
2646 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

A Unified Unicast and Multicast Routing and
Forwarding Algorithm for Software-Defined

Datacenter Networks
Wen-Kang Jia, Member, IEEE, and Li-Chun Wang, Fellow, IEEE

Abstract—In this article, we consider a scalability problem
associated with software-defined datacenter, of which the uni-
cast/multicast routing states is proven to be NP-complete. We
introduce an efficient multiple membership query algorithm,
called Scalar-pair Vectors Routing and Forwarding (SVRF),
based on the prime theory such as Chinese Remainder Theorem
(CRT). Our proposed algorithm simply calculates corresponding
output ports of each multicast group by dividing a common
scalar-pair with a group-specific key, within pseudo-polynomial
time. The result is then used to make a forwarding decision
within few cycles through a hardware accelerator. Compared to
Bloom filter, our algorithm can achieve remarkable performance
in terms of memory consumption, processing time, hardware cost,
and 100% delivery accuracy, while applying for a large number
of large-scale distinct flows (including unicast and multicast) in
a large-scale datacenter networks. Our work may be applied to
various research areas of computer science and networking.

Index Terms—Multicast, Routing and Forwarding, Chinese
Remainder Theorem (CRT), Bloom Filter (BF), Software Defined
Networks (SDNs), Datacenter Networks.

I. INTRODUCTION

MULTICAST is becoming increasingly important due to
the huge bandwidth consumption of various network-

based applications. These include multiparty conferencing,
Internet collaborative works, software updates, and distributed
storage replication, to name a few [1], [2]. Multicasting is a
fundamental communications type, in which a data packet is
sent from a source, replicated at the intermediate switches
or routers, then forwarded to multiple outgoing links and
eventually delivered to all destinations of the multicast group,
and without unnecessarily sending that data packet to hosts
hosts which do not belong to the multicast group. That means
multicast traffic must be controlled in some fashion at both a
network layer-2 and layer-3 .

Many datacenter administrators are beginning to accept the
benefits of enabling multicasting among those hosts running
multicast applications. This leads to paybacks in the aspects of
bandwidth savings, better productivity and improved operating
performance. The aforementioned applications require either

Manuscript received December 15, 2012; revised April 8, 2013. This work
was sponsored by the National Science Council of Republic of China under
Grant No. NSC 99-2221-E-009-026-MY3.

W.-K. Jia is with the Department of Electrical Engineering, National Chiao
Tung University, Hsinchu, Taiwan (e-mail: wkchia@cs.nctu.edu.tw).

L.-C. Wang is with the Department of Electrical Engineering, National
Chiao Tung University, Hsinchu, Taiwan (e-mail: lichun@cc.nctu.edu.tw).
Corresponding author.

Digital Object Identifier 10.1109/JSAC.2013.131206.

layer-2 multicast support for discovering neighbors/services
within a domain or layer-3 multicast support for operating
across multiple subnets. As a result, cloud datacenter service
providers are turning to the technology that creates ‘multicast-
enabled networks’ across their datacenter in order to reducing
communication costs and improving network performance as
well as supporting efficient group management of clients and
servers [3].

However, today’s IP multicast still suffers from a scalability
problem when the number of groups is large. Indeed, a
multicast core router should keep all forwarding and routing
information in the layer-2 and layer-3, respectively [4], for
each multicast delivery tree traversing it. For a multicast edge
switch, it must provide the extra functionality necessary for
managing the connection status of each participate based on
their membership in a certain group, during multicast sessions
[5]. The disadvantage of multicast is that it excessively con-
sumes system resources, such as memory space and processor
speed. Furthermore, today’s multicast also bears a notorious
reputation for the deploying obstacles and many open prob-
lems such as QoS [6]. However, since system resources are
limited, we must strive to maximize their utilization. In order
to overcome the scalability problems in terms of number of
multicast groups, quite a few multicast forwarding/routing
algorithms have been proposed in the past two decades. The
majority of these propositions tried to reduce the multicast
states by using Bloom filter (BF) [7], which has indeed
attracted much attention in the research community of both
the computer algorithm and networking recently.

We discuss a new approach, called Scalar-pair and Vectors
Routing and Forwarding (SVRF) in this article. SVRF uses
an efficient way to construct and query group memberships
based on the prime theory such as Chinese Remainder The-
orem (CRT) [8]. Proposed scheme encodes the entire group
addresses that traverse along the router/switch to a scalar-
pair. A SDN control plane is introduced to inform each
SDN switch regarding its scalar-pair, which is used for uni-
cast/multicast packets delivery to determine the corresponding
outgoing port(s) (a.k.a. vector) of each flow in the SDN
routers/switches.

The remainder of this paper is organized as follows. In
Section II, we present related works and discuss their issues.
In Section III, we describe our proposed scheme and dis-
cuss some implementation issues. In Section IV, we evaluate
the performance of our proposed scheme in terms of space

0733-8716/13/$31.00 c© 2013 IEEE

JIA and WANG: A UNIFIED UNICAST AND MULTICAST ROUTING AND FORWARDING ALGORITHM FOR SOFTWARE-DEFINED ... 2647

efficiency, time efficiency, and hardware cost. Section V
concludes the work.

II. RELATED WORK AND PROBLEM STATEMENT

In this section we address the major issues of multicast
routing/ forwarding algorithms previously proposed which are
used by the software-defined datacenter networks, and evaluate
them according to several criteria, especially for scalability, as
follows.

A. Deploying Multicast in the Software-Defined Datacenter
Networks

A datacenter includes a set of facilities such as com-
puter systems, network equipments and software applications.
Besides, applications are composed with both compute and
network resources. And for the last decade, computers and
networks is a symbiotic relationship lacking any symmetry.
Datacenters must now meet a number of service requirements
and overcome several design obstacles in order to truly achieve
business goals such as scalability. Evolutionary changes have
occurred throughout various entities such as switch, router,
server and storage of the datacenter. These entities are in-
terconnected using a specific datacenter networking structure,
which represents a significant portion of the total datacenter
cost. Arguably, this ongoing evolution of datacenter networks
has brought symmetry to the symbiotic relationship of com-
puter and network.

