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Optimal Common-Centroid-Based Unit Capacitor Placements
for Yield Enhancement of Switched-Capacitor Circuits
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Yield is defined as the probability that the circuit under consideration meets with the design specification
within the tolerance. Placement with higher correlation coefficients has fewer mismatches and lower vari-
ation of capacitor ratio, thus achieving higher yield performance. This study presents a new optimization
criterion that quickly determines if the placement is optimal. The optimization criterion leads to the devel-
opment of the concepts of C-entries and partitioned subarrays which can significantly reduce the searching
space for finding the optimal/near-optimal placements on a sufficiently large array size.
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1. INTRODUCTION

As semiconductor technology continues to shrink, process variation problems become
inevitable. It is anticipated that the problem of uncontrollable process variation will
become more serious. As a result, yield loss caused by process variation becomes an
important design issue. In order to bring the process variation to the early design stage,
the process variation information must be injected to the circuit simulator.

Process corners are generally considered in circuit simulation. It uses the device pro-
cess boundary to simulate the yield loss phenomenon. However, the device boundaries
are usually not the performance boundary. The performance space may be within or
overstep the corner space [Luo et al. 2008], which results in either overkill or overpass.
To improve the accuracy of yield analysis, the time-consuming Monte-Carlo analysis is
commonly employed.

Devices mismatch can be attributed to two sources of errors: random mismatch and
systematic mismatch [Liu et al. 2008]. Random mismatch is usually caused by process
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variation; on the other hand, systematic mismatch is mainly due to asymmetrical layout
and processing gradients. The key performance of many analog integrated circuits,
such as analog-to-digital converters (ADCs) and sample and hold, is directly related
to accurate capacitance ratios [McNutt et al. 1994]. The capacitance ratio mismatch
problem can be alleviated by using parallel unit capacitances [Khalil et al. 2005], and
the precision of the unit capacitance array can be further improved by common centroid
structures [Khalil et al. 2005; Khalil and Dessouky 2002; Ma et al. 2007; Hastings
2000]. These structures significantly reduce the effects of gradients and random errors
in fabrication.

Perfectly matched devices in the common centroid structure must satisfy the fol-
lowing four conditions [Hastings 2000]: coincidence, symmetry, dispersion, and com-
pactness. A number of layout rules were developed for guiding designers to develop an
appropriate layout that meets these conditions [Khalil et al. 2005; Khalil and Dessouky
2002; Ma et al. 2007; Hastings 2000]. However, the layout shape must be rectangular to
meet these four conditions. Moreover, which condition achieves better matching is gen-
erally difficult to determine without performing the time-consuming yield evaluation
process [Chen et al. 2009, 2010; Luo et al. 2011].

In reality, there exist some correlations among devices which highly depend on their
spatial locations [Xiong et al. 2007; Doh et al. 2005]. The closer devices generally
have the similar parameter variation. It has been shown that placement with higher
correlation coefficients has fewer mismatches and lower variation of capacitor ratio,
and thus higher yield performance [Luo et al. 2008]. The optimization criterion was
proposed in Chen et al. [2010] to quickly generate optimal/near-optimal placements
with the highest/near-highest correlation coefficients for the ratio of two capacitors or
a continuous capacitor ratio (multiple capacitors). The algorithm has been successfully
implemented to a charge-redistribution (CR) successive-approximation register (SAR)
analog-to-digital converter (ADC) design for yield enhancement [Lin et al. 2011]. The
optimal/near-optimal placements were generated without the need of the Monte-Carlo
simulations.

However, the optimization criteria in Chen et al. [2010] and Lin et al. [2011] were
oversimplified. It may not be always true that the higher correlation coefficients result
in lower variance of ratio. The use of Pearson’s correlation coefficient [Chen et al.
2010] to define the optimization criterion is too optimistic. Counterexamples will be
presented shortly to illustrate the contradiction. On the other hand, the optimization
criterion in Lin et al. [2011] only considers the maximization of R, the sum of cross-
correlation coefficients between any pair of unit capacitance. Counterexamples will
also be provided to show that placement with larger values of R may not always
result in smaller standard deviation or smaller variance. This leads to the development
of a new optimization criterion which can quickly and effectively identify the better
placement. The resultant placement is confirmed by Monte-Carlo simulations. Based
on the optimization criterion, a simple yet effective placement generation process is
developed.

