shown in Fig. 5. We use fine grids
to model the strip thickness and coarse grids in other regions.
The simulation results are shown in Fig. 6 and are compared
with those in [17]. Good agreement is also reached.

To verify the proposed PML equations for the compact 2-D
FDFD method, a microstrip line with an absorbing boundary

.
hQ
Sl 'W1 S: Wz SJ
[ > Ll - L} Ly
I I
&, hl

Fig. 5. Cross section of parallel coupled microstrip lines with finite strip
thickness. ¢, = 12.5. W, =W, = 5, = h; = 0.6 mm, h, = 10 mm, and
Sl = 33 = 6 mm.
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Fig. 6. Modeled effective dielectric constant for a coupled microstrip lines.
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Fig. 7. Cross section of the computation domain for a microstrip line. W =
0.5mm, h = 1.5 mm, and £, = 9.4,

condition is studied. As shown in Fig. 7, the PML is imple-
mented on the sidewalls of the microstrip structure.

To reduce the computational matrix, the thinner PML can be
used and the absorbing efficiency must still be maintained. It has
been found in [18] that the theoretical reflection coefficient R},
and power n need to be properly chosen to achieve small reflec-
tion. The thicker the PML, the smaller the chosen R;;, should
be. After deciding upon the value of Ry, the optimum range of
n can be predicted. In this study, the PML thickness of five, six,
eight, and ten cells are studied. The Ry, are chosen to be 1075,
1076, 1077, and 1079, respectively. The n of the five-cell-thick
PML is chosen to be 2.0. When the PML thickness is larger than
six cells, n is chosen between 2.5-2.7. We increase the distance
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TABLE I
MODELED RESULTS WITH DIFFERENT PML THICKNESS AND ITS CORRESPONDING MATRIX SIZE
REFERENCE SPML 6PML 8PML 10PML
DATA
10G 2.616 2.6116-i0.1578 2.6134-10.0641 2.6173-i0.0203 2.6157-i0.008
20G 2.7635 2.7371+i0.0262 | 2.7612-i0.0148 | 2.7635+i0.0043 | 2.7649-i0.0001
30G 2.8624 2.8686-10.0045 2.8639-10.0031 2.8620+i0.0004 | 2.8626-i10.00006
SPARSE 1814 x 1814 650% 650 804x 804 1160x1160 1580x 1580
MATRIX
SIZE
cells. Both the computational matrix size are {2754 x 2754}.
PML Fig. 9 shows the simulated effective dielectric constant. From
the simulation results, it can be found that the dispersion pa-
PML PML rameters of the PEC boundary condition are smaller than those
WS W, S, w, in [19]. Accurate results can be obtained by implementing a
g g, PML boundary condition.
Fig. 8. Cross section of an asymmetric three-line microstrip lines with PML VI. CONCLUSION

implementation. » = 0.635 mm, W; = 0.3 mm, S; = 0.2 mm, W, =
0.6 mm, So = 0.4 mm, W5 = 1.2 mm, and ¢, = 9.8.
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Fig. 9. Modeled effective dielectric constant for an asymmetric microstrip
line.

between the microstrip line and PEC boundary as reference data
to verify the PML absorbing efficiency. The distance is ten times
the width of the microstrip line. The sparse matrix size of refer-
ence datais {1814 x 1814}. The simulated normalized propaga-
tion constant 3/ kg is shown in Table I. Since the PML equations
for the compact 2-D FDFD method are complex, the simulation
results are also complex. The real part is the normalized prop-
agation constant and the imaginary part is the loss due to the
PML. The imaginary part will be decreased with an increase
in the PML thickness. Comparing the simulation results of dif-
ferent PML thickness with the reference data, it is found that the
performance of the six-cell PML can already achieve accurate
results and sparse matrix size can also be significantly reduced.

The second analyzed structure is an asymmetric three-line
coupled microstrip lines, as shown in Fig. 8. The modeled
structure with the PML boundary condition and PEC boundary
condition are both studied. The thickness of the PML is six

In this paper, the compact 2-D FDFD method with nonuni-
form grids and a PML have been presented. When studying
electrically large transmission-line systems, the use of nonuni-
form grids can significantly reduce the computational domain.
The eigenform PML equations for the compact 2-D FDFD
method are proposed to study the microstrip structure in open
space. From simulation results, it is found that the performance
of the six-cell PML can achieve accurate results with properly
choosing PML reflection parameters. Numerical examples have
been presented to demonstrate the efficiency and accuracy of
this method.
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