Generally, datacenter networks are organized in one of two
ways: layer-3 and layer-2. Traditional datacenter networks use
layer-3 routing techniques (as known as IP networking) to
interconnect a large amount of links that appear to IP hosts
to be a single IP subnet such as Fat-Tree (FT) [9], RON
[10], and PPVPN [11]. Datacenter networks based on layer-
3 technologies provide many advantages, such as scalability
and reliability. However, recently many critical issues arise
when new features are adopted in the datacenter networks. For
example, server virtualization technologies can be automati-
cally and dynamically migrated between instances (servers),
which may lead to significant management overhead in layer-
3 datacenter networks. In order to support the requirements
of server virtualization, network virtualization technologies
can logically separate a single physical network into multiple
logical networks, or consolidate multiple physical networks
into a logical network, thereby simplifying the management
of datacenter networks. However, traditional layer-3 network
technologies are also difficult to meet all the requirements
[12].

Therefore, modern datacenter network architectures typi-
cally provide layer-2 forwarding techniques (as known as
Ethernet bridging) instead of layer-3 routing (e.g., DCell [13],
VL2 [14], PortLand [15], BCube [16], and Flyways [17]).
As a result, these approaches benefit from high throughput,
high availability and lower management overhead, but suffer
from lack of scalability and device portability. For example,
to support virtual machine migration, a layer-2 environment
is preferred but layer-2 technologies lack scalability. Thus,
the first challenge is to achieve scalability with layer-3 tech-
nologies in a layer-2 environment. The other challenge of

layer-2 datacenter networks is the utilization of physical links.
Sufficient bandwidth may be provided in physical connection
in the form of multiple links, but the spanning tree protocol
which is designed to prevent forwarding loops in layer-2
allows only one link at a time. In other words, there is a
single path bandwidth from one server to another. A multipath
technology is required for the utilization of multiple links on
the physical layer. Thus, it is difficult to design a datacenter
that simultaneously achieves the objectives of scalability, VM
migration, high throughput, and multipath feature.

Because current network equipments employ traditional
design thinking, however, eventually it suffers from the afore-
mentioned limitations, so it does not offer enough flexibility
to satisfied that all unexpected service-level requirements for
modern datacenters. For instance, in a traditional layer-3 router
or layer-2 switch used by datacenter networks, the packet
forwarding (data plane) and the high level routing decisions
(control plane) occur on the same device, this plain structure
is actually leading to inefficiency and inflexibility. For this
reason, Software Defined Networking (SDN) is introduced as
an emerging architecture and service model, which has the
potential to provide scalability and flexibility to datacenter
networks for reallocating network resources. SDN separates
the control plane from the data plane in network switches.
The data path portion (e.g., switch fabric) still resides on the
switch, while high-level routing decisions are moved to a sep-
arate controller, typically a host. The OpenFlow [18] protocol
is rapidly becoming the dominant SDN control protocol for
an SDN controller to communicate with SDN switches. Since
SDN allows a network operator to easily deploy innovative
routing and forwarding protocols in a closed network, SDN
is currently being implemented by major vendors, and has
become an open standard that enables network operators to
deploy existing and experimental protocols in the datacen-
ter networks. The data path of an SDN switch presents a
forwarding rule of flow table and actions. Each flow table
entry contains a set of packet fields to match; while actions
make decisions such as calculating outgoing port(s), dropping
packets, and modifying fields. When an SDN switch receives
a packet never seen before, and no matching flow entry can
be found, then it sends this packet to the SDN controller.
The controller should make a decision on how to handle this
packet, and it can add a flow entry to the SDN switch so that
the switch is able to know how to handle the packets which
belong to the same flows in the future.

On the other side, the mainstream multicast routing proto-
cols like MOSPF [19], PIM [20], DVMRP [21], and CBT [22],
require maintenance of routing states by using a Multicast
Routing Table (MRT). A Multicast Forwarding Table (MRT)
consists of a set of Multicast Forwarding Entries (MFEs) is
directly used to control the forwarding of multicast packets in
the on-tree switches/routers. The multicast algorithms require
significant amount of memory space for maintaining the MFT
and high process time for executing the routing and forwarding
decisions. Therefore the memory in a router may fill up
quickly when a large number of multicast groups appear. It is
expected that the bottleneck in the future networks would be
the multicast-enabled routing nodes. On the other hand, once
there are many small group multicasts with highly scattered

2648 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

receivers, each router may consume massive resources to keep
those multicast group states; hence the expected number of
groups may be limited. This problem means the traditional
multicast routing protocol notorious is highly unscalable. In
addition, the traditional multicast technologies are unable to
provide mechanisms for either detecting end-to-end reachabil-
ity and network topology or monitoring the traffic. Indeed, the
source does not even know where the destinations are. As a
result, reliable multicasting has never been realized.

Since a modern software-defined datacenter network is
radically different from typical enterprise, campus, telecom
networks, and the Internet particularly. However, existing
multicast protocols built into datacenter switches/hosts are
primarily based on the multicast design for the Internet.
Before the wide application of multicasting in datacenter
networks, it is necessary to carefully explore whether these
Internet-oriented multicast technologies can well effectively
accommodate datacenter networks. At the same time, facing
the limit of the commercial deployment for Internet-scale
multicasting, the closed and well-managed datacenters can
also provide a challenging opportunity for pioneered multicast
deployment. The software-defined datacenter networks pro-
vide a good opportunity for medium-scale (relative to Internet-
scale) multicast deployment. However, to date there has been
little research into this area. Hence, we find the technical trend
of software-defined datacenter multicasting design is facing
new challenges to achieve the goals.

B. Bloom filter based Multicast and its Limitations

The Bloom filters have been widely used in many network
functions especially in unicast/multicast forwarding/routing
decision [23]–[25], flow identification [26], packet classifica-
tion [27], etc. The Bloom filter [7] is a time-efficient algorithm
with space-efficient data structure used to represent whether
an element n is a member of a set S. The filter is constituted
by an m-bit vector that encodes the membership of n-elements
in a set S. For each element n ∈ S, the bits hi...k(n)
are set to 1s by k independent hash functions in the bit
vector at random locations. To query whether an element
n ∈ S, we check whether all the specific bits hi...k(n) in this
bit vector are set to 1s. In a hardware implementation, the
Bloom filter performs significantly better because its k hash
functions can be parallelized. Thus the time complexity of
Bloom filters is claimed to be roughly O(k) (a constant time
completely independent of the number of elements contained
inside the set). However, Bloom filter may mistakenly claim a
nonmember to be a member due to its probabilistic property.
That’s to say, Bloom filter allows a small probability error
of a false positive while gaining considerable memory space
savings. For many applications, this is acceptable as long as
the false positive rate is sufficiently small.