In the next section, the impact of spatial correlation in yield analysis and the spa-
tial correction model are briefly reviewed. In addition, the optimization criterion pro-
posed [Chen et al. 2010; Lin et al. 2011] is also discussed. Section 3 presents the
proposed optimization criterion. Based on the optimization criterion, capacitor place-
ment generation is discussed in Section 4. Finally, a brief concluding remark is given in
Section 5.

2. PRELIMINARY

Let μCs and μCt be the nominal values of two capacitors Cs and Ct, respectively. Var(Cs)
and Var(Ct) are respectively their variances, and Cov(Cs, Ct) is the covariance. The
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variation of capacitance ratio, Var(Cs/Ct), can be expressed as follows [Luo et al. 2008].

Var
(

Cs

Ct

)
=

(
μCs

μCt

)2
(

VarCs

μ2
Cs

+ VarCt

μ2
Ct

− 2Cov(Cs, Ct)
μCsμCt

)
. (1)

Let Cs and Ct be implemented with p and q unit capacitors (UC), respectively, that
is, Cs = {Cs1, Cs2, . . . , Csp} and Ct = {Ct1, Ct2, . . . , Ctq}. The ratio is Cs : Ct = p : q.
Without loss of generality, the (p + q) UCs are placed on an m-by-n array structure.
The self-correlation ρs(i, j) and ρt(i, j) denote as the correlation coefficients between Csi
and Csj , between Cti and Ctj , respectively, while the cross-correlation ρst(i, j) is the
correlation coefficients between Csi and Ctj [Luo et al. 2008]. Let Scs and Sct be the sum
of total self-correlation coefficients of Cs and Ct, respectively, and Scst be the sum of the
cross-correlation coefficients, that is,

Scs =
p−1∑
i=1

p∑
j=i+1

ρs(i, j); Sct =
q−1∑
i=1

q∑
j=i+1

ρt(i, j); Scst =
p∑

i=1

q∑
j=1

ρst(i, j). (2)

Let μCu and σCu denote the nominal value and standard deviation of a UC, re-
spectively. With the assumption that all UC’s have the same means and variances,
Var(Cs/Ct) can be expressed as follows [Luo et al. 2008]:

Var
(

Cs

Ct

)
=

(
p
q

)2 (
σcu

μcu

)2 (
p + 2Scs

p2 + q + 2Sct

q2 − 2Scst

pq

)
. (3)

Consider the Pearson’s correlation coefficient [Luo et al. 2008],

ρcst = Cov (Cs, Ct)√
Var (Cs)Var (Ct)

. (4)

By substituting Eq. (1) to Eq. (3), we obtain

ρcst = Scst√
(p + 2Scs)(q + 2Sct)

. (5)

Based on Eq. (5), the following property was concluded in Luo et al. [2008] that
the higher correlation coefficient ρcst results in a smaller Var(Cs/Ct). Since the smaller
variance of the capacitor ratio generally results in higher yield performance, hence,
the higher correlation coefficient will result in higher yield performance. Thus, the
correlation coefficient ρcst was employed in Chen et al. [2010] to quickly determine
which placement may achieve higher yield performance without executing the time-
consuming Monte-Carlo simulations.