The performance of Bloom filter and its many variants is
evaluated by three fundamental criteria: 1) space complexity,
2) time complexity, and 3) false positive probability. The
Bloom filter allows many more bits to be set while still main-
taining a low false positive probability if the parameters are
perfectly chosen. Suppose we are given number of elements n
and memory space m, and we wish to optimize the number of

hash functions k and bits per entry m/n, and to minimize the
false positive probability P of Bloom filter. The optimization
problem can be formulated as:

argmin{
m/n,k∈N

} Pfp (BF(m,n, k))

,where Pfp (BF(m,n, k)) =

(
1− (1− 1

m
)kn
)k

, and k < m,

(1)

note that Pfp (BF(m,n, k)) →
(
1− e−

kn
m

)k
as m → ∞.

The optimal number of the hash functions k will approximate
to (ln 2× m

n).
Unfortunately, Bloom Filter based multicast forwarding and

routing engines have many limitations, including [28]:
First, the costs may be surprising high in product design.

Compared with unicast, it is almost impossible to aggregate
MFEs due to the multicast addresses are just logical identifiers
without topological implication, thus the unicast prefix match-
ing cannot be directly extended to multicasting. Moreover,
each MFE maintains an outgoing interface set rather than
a single outgoing interface, so it is a further less probable
for different MFEs holding a common forwarding rule [29].
Bloom filters can be implemented in hardware but they are
expensive. The criterion to deploy the hardware Bloom filters
is that their amount shall be equal to the number of logical
interfaces of a switch or a router [29], [30]. In order to deliver
the advanced switching capabilities and density, today’s L3
switches may consist of several hundreds of LAN ports,
thereby the total cost of hardware Bloom filter in a single
switch is considerable high. On the other hand, high memory
consumption (bits per entry) can be resulted from the false
positive ratio being set too low, because most of the allocated
space for storing postings will be empty. Typically, Bloom
filters should reside in a fast memory system such as SRAM.
Therefore the cost-effectiveness of Bloom filters is further
decreased.

Second, the accuracy problems are inherent in any BF
applications. For the unicast routing, a multiple hit situation
from the false positive has thereby confounded the forwarding
engines. This situation may be tolerable, but it could incur an
extra processing cost on the BF’s control logics. In case of
multicast routing, BF is an efficient algorithm to compress
the MFEs. However, the traffic leakage may occur when the
false positive has occurred. Although the multicast delivery
ratios still remain the same, it may be a security calamity for
security-sensitive applications such as in a military network.

Third, existing BF solutions do not have sufficient flexibil-
ity. The BFs just determine whether an element is in a set;
it does not return a value associated with an element. We
can imagine how useful if BFs would be return an outgoing
interface list for multicast routing decision. One scheme that
uses BFs to return a (small) set of values is outlined in
[31]. However, this technique does not allow state changes.
Therefore, the usage flexibility of BF is constrained.

Finally, the maintenance of BF is also costly. The BFs allow
easy insertion but not deletion. Deletions in a BF is handled
by using a counting Bloom filter, which keeps a counter

JIA and WANG: A UNIFIED UNICAST AND MULTICAST ROUTING AND FORWARDING ALGORITHM FOR SOFTWARE-DEFINED ... 2649

Reminder

Control Logic

Mcrt

Divider_1
Eq. (10)

M4

Membership
Function

Di
vi
so
r

Software
Hardware
Memory
Incoming Packets
Outgoing Packets

Z? N

Y

ki

bi (Reminder)

Add(ai,bi) Remove(ai)

Prime
Generator
Eq. (2)

M3 M2
P1 P2

P3M3

Mcd

ai

P4

U1

M2

…

…

…

…

MUX

Address
Classifier

Unicast/Multicast

SDN Controller

Drop

Flow Table

O
PBO
PI

Divider_2
Eq. (10)

SDN Agent

ai ki
61.2.30.12 29
224.25.1.10 17
224.43.130.5 19
225.1.1.251 23

U1
M2
M3
M4
M5 ki

29
17
19
23

bi
1(d)=0001(b)
3(d)=011(b)
7(d)=111(b)
6(d)=110(b)

11,920 mod =

11,920

215,441

SDN Protocol

Ca
ch
e

Ca
ch
e Dividend

ki
29
17
19
23

215,441 mod

Forwarding
Engine

Dividend

MUX

bi (Reminder)^

Normalizer
Eq. (11)

224.58.5.23 13

= 0
= 0
= 0
= 0
= 0

13 = 0

1(d)=0001(b)
6(d)=0110(b)
14(d)=1110(b)
10(d)=1010(b)

^bi

bi

U1
M2 M4

M3M4

M3

…

…

…

M5

i

Fig. 1. Block diagram of SVRF operating in a SDN switch.

instead of a single bit at each hash location [32]. Counters are
incremented in an insertion and decremented in a deletion.
Unfortunately, using counters increases the memory size of
the BF; it implies that the hardware cost of counting Bloom
filter will be also increased.

Bloom filter has experienced various enhancements such
as Counting Bloom filters (CBF) [32], Compressed Bloom
filters [33], Generalized bloom filters (GBF) [34], Group-
Hierarchical Bloom filter array [35], Space-Code Bloom filters
[36], Spectral Bloom filters (SBF) [37], Dynamic Bloom
filters (DBF) [38], Multi-Dimension Dynamic Bloom filters
[39], Distance-Sensitive bloom filters (DSBF) [40], Paral-
lel Bloom filters (PBF) [41], Load Balanced Bloom filters
[42], Combinatorial Bloom filters [43], Incremental Bloom
filters (IBF) [44], Variable-Increment Counting Bloom filters
(VICBF) [45], and Bloomier filter [31]. Other details can be
referred to the survey of Bloom filters [29]. The emerging
Bloom Filter technologies and their services are nowadays still
in development.