To deal with the continuous ratio C1:C2:. . .:CN, the ratio of multiple capacitors, sev-
eral evaluation functions have been recently proposed [McNutt et al. 1994; Khalil et al.
2005; Khalil and Dessouky 2002; Ma et al. 2007]; an effective capacitor placement
methodology based on spatial correlation has been proposed [Chen et al. 2010] and
implemented to the design of SAR ADCs [Lin et al. 2011]. More specifically, let ρi j be
the correlation coefficient of a pair of capacitors, Ci and Cj . The placement optimization
problem was formulated to maximize the value of R [Chen et al. 2010], where

R =
{∑

ρij | i , j = 1, 2, . . . ,n, and i < j
}
. (6)

The UC placement with the maximum R will be the optimal or near-optimal one.
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Fig. 1. A common N-bit charge redistribution SAR ADC.

3. OPTIMIZATION CRITERIA

We first present the variance analysis used to examine the optimization criteria in
Chen et al. [2010] and Lin et al. [2011] for a pair of capacitance ratio and a continuous
capacitance ratio. Then, the counterexamples for both criteria proposed in [Chen et al.
2010; Lin et al. 2011] are illustrated. Finally, a new optimization criterion is presented
with the confirmation of Monte-Carlo simulation results.

3.1. Variance Analysis

Eq. (1) can also be written as

Var
(

Cs

Ct

)
=

(
1

μ4
Ct

) (
μ2

Ct
VarCs + μ2

Cs
VarCt − 2μCsμCtCov (Cs, Ct)

)
. (7)

Similarly, we can also obtain

Var
(

Ct

Cs

)
=

(
1

μ4
Cs

)(
μ2

Ct
VarCs + μ2

Cs
VarCt − 2μCsμCtCov (Cs, Ct)

)
. (8)

By Eqs. (7) and (8), one can derive

Var
(

Cs

Ct

)
=

(
μ4

Cs

μ4
Ct

)
Var

(
Ct

Cs

)
, (9)

and

Var
(

Cs + Ct

Cs

)
= Var

(
Ct

Cs
+ 1

)
= Var

(
Ct

Cs

)
. (10)

Thus, the following property holds.

PROPERTY 1.

(a) Minimizing Var(Cs/Ct) is equivalent to the minimization of Var(Ct/Cs).
(b) Minimizing Var(Cs/(Cs + Ct)) is equivalent to the minimization of Var(Cs/Ct).

3.2. Examining Optimization Criterion R

Figure 1 shows a CR-SAR-ADC [Lin et al. 2011] which is comprised of a capacitor array,
a comparator, and control units.

Consider an N-bit SAR ADC that includes the capacitors Ci, i = 0, 1, . . . , N. The
capacitance ratios are

CN : CN−1 : . . . : C2 : C1 : C0 = 2N−1 : 2N−2 : . . . :2 :1 :1 (11)

Let C∗
i denote the sum of all capacitances excluding Ci, i = 1, 2, . . . , N.

Ci/(Ci + C∗
i ) = 2i−1/2N= 1/2N−i+1

., i = 1, 2, . . . , N (12)
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Fig. 2. Placements of four-bit SAR ADC: (a) and (b) placements in Lin et al. [2011]; and (c) proposed.

Table I. Standard Deviation and R

Std(C j /Ctotal)
Placement j = 1 j = 2 j = 3 j = 4 R
Fig. 2(a) 0.0021 0.0027 0.0034 0.0049 9.3015
Fig. 2(b) 0.0021 0.0027 0.0028 0.0045 9.3199
Fig. 2(c) 0.0021 0.0027 0.0036 0.0029 9.2572

Table II. MC Simulation with μCu = 100 fF, σCu = 10 fF,
and ρ0 = 0.9

Std(C j /Ctotal)
Placements j = 1 j = 2 j = 3 j = 4
Fig. 2(a) 0.0022 0.0028 0.0035 0.0050
Fig. 2(b) 0.0022 0.0028 0.0028 0.0046
Fig. 2(c) 0.0022 0.0027 0.0037 0.0029

By Property 1(b), minimizing Var(Ci/(Ci+Ci
∗)) is equivalent to the minimization of

Var(Ci/Ci
∗).