III. SYSTEM FRAMEWORK

We propose a novel multicast forwarding/routing algorithm
to deal with various existing issues regarding multicast packet
forwarding in today’s software-defined datacenter networks.
Throughout the proposed scheme, the considered datacenter
networks are characterized entirely by SDN controller and
switches, and the scheme will be useless for those networks
with any non-SDN switches. Our goals are to improve the
scalability and efficiency of multicast forwarding, and provide
higher flexibility in the deployment of new multicast services
in future software defined networks.

A. Preliminaries
There are three key elements for the proposed arithmetic:

1) node-specific scalar-pair (Mcp, Mcrt), which are stored at

each switch’s internal memory such as flow table; 2) node-
assigned group(flow)-specific key (a.k.a. identifier), which are
transformed from each destination IP address; 3) node-specific
vectors (a.k.a. Output Port Bitmap (OPB) or Output Port
Index (OPI)) at each switch. Based on the properties of the
prime number theorem such as CRT, a scalar-pair divided by
different keys will remain as different vectors (OPBs/OPIs)
as a remainder. We use this property to represent the exact
membership query mechanism in the SDN forwarding engines.

As shown in Fig.1, an SDN controller instructs the SDN
switch regarding what actions they should take using the SDN
protocol such as Openflow. The switch supports both SDN-
enabled flow forwarding and the proposed scheme. Initially,
SDN controller discovers the network topology using the Link
Layer Discovery Protocol (LLDP) [46]. If a unicast path or a
multicast delivery tree is originated from the SDN controller,
two scalars will be constructed and delivered to the flow
table of the SDN switch. As the name implies, the scalar-pair
contains entire forwarding information (a.k.a. vectors) for all
unicast and multicast flows which traversed the switch. When
a packet arrives at the SDN switch, the destination address
fields are extracted and mapped (or hashed) to a unique key,
which is then processed by the proposed arithmetic (or by
implementing a hardware accelerator). Then the packet is
either forwarded to the designated outgoing port(s) or dropped,
depending on the result of the proposed arithmetic with the
given input key and scalar-pair. Details of these operations are
described in the following subsections.

B. Constructing Scalar-pair

Before sending the packets over the SDN data plane, the
underlying routing protocol will determine optimal ene-to-end
routing information along the unicast path or multicast tree
by SDN controller. A forwarding entry can be represented by

2650 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

the pair (ai, bi) that indexes the i-th entry, where ai denotes
the routing identifier such as a destination IP address or a
(S,G) entry [47], and bi denotes its corresponding output port
bitmap(s) (a.k.a. vector(s)). We can rewrite the whole forward-
ing table entries in simplify form A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn} respectively, where A can be seemed
as a MFT which contains all the unicast and multicast flow
identifier. We consider that a finite set A contains n elements.
Let K = {k1, k2, . . . , kn} denotes a new key set comprising
corresponding ai-th prime numbers. A transfer function is
defined as

K =
{P(ai)

∣∣∣ ∀i ≤ n, and ai ∈ A
}
, (2)

where P(ai) denotes an assumed perfect prime-generating
function that will return an unique prime number in the
designated range of primes, where ai ∈ A and ki ∈ K ⊂ P,
which ki must be larger than a given integer 2ρ (OPB/OPI
size), and pair-wise co-prime with each other kj , and where ρ
denote the number of ports of switch. Thus the unique prime
number ki associated with each element ai provides a single
unified numbering system for proposed scheme, regardless of
their order.

To ensure that each group (flow) obtains a unique key,
and all the keys in the switch are pairwise relative primes,
either 1) sequentially (continuously) or 2) randomly manners
might be adopted: In sequential approach, when the multicast
group is configured, each multicast group can be pre-assigned
a unique key value from the shorter prime number in numeric
order by using a predefined primes library that satisfies the
requirements as previously described. Since the keys are the
smaller the better in the proposed arithmetic, the table-lookup
manner trades time for space in our proposed arithmetic.
However, it is costly both in extra space of table, thus using
hashing may be a better choice. In random approach, each
multicast group obtains an arbitrarily prime number such as
the ai-th prime number by using a hash function. Hashing
does not need a table to mirror the mapping information
between ai and ki. We assume that a perfect hash function
maps distinct addresses to a set of keys (primes) with no
collisions. Note that for each multicast group (flow) in specific
SDN switch, the group-specific key differs from each other.
For each switch, the node-specific scalar-pair is shared for
different unicast and multicast flows, and a specific OPB/OPI
for each flow is extracted from its corresponding key.

There are two types of bi in the system, if ai ∈ U, the bi
denotes an OPI. if ai ∈ M, the bi denotes an OPB, where U

and M denote unicast and multicast address pool respectively.
From the multicast’s perspective, it is undesirable a multicast
packet to be copied back to the incoming port of an on-tree
switch. In addition, smaller OPBs are better in the proposed
scheme. Thus, an artificial OPB bi is transformed by real OPB
b̂i, which is obtained from a normalization operation by

bi � b̂i =

(
b̂i ∧ (2εi+1 − 1)

2

)
+
(
b̂i ∧ (2εi − 1)

)
, (3)

where εi denotes the incoming port index on switch of
multicast group i, which will exclude of bi, so we ensure
that |bi| ≤

∣∣∣b̂i∣∣∣.

Then, a new scalar Mcp is defined as a ‘continued product’
of all n elements in the set K:

Mcp =

n∏
i=1

(ki), where ki ∈ K, (4)

Using Mcp and set K, we can create a new set M =
{m1,m2, . . . ,mn} so that mi(mod bi)=0 for all mi, which
is satisfied in the following equation

M =
{Mcp

k1

∣∣∣ ∀i ≤ n, and ki ∈ K
}
, (5)

and another new set C = {c1, c2, . . . , cn} is created by

C =
{
mi ×

(
m−1

i (mod ki)
) ∣∣∣ ∀i ≤ n, and mi ∈ M

}
, (6)

The term m−1
i denotes the multiplicative inverse of

mi mod ki defined by m−1
i mi(mod ki)=1. This requires that

mi and ni should have no common divisors larger than 1, i.e.
gcd(mi, ki) = 1. Because mi is the product of all n-elements
minus ki, all the n-elements should be relative primes to
satisfy the requirement. The second scalar Mcrt can be easily
calculated using sets B and C

Mcrt =

(
n∑

i=1

(bi × ci)

)
(mod Mcp). (7)

The value of Mcrt is the minimum positive integer which
satisfies the aforementioned definition, then it can be eas-
ily shown that maximum negative integer solution ¬Mcrt

obtained by Mcrt-Mcp. In practice, the maximum negative
integer solution may reduce the store size of Mcrt slightly.