Example 1. Consider the placements [Lin et al. 2011] in Figures 2(a) and 2(b) with
continuous ratio C4:C3:C2:C1:C0 = 8:4:2:1:1. The unit capacitor Cu is 100 fF, the stan-
dard deviation of unit capacitor is 10 fF, and the unit correlation coefficient ρ0 is 0.9.

One can generate a 16-by-16 correlation coefficient matrix [Luo et al. 2008] and
calculate the variance and covariance of the capacitances. For the placement in Fig-
ure 2(c), C∗

4 = C0 + C1 + C2 + C3 and CTotal = C4 + C∗
4. By Eq. (2), we obtain

Var(C4) = Var(C∗
4) = 5228.5, and Cov(C4, C∗

4) = 5186.6. By Eq. (3), the variance of
ratio Var(C4/CTotal ) = 8.1913e-6. Thus, the standard deviation is Std(C4/CTotal ) is
0.0029. Similarly, one can compute the standard deviations of C1/CTotal , C2/CTotal ,
and C3/CTotal , and the R values for the placements, as shown in Table I. The mean
values of C1/CTotal , C2/CTotal , C3/CTotal , and C4/CTotal are 0.0625, 0.125, 0.25, and 0.5,
respectively. Note that, for simplicity, the systematic mismatch was ignored because
the array size is small and the capacitors, (C2, C3, C4), with even numbers of unit
capacitors, have the common center point.

Similarly, one can derive the standard deviations of the other placements, as shown
in Table I. Results show that both placements in Figures 2(a) and 2(b) have higher
values of R than that in Figure 2(c), so is the standard deviation of the most significant
bit (MSB), that is, C4/CTotal . The situation becomes significant when the bit number
increases.

In order to confirm the correctness of the computed values in Table I, the Monte-
Carlo (MC) simulation was conducted to compute the variance. With 10,000 samples,
the simulation results are tabulated in Table II.
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Fig. 3. Common-centroid-based placements.

Table III. Calculated Values with ρ0 = 0.5

Placements p+ 2Scs q+ 2Sct 2Scst ρcst Var(Cs/Ct)
Fig. 3(a) 4.4224 160.7778 28.4144 0.5328 5.7042E-5
Fig. 3(b) 5.8288 142.1754 45.6104 0.7922 3.2203E-5
Fig. 3(c) 8.9254 138.2296 46.4596 0.6613 7.4696E-5

3.3. Examining Optimization Criterion ρcst

Let Cs and Ct be implemented with 4 and 26 unit capacitors which are placed on a 6-by-
5 array structure, that is, p = 4 and q = 26, Figure 3 shows three different placements
and the associated values are computed and tabulated in Table III, where μCu = 100
fF, σCu = 10 fF and the ρ0 = 0.5 were assumed. Results show that the placement in
Figure 3(b) results in the highest correlation coefficient ρcst and the lowest variance of
ratio, Var(Cs/Ct). This endorses that the placement with higher correlation coefficient
results in lower variance of ratio [Luo et al. 2008].

However, for the placements in Figures 3(a) and 3(c), the former has lower ρcst than
the latter, by the conclusion [Luo et al. 2008], the former should have higher variance of
ratio than the latter. By Table III, the former one has lower Var(Cs/Ct). This contradicts
the conclusion in Luo et al. [2008]. In fact, to obtain higher ρcst, by Eq. (5), the terms
(p+ 2Scs)∗(q + 2Sct) must be reduced, and the term Scst should be increased. Moreover,
to obtain lower Var(Cs/Ct), by Eq. (3), both (p + 2Scs) and (q + 2Sct) must be decreased
and Scst should be increased. Both conditions may not be linearly dependent. Therefore,
the criterion may not be always true. To further verify the simulation results of the
example, the MC simulation with 10,000 samples is adopted for various ρ0, as shown
in Figure 4.

As shown in Figure 4, the placement in Figure 3(a) has lower Var(Cs/Ct) than
Figure 3(c). In addition, Figure 4 also confirms the accuracy of the estimated vari-
ance that is calculated by Eq. (3).

3.4. New Optimization Criterion

This sub section presents the proposed optimization criterion.