Now, we have the scalar-pair (Mcp, Mcrt). Based on the
properties of the prime theorem, a Mcd divided by different
keys will remain as zero or nonzero, which can be used to
answer inquiries regarding whether one element ki (associated
to ai) belongs to a set K (associated to set A). Based on the
properties of the CRT, a Mcrt divided by different keys will
remain as different OPBs/OPIs as a remainder, that’s to say

Mcp ≡

⎧⎪⎪⎨⎪⎪⎩
0 (mod k1)
0 (mod k2)

· · ·
0 (mod kn)

⎫⎪⎪⎬⎪⎪⎭ , (8)

and

Mcrt ≡

⎧⎪⎪⎨⎪⎪⎩
b1 (mod k1)
b2 (mod k2)

· · ·
bn (mod kn)

⎫⎪⎪⎬⎪⎪⎭ . (9)

We use this property to represent the entire unicast and
multicast flows and their vectors (bi) for a switch. In SDN
architecture, the scalar-pair is calculated by the controller, it
then sends the scalar-pair to the switch to be added to flow
tables, via SDN control protocol.

C. Querying Group Membership

Each incoming packet is in-need duplicated and forwarded
to egress interface(s) indicated by the remainder bi at each

JIA and WANG: A UNIFIED UNICAST AND MULTICAST ROUTING AND FORWARDING ALGORITHM FOR SOFTWARE-DEFINED ... 2651

switch i, which is constructed by using a simple modulo
operation: Let the scalars (Mcp, Mcrt) be the dividends and
node-specific key ki be the divisor. Through two long integer
dividers, the desired OPB/OPI bi for each multicast group i
is obtained by

bi =

{
Mcrt(mod ki) , if Mcp(mod ki) = 0

0 , if Mcp(mod ki) �= 0
. (10)

If the first remainder which obtained through dividing Mcp by
ki that is zero, the second remainder bi is obtained by dividing
Mcrt from ki. Else if the remainder of Mcp(mod ki) that is
nonzero, and bi = 0 means the packet is being dropped. Note
that the procedure does not distinguish between unicast and
multicast.

Before packets get forwarded towards their next-hops, note
that bi ∈ M has been normalized by disregarding incoming
port εi, and each switch restores the correct b̂i by using

bi � b̂i =((bi + 1) ∧ (2εi − 1))

+ 2× [(bi + 1)⊕ ((bi + 1) ∧ (2εi − 1))] ,
(11)

through OPB b̂i is converted to a Boolean, and forwarding
this packet to designated outgoing port(s). Hence, it can be
observed that by having Mcp and the set K, each element of
the set B can be restored by linear congruence Eq.(9) and a
unique solution can be derived on the model.

That is to say, when the packets traverse a specific switch
and router, the different destination addresses from the IP
headers will be transferred to the unique keys, and so different
outgoing port index and bitmap will be obtained from resolv-
ing unitary (Mcp, Mcrt) values with different keys. Therefore,
a unitary scalar-pair with multiple different keys is sufficient
to distinguish different OPB from another with no conflict, and
theoretically there can hold more multicast forwarding entries
in the limited memory space. In addition, the order of pair
(ki, bi) is irrelevant in the data structure. A detailed proof of
the CRT algorithm can be found in [8].

D. Maintenancing Group Membership

From the perspective of multicast switches, a grafting
operation may be triggered by the joining operation of a new
member (leaf) from outside the current multicast distribution
tree, while the multicast session is in progress. In contrast,
pruning is the process to terminate connections that are no
longer active in a multicast tree. A pruning operation may
be triggered by all the participating member(s) that leaved
the multicast distribution tree, thus data packets of multicast
session are no longer replicated for that sub-tree (interface).

When a multicast group’s membership changes, all MFEs
associated with the particular SDN switches must be recalcu-
lated. Group membership maintenance function will be used
so as to insert/delete an entry to/from the MFT, or modify
an existing entry inside the MFT. The function is provided
to the forwarding engines by an interface that consists of the
following basic operations: 1) Add(A, ai, bi) is a process to
add an element ai to a group A. 2) Remove(A, ai) is a process
to remove the member ai from the membership of group
A. 3) Modify(A, ai, bi) is a combined process to change a

participating member ai with new corresponding OPB/OPI bi
from the membership of A.

Once a new multicast group ai joins to the switch, the
Add(A, ai, bi) operation should be performed by the SDN
controller. Given the new key kn+1 and the corresponding
OPB and bn+1 of an+1 respectively, we recalculates the new
M′

cp by
M′

cp = Mcp × kn+1. (12)

Then the new M′
crt can be obtained by

M′
crt = χ−

{
Mcp(γ − bn+1) , if γ ≥ bn+1

Mcp(kn+1 + γ − bn+1) , otherwise

,where χ = M′
cp −Mcp +Mcrt

, and γ = χ (mod kn+1)

,

(13)
thus the new set K′= K + {kn+1}, and new set
B′= B + {bn+1}, which represent the new set
A′={a1, a2, . . . , an, an+1}. We find that Eq.(10) adding
(kn+1, bn+1) is still satisfied Eq.(9). These operations implied
in original Mcrt and Mcrt are replaced by newer ones.

In contrast, once all the outgoing interfaces of group ai in
the switch are pruned, the Remove(A, ai) will be performed,
the SDN controller will recalculates new M′

cp by given prime
key ki. Simple calculations show

M′
cp =

Mcp

ki
, (14)

the quotient is the new M′
cp which replaced the original Mcp,

then we have
M′

crt =
Mcrt

M′
cp
. (15)

Thus that ki no longer belongs to K and M′
crt(mod ki),

it implies that ai /∈ A. Without loss of generality, our
proposed fast Remove(A, ai) arithmetic provides much lower
complexity compared to these equations provided by previous
subsection.

E. Operational Examples

In this subsection, we give examples demonstrating that
the unicast/multicast packets forwarding by proposed scheme
through 4-port SDN switches is described in Fig.1. Before
packets (flows) {U1, M1, M2, M3} traverse the switch,
the functions of routing of SDN controller are performed
from the underlying unicast/multicast protocol. When multiple
unicast path and multicast delivery tree are established using
its associated addresses, a MFT contains entire flows can be
represent in a scalar-pair (Mcp, Mcrt), that has been generated
by the SDN controller and then delivered to the flow table of
the SDN switch beforehand.

In the case of unicast forwarding, when a unicast packet
U1 arrive at the inbound interface P2 of the switch, the
forwarding engine firstly extracts the destination address a1
of the incoming packet and retrieves the corresponding key
k1=29 from the proposed Eq.(2). Based on the proposed
arithmetic as described in previous subsection, the forwarding
engine obtains the output port index b1=1(d)=0001(b) by
performing the 215, 441(mod 13) = 0 and 119, 20(mod 29)
operation (detailed as in Eq.(10), then through the internal

2652 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

forwarding fabric of the switch, the U1 is duplicated and
finally to the proper egress interface P1.

In the case of multicast forwarding. When a multicast packet
M2 arrive at the inbound interface P1 of the switch, the
forwarding engine firstly extracts the destination address a2
of the incoming packet and retrieves the corresponding key
k2=17. Then the forwarding engine obtains b2=3(d)=011(b) by
performing the 215, 441(mod 13) = 0 and 119, 20(mod 17)
operation, through the normalization (detailed as in Eq.(11)),
we obtain the correct output port bitmap b̂2=6(d)=0110(b),
and the M2 is finally duplicated and dispatched to the proper
egress interfaces {P2, P3}.

Then the switch receives the multicast packet M4 through
P3, obtains the k4=23 and b4=6(d)=110(b) by performing the
119, 20(mod 23) operation, and forwards the packet to next-
hop switches via egress interfaces {P2, P4} according to b4 =
10(d) = 1010(b) after normalization.

Then followed a multicast packet M3 which arrived at the
router from the P1, the forwarding engine obtains the k3=19
and b3=7(d)=111(b) by performing the 119, 20(mod 19) oper-
ation. Through normalization, we have b3 = 14(d) = 1110(b),
and forwards the packet to next-hop switches via port P2, P3,
and P4 respectively. Thus this packet has arrived at all desired
egress interfaces.

Once a packet M5 arrives that obtains the k5=13
but does not match any MFT entry by performing the
215, 441(mod 13) �= 0 operation. The switch may have been
configured to simply drop packets for which no flow has been
defined, else sent this packet M5 to the controller, to instruct
it to create a new flow.

IV. COMPARATIVE ANALYSIS

In order to evaluate the performance of the proposed
scheme, we compare its performance with the general Bloom
filter under various conditions. There are three metrics that
should be considered for this evaluation, including 1) space
efficiency; 2) time efficiency; and 3) hardware cost. As far as
accuracy is concerned, the proposed scheme and Bloom filter
are incommensurable, because the membership query results
of our proposed scheme are always exact.

A. Space Efficiency

Unlike Bloom filter, the proposed scheme features several
different properties: 1) The memory usage is progressively
increases until it reaches the target group capacity (limited
number of elements); 2) Based on the aforementioned prin-
ciples, the SVRF does not require random memory access,
and has strictly sequential memory access during the very
long integer division process. Thus we can take advantage of
cost down by implementing the memory hierarchy strategy,
and we can store the scalar-pair into low-cost DRAM and
cache instead of the high-cost SRAM, CAM [48], [49] or
TCAM [50] like that in BFs; 3) Since a switch/router is
sufficiently supported by a single SVRF construction, where
the increasing rate of memory usage is affected by both the
port capacity ρ (maximum number of interfaces in system) and
target membership capacity φ (maximum number of flows in
system), because that the primes become more scarce as they

BP
E
(m

/n
)

2E+9

2E+23

2E+15

2E+11

2E+19

2E+21

2E+13

2E+17

20

25

30

35

40

45

50

=4
=8
=12
=14
=16
=18
=20
=22
=24

Fig. 2. Required BPEs (m
n

) vs. membership capacity φ in ρ-port switches.

grow larger. Hence, ρ and φ that the proposed scheme can
support must be pre-configured.

Regarding the memory space usage m in proposed scheme,
it results in

m = |Mcp|+ |Mcrt| . (16)

The average bit length of Mcp can be derived as

|Mcp| ≈
(∑

ρ<i≤ϕ+1

[(
π(2i)− π(2−1)

)× i
])

≥ |Mcrt| ,
(17)

where π(2ϕ) ≤ (n+ π(2ρ)), and π(x) = x
ln x denotes the

prime-counting function that gives the number of primes less
than or equal to x, for any real number x. Thus the average
bit length of Mcrt (i.e. space complexity) can be expressed
as

|Mcrt| =
(∑γ−1

i=0 (2
i) + (Mcp − 2γ)

)
M′

cp
, (18)

where γ = �log2 Mcp�, which known as the asymptotic law
of distribution of prime numbers.

The first simulation scenario is focused on the Bits Per Entry
(BPE) m

n , and we compare the returns to scale at both port
capacities (typically 4∼24 ports) and membership capacities
(typically 29 ∼ 223 groups) in order to understand the different
growth trend of BPE between the two factors. There are n keys
which > 2ρ are randomly selected from φ-elements predefined
primes library. Fig.2 presents the required BPE of the SVRF
with different parameters being taken into account. The SVRF
costs 20.68∼51.47 bits per entry for an 4-port switch, and
48.19∼52.76 bits per entry for a 24-port switch, both of them
support up to 29 ∼ 223 total groups, respectively.

The increase of required BPEs m
n was accompanied by an

increased membership capacities φ, larger increases of BPEs
were also associated with larger increases of port capacities
ρ. This is because the probability of numbers being prime
decreases by a predictable amount on a gradual slope the
larger number ranges, In other words, the density of primes
continuously decreases as the numbers grow. The results
suggest that the low port density switch/router employing
proposed scheme is more scalabe and efficient than the Bloom
filters.