PROPERTY 2. Let Cs and Ct be implemented with p and q unit capacitors, respectively,
and let the (p + q) unit capacitors be completely placed on an n-by-m array. The sum

κ = (p + 2Scs) + (q + 2Sct) + 2Scst (13)

is a constant for any placements of the (p + q) units on this array.

Example 2. Consider the two different placements in Figures 5(a) and 5(b), where p =
q = 4 on a 2-by-4 array structure. Their correlation matrices are shown in Figures 5(c)
and 5(d), respectively.
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Fig. 4. MC simulation results of the placements in Figure 3.

Fig. 5. Common-centroid placements.

Based on the correlation matrices in Figure 5, the correlation coefficients of both
cases can be expressed as follows.

Scs(a) = Sct(a) = 2ρ2 + 3ρ
√

2 + ρ
√

10,

Scst(a) = 10ρ + 2ρ3 + 4ρ
√

5,

Scs(b) = Sct(b) = ρ + ρ3 + 2ρ
√

2 + 2ρ
√

5,

Scst(b) = 8ρ + 4ρ2 + 2ρ
√

2 + 2ρ
√

10.
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Let k(a) be the coefficient sum of all entries of the matrix in Figure 5(c), then

κ(a) = (p + 2Scs(a)) + (q + 2Sct(a)) + 2Scst(a)

= 8 + 20ρ + 8ρ2 + 4ρ3 + 12ρ
√

2 + 8ρ
√

5 + 4ρ
√

10.

Similarly, let κ(b) be the coefficient sum of all entries of the matrix in Figure 5(d),
and

κ(b) = 8 + 20ρ + 8ρ2 + 4ρ3 + 12ρ
√

2 + 8ρ
√

5 + 4ρ
√

10,

that is, κ(b) = κ(a). For ρ = 0.5, κ(a) = κ(b) = 25.3686. The matrix in Figure 5(d) is
a matrix permutation of that in Figure 5(c). Thus, the total sums of the correlation
coefficients for both cases are the same.

PROOF (PROPERTY 2). If two placements have the same number of (p + q) unit capaci-
tors which are placed on the same array, their corresponding correlation matrices have
the permutation relationship, that is, one matrix can be obtained from a permutation
of the other. Thus, the total sums of the correlation coefficients at all entries in both
matrices are the same.

Based on Property 2, a new optimization criterion can be summarized as the following
property.

PROPERTY 3. Given an n-by-m array, both capacitors Cs and Ct contain p and q unit
capacitors, respectively. Among the placements on the same array, the one with the
lower ω-value will result in the lower variation of ratio,

ω = Scs

p
+ Sct

q
. (14)

PROOF. Eqn. (3) can be rewritten as

Var (Cs/Ct) = G1 ∗ (G2 + 2G3),

where

G1 =
(

p
q

)2 (
σcu

μcu

)2

, G2 =
(

1
p

+ 1
q

)
, G3 = Scs

p2 + Sct

q2 − Scst

pq
,

Note that p, q, σCu, and μCu are constants as are G1 and G2. Thus, minimizing
Var(Cs/Ct) is equivalent to the minimization of G3. By Eq. (13), we can derive

κ − p − q
2

= Scs + Sct + Scst, or Scst = κ − p − q
2

− (Scs + Sct).

Thus,

G3 = Scs

p

(
1
p

+ 1
q

)
+ Sct

q

(
1
p

+ 1
q

)
− (κ − p − q)/2

pq
,

that is,

Scs

p
+ Sct

q
=

[
G3 + (κ − p − q)/2

pq

] / (
1
p

+ 1
q

)
.

Since p, q, and κ are constants, minimizing G3 is equivalent to the minimization of
ω = Scs/p + Sct/q.
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By Eq. (13), we have

Scs

p
+ Sct

q
= p(κ − p − q)/2 + (q − p)Scs − pScst

pq

= p(κ − p − q)/2 + (p + q)Scs − p(p + 2Scs + Scst) + p2

pq

= κ − q + p
2q

+
(

1
p

+ 1
q

)
Scs − 1

q

( p∑
i=1

f (ri, si)

)

= κ − q + p
2q

+ 1
q

[(
q
p

+ 1
)

Scs −
p∑

i=1

f (ri, si)

]
,

where (ri, si), i = 1, 2, . . . , p, are the locations of the p unit capacitors of Cs. Let (r, s) be
any entry of the n-by-m array,

f (r, s) =
n∑

i=1

m∑
j=1

ρ

√
(r−i)2+(s− j)2

. (15)

The function f (r, s) is referred to as the weight of the entry (r, s) on the n-by-m array
[Chen et al. 2009, 2010; Luo et al. 2011]. This concludes that minimizing ω in Eq. (14)
is equivalent to the minimization of ωp, where

ωp =
(

q
p

+ 1
)

Scs −
p∑

i=1

f (ri, si),

or

ωp = n × m
p

Scs −
p∑

i=1

f (ri, si), (16)

that is, minimizing the variance of ratio is equivalent to the minimization of ωp.

4. OPTIMAL COMMON-CENTROID PLACEMENTS

Consider an array size of 2R by 2C , without loss of generality, let C � R. Both capaci-
tances Cs and Ct contain p and q unit capacitances, respectively, where p + q = 2R+C .

Let (ri, si), i = 1, 2, . . . , p, be the locations of the p unit capacitors of Cs on the array.
By Eq. (16),

ωp = 2R+C

p
Scs −

p∑
i=1

f (ri, si). (17)

Thus, for p = 1, we have Scs = 0 and, by Eq. (17), ω1 = − f (r1, s1). Minimizing ω1 is
equivalent to the maximization of f (r1, s1).

The entry weights of the 8-by-8 array are illustrated in Figure 6(a), where there
are ten distinct entry weights, w1–w10, which can be calculated by Eq. (15), and the
computed values for ρ0 = 0.5 are listed in Figure 6(b), where the maximum entry
weight w1 = 10.7038.

We denote the entry/entries located at the center of the array as central entry/entries,
or C-entry or C-entries. Figure 6 shows that array containing four C-entries, labeled by
w1 and colored in yellow. Figure 6(b) shows that the C-entries have the highest entry
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Fig. 6. Computed entry weights.

weight. (The maximum entry weight was defined in Chen et al. [2009, 2010] and Luo
et al. [2011] in a similar way.) Thus, the following property holds.

PROPERTY 4. Let p = 1, a placement is generated in such a way that the only one-unit
capacitor of Cs is placed on the C-entry/C-entries of the array, and the q unit capacitors
of Ct are placed on the remaining entries of the array. Then, the placement results in
the lowest variation of ratio among the placements on the same array.

PROOF. For p = 1, Scs = 0. Thus, by Eq. (17), w1 = − f (r, s). Since f (r, s) is the
highest entry weight of the array, the maximum of f (r, s) results in the lowest w1 and
corresponding variation of ratio.

For p = 2, let (r1, s1) and (r2, s2) be the locations of the two unit capacitors of Cs on
the 2R-by-2C array. By Eq. (17), we obtain

ω2 = 2R+C−1Scs − [ f (r1, s1) + f (r2, s2)]. (18)

Consider the 8-by-8 array of p = 2. We partition array into two 8-by-4 subarrays, as
shown in Figure 7(a). The two unit capacitors for Cs will be respectively placed on the
C-entries, marked in yellow, of both subarrays. Similarly, for p = 4, let (ri, si), i = 1,2,3,4
be the locations of the two unit capacitors of Cs on the 2R-by-2C array. By Eq. (17), we
obtain

ω4 = 2R+C−2Scs − [ f (r1, s1) + f (r2, s2) + f (r3, s3) + f (r4, s4)]. (19)

Figure 7(b) shows that an 8-by-8 array is partitioned into four 4-by-4 subarrays. The
C-entries are colored in yellow.