JIA and WANG: A UNIFIED UNICAST AND MULTICAST ROUTING AND FORWARDING ALGORITHM FOR SOFTWARE-DEFINED ... 2653

BF (P=1E 01,k=3, =4)
BF (P=1E 02,k=7, =4)
BF (P=1E 03,k=10, =4)
BF (P=1E 04,k=13, =4)
BF (P=1E 05,k=17, =4)
BF (P=1E 06,k=20, =4)
BF (P=1E 07,k=23, =4)
BF (P=1E 08,k=27, =4)
SVRF(=4, =2E+9)
SVRF(=4, =2E+13)
SVRF(=4, =2E+16)

2E+4

2E+10

2E+6

2E+14

2E+16

2E+8

2E+12

n
1E+3

1E+5

1E+6

1E+7

nm

1E+4

(a) ρ=4

BF (P=1E 01,k=3, =8)
BF (P=1E 02,k=7, =8)
BF (P=1E 03,k=10, =8)
BF (P=1E 04,k=13, =8)
BF (P=1E 05,k=17, =8)
BF (P=1E 06,k=20, =8)
BF (P=1E 07,k=23, =8)
BF (P=1E 08,k=27, =8)
SVRF(=8, =2E+9)
SVRF(=8, =2E+13)
SVRF(=8, =2E+16)

2E+4

2E+10

2E+6

2E+14

2E+16

2E+8

2E+12

nm
1E+3

1E+5

1E+6

1E+7

1E+4

(b) ρ=8

BF (P=1E 01,k=3, =12)
BF (P=1E 02,k=7, =12)
BF (P=1E 03,k=10, =12)
BF (P=1E 04,k=13, =12)
BF (P=1E 05,k=17, =12)
BF (P=1E 06,k=20, =12)
BF (P=1E 07,k=23, =12)
BF (P=1E 08,k=27, =12)
SVRF(=12, =2E+9)
SVRF(=12, =2E+13)
SVRF(=12, =2E+16)

2E+4

2E+10

2E+6

2E+14

2E+16

2E+8

2E+12

nm
1E+3

1E+5

1E+6

1E+7

1E+4

(c) ρ=12

BF (P=1E 01,k=3, =16)
BF (P=1E 02,k=7, =16)
BF (P=1E 03,k=10, =16)
BF (P=1E 04,k=13, =16)
BF (P=1E 05,k=17, =16)
BF (P=1E 06,k=20, =16)
BF (P=1E 07,k=23, =16)
BF (P=1E 08,k=27, =16)
SVRF(=16, =2E+9)
SVRF(=16, =2E+13)
SVRF(=16, =2E+16)2E+4

2E+10

2E+6

2E+14

2E+16

2E+8

2E+12

nm
1E+3

1E+5

1E+6

1E+7

1E+4

(d) ρ=16

BF (P=1E 01,k=3, =20)
BF (P=1E 02,k=7, =20)
BF (P=1E 03,k=10, =20)
BF (P=1E 04,k=13, =20)
BF (P=1E 05,k=17, =20)
BF (P=1E 06,k=20, =20)
BF (P=1E 07,k=23, =20)
BF (P=1E 08,k=27, =20)
SVRF(=20, =2E+9)
SVRF(=20, =2E+13)
SVRF(=20, =2E+16)2E+4

2E+10

2E+6

2E+14

2E+16

2E+8

2E+12

nm
1E+3

1E+5

1E+6

1E+7

1E+4

(e) ρ=20

BF (P=1E 01,k=3, =24)
BF (P=1E 02,k=7, =24)
BF (P=1E 03,k=10, =24)
BF (P=1E 04,k=13, =24)
BF (P=1E 05,k=17, =24)
BF (P=1E 06,k=20, =24)
BF (P=1E 07,k=23, =24)
BF (P=1E 08,k=27, =24)
SVRF(=24, =2E+9)
SVRF(=24, =2E+13)
SVRF(=24, =2E+16)2E+4

2E+10

2E+6

2E+14

2E+16

2E+8

2E+12

nm
1E+3

1E+5

1E+6

1E+7

1E+4

(f) ρ=24

Fig. 3. Required memory spaces m vs. number of groups n in ρ-port switches.

The second simulation scenario is focused on the memory
occupation m versus number of flows n, and we compare
proposed scheme to BFs with various parameters taken into
account. We instantiate respectively from 23 to 216 flows for
the reference SDN switches. A ρ-port SDN switch based on
BF(P, k, ρ) construction is composed of k hash functions with
false positive ratio P for each, and ρ-ports implies that BF
construct will be duplicated ρ copies themself. We assume
the false positive rate of BF is between 1E − 1 and 1E − 8,
and the optimal number of the hash functions k is always set.
There are n flows from 23 ∼ 216 to be inserted into each
BF construction for each port, where m is the total memory
occupations of each switch. In contrast, a ρ-port SDN switch
based on SVRF(ρ, φ) supports a maximum of ρ ports and φ
flows. Similar to previous results, many flows (MFEs) can lead
to larger scalar-pair in proposed scheme. A longer scalar-pair
causes a larger memory usage, so reduced time effectiveness
of proposed scheme is expected. The simulation results are
depicted in Fig.3(a)∼(f) which display results for different port
capacities from 4 to 24 respectively. We can observe that the

memory occupation of BF(1E-01,3,4) is the only item lower
than the SVRF (in Fig.3(a)), but it seems impossible for any
application to accept such a high false positive probability.
Besides, the memory occupation of the SVRFs are much lower
than BFs in all parameters, by more than several orders of
magnitude. Therefore the MFT of switch is compressed into
much smaller size without any false positive by proposed
scheme.

Although the maximum multicast membership (flow) capac-
ity of practical switches currently rarely exceeds 1,500 groups
(flows) [51], we cannot rule out this possibility that to face
higher membership capacity requirements in the near future.
Compared to Bloom filters, the simulation results indicate that
SVRF offers remarkable performance in scalability of number
of flows in large-scale software-defined networks.