Note that the partitioned subarrays are either the square or rectangular shapes.
With the C-entries, the placements meet the rules of compactness, symmetry, and
dispersion. If the C-entries near the center are chosen, the placements will meet the
rule of coincidence.

Placing two unit capacitors on two subarrays, each having four entries, will result
in 16 combinations, referred to as candidate placements. This has demonstrated that
the searching space for optimal placements is significantly reduced from the number
of 2-out-of-64, C(64,2) = 2016, to C(4,1)∗2 = 16, for the 8-by-8 array. In fact, due to the
symmetry of the array, the 16 candidate placements can be categorized into only six
distinct placements, as shown in Figure 8, where the p = 2 unit capacitors are placed
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Fig. 7. 8-by-8 array.

Fig. 8. 8-by-8 array with p = 2.

on the locations marked in green. By the rules of common centroid, symmetry, and
dispersion, the placements in Figures 8(a)–8(c) will never be the optimal placements.

By Eq. (18), we can easily find that the placements in Figures 8(a) and 8(d) have the
same value of [ f (r1, s1) + f (r2, s2)]. However, the placement in Figure 8(d) has lower
Scs than that in Figure 8(a) thus resulting in lower ω2. Similarly, for the pairs of the
placements in Figures 8(b) and 8(e) and those in Figures 8(c) and 8(f), the placement
in Figure 8(e) (Figure 8(f)) has lower ω2 than that in Figure 8(b) (Figure 8(c)). In
addition, lower Scs is also caused by placing the two unit capacitors on the locations
with larger distance. The placements in Figures 8(d)–8(f) meet the rules of dispersion
and symmetry of common centroid.

Figure 9(a) shows the curve family for all possible placements. The optimal placement
is the one in Figure 8(f). Figure 9(b) compares the variances of ratio for the placements
with the patterns in Figures 8(d)–8(f). Results show that the one in Figure 8(d) is the
optimal solution for ρ0 = 0 to 0.5, while the one in Figure 8(e) is the optimal solutions for
ρ0 > 0.8. Thus, the candidate placements in Figures 8(d)–8(f) are optimal/near-optimal
solutions depending upon the values of ρ0.

Similarly, Figure 10(a) shows a 4-by-4 array which is partitioned into four subarrays.
Figure 10(b) illustrates a candidate placement. Figure 10(c) plots the variances of ratio
with ρ0 = 0 to 1 for all possible placements for placing p = 4 to this 4-by-4 array.
Results show that the candidate placement in Figure 10(b) is the optimal solution.
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Fig. 9. 8-by-8 array with p = 2.

Fig. 10. 4-by-4 array with p = 4.

5. CONCLUSION

The yield is defined as the probability that the circuit under consideration meets with
the design specification within the tolerance. In practice, however, a circuit generally
includes several design variables which are treated as random variables when taking
the process variation into consideration. Thus, the variance of the random variables
may affect the circuit yield.

The placement with higher correlation coefficients has fewer mismatches and lower
variation of capacitor ratio, thus achieving higher yield performance. This study
presents a new optimization criterion which can significantly reduce the searching
space for finding the optimal/near-optimal solutions for a sufficiently large array size.
It should be mentioned that routability of the resulting array is also an important issue
to be addressed. A simple routing scheme has been proposed in Huang et al. [2011];
however, systematically considering both placement and routing of the capacitor array
is being developed for further yield enhancement.

The concept of C-entries of the partitioned subarrays plays an important role for au-
tomatically generating the optimal/near-optimal common-centroid capacitor placement
on a reasonably large array. The concept of the C-entries and partitioned subarrays
significantly reduces the searching space for the optimal solutions. Even though the
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preceding discussions place the emphasis on the 2R-by-2C array, the concept of C-entries
can be applied for any array size. A simple yet effective automatic placement gener-
ation process is being developed [Huang to appear], where partitioning and merging
schemes are being implemented to meet the rules of coincidence, dispersion, symmetry,
and compactness.
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