B. Time Efficiency

It’s well-known that the average time complexity of insert-
ing a new element to a standard Bloom filter is the same
O(k), the average time complexity of membership queries

2654 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

1E+0

1E+4

1E+6

1E+7

Pr
oc
es
si
ng

La
te
nc
y
(
s)

1E+2

2E+4

2E+10

2E+6

2E+14

2E+16

2E+8

2E+12

1E+5

1E+3

1E+1

2E+18

2E+20

S/W BF(0.1,3,16)
H/W BF(0.1,3,16)
S/W BF(1E 8,27,16)
H/W BF(1E 8,27,16)
S/W SVRF(=16, =2E+10)
H/W SVRF(=16, =2E+10)
S/W SVRF(=16, =2E+20)
H/W SVRF(=16, =2E+20)

Fig. 4. Packet processing latency vs. membership capacity φ.

for standard Bloom filters is also O(k), where k denotes the
number of hash functions used by it. In hardware based Bloom
filters, The search and insertion run in O(1) time as with the
parallelize hash funcations.

For the proposed scheme, let n be number of MFEs (unicast
and multicast flows) which belonging to set A (MFT). The
time complexity to construct the scalar-pair of SVRF would
be

O (n× logMcp), (19)

note that the Mcp is an intermediate product in constructing
the Mcrt, thus reducing construction time drastically. In this
respect, we still not find a way to go beyond the hardware
based algorithms such as Bloom filters indeed.

Forwarding latency is the most important metrics for evalu-
ate forwarding performance in a SDN switch, which depends
to the time complexity of membership queries of proposed
scheme. As mentioned above, the SVRF is an arithmetic
approach for multicast forwarding algorithm, so a massive
amount of process time will be saved in the SDN switches.
Without loss of generality, the proposed scheme can accom-
plish packet forwarding with very low latency for reasonable
size of n (represented by |Mcp|+|Mcrt|). We would expect
an even lower packet processing latency for proposed scheme
compared to the software based algorithms such as table
lookup. Superficially, we can measure the time complexity of
proposed algorithm is O(1) by the number of operations that
the algorithm executes. However, when the operands are huge
(e.g., 10,000-bit binary string). In such cases, we have to take
into account the size of the operands, and to be aware that
arithmetic operation is not simple. Proposed algorithm may
be inefficient, because the sizes of the operands are ignored.

In the proposed scheme, there are two approaches to accom-
plish this modulo operation: Software (S/W) and Hardware
(H/W) implementations. In software approach, a general-
purpose processor is used in the SDN switch. Normally,
such platforms have only 32-bit or 64-bit Division (DIV)
instruction, thus a modulo operation with long operands is
calculated based on multiple divisions, multiplications, and
proper truncations using a shorter-length instruction set [52].

1E+0

1E+4

1E+6

1E+7

Pr
oc
es
si
ng

La
te
nc
y
(
s)

1E+2

2E+4

2E+10

2E+6

2E+14

2E+8

2E+12
1E+5

1E+3

1E+1

2E+16

n

S/W BF(0.1,3,16)
H/W BF(0.1,3,16)
S/W BF(1E 8,27,16)
H/W BF(1E 8,27,16)
S/W SVRF(=16, =2E+16)
H/W SVRF(=16, =2E+16)
S/W SVRF(=16, =2E+20)
H/W SVRF(=16, =2E+20)

Fig. 5. Packet processing latency vs. number of flows n.

The membership query complexity of SVRF is bounded by

O ((|Mcp| − |ki|+ 1) + (|Mcrt| − |ki|+ 1))

≈ O(2 × (|Mcp| − |ki|)),
(20)

where |Mcrt| denotes the bit-length of Mcp at the current
switch, and |ki| denotes the bit size of key i. We have a
improved algorithm grows like O(nlog2 3) ≈ O(n1.58) with
the digit n, by using n/2-digit instruction [53]. Assuming we
have a 1024-bit Mcp and Mcrt, it need 485 multiplications
(≈7.275μs) to compute the remainder recursively, by using
a 32-bit processer with 15-cycle Multiply (MUL) instruction
(ignoring memory access time).

Regarding the bit length of keys |ki|, each multicast group
(flow) must be assigned a unique key using different approach
in a SDN switch. Since there are one million prime numbers
with 24 bits, which thus can represent the keys for all groups
in φ, and no more than 32 bits for future extension.

In H/W approach, A hardware accelerator for solving very
long integer division or modulo operations, based on either
FPGA or ASIC [54], is used by SVRF-enabled SDN switch.
We have the time complexity for hardware-assisted processing
of proposed scheme is bounded by

O
(∣∣∣∣Mcp

θ

∣∣∣∣× (δ + o)

)
, (21)

where θ denotes the θ-bit integer dividers we used, note
that θ≥|ki|, and δ denotes the number of clock cycles by
these dividers, and o denotes the overhead per division such
as arithmetic shift times. Most SDN switches use store-and-
forward [55] transmission at the input and output of the link,
which introduce a transmission latency between each switches
along the packet’s forward. The packet processing latency
of SDN switch should be shorter than average transmission
and input/output queuing latencies of the packet. Hence, the
processing latency of proposed algorithm would be negligible
(≤ tens of cycles).

In this subsection, we compare packet processing per-
formance of the SVRF with BFs. The simulation scenario
is as follows: We instantiate increasingly from 23 to 220

membership capacity φ for a 16-port SDN switch. The switch

JIA and WANG: A UNIFIED UNICAST AND MULTICAST ROUTING AND FORWARDING ALGORITHM FOR SOFTWARE-DEFINED ... 2655

0.5

5

500

Co
st
(M

Ga
te

co
un

ts
)

2E+9

50

5000

2E+10 2E+11 2E+12 2E+13 2E+14 2E+15 2E+16

BF(P=1E 01,k=3, =4) BF(P=1E 08,k=27, =4)
BF(P=.1,k=3, =24) BF(P=1E 08,k=27, =24)
SVRF(=4) SVRF(=8)
SVRF(=16) SVRF(=24)

Fig. 6. Hardware costs comparison

have φ flows simultaneously active, that’s mean the switch is
in the n=φ condition. Each group randomly select average 8
outgoing ports from the combination of total 16 ports. In S/W-
implementation, we assume that each random memory access
in each switch requires 50ns by DRAM, and the computing
power of each switch to be fixed at a 1GHz 32-bit micropro-
cessor, which supports 15-cycle integer modulo instruction.
Each link has sufficient bandwidth and non-blocking switch
capacity to accommodate the traffic need in the reference
network. In H/W-implementation, we consider that both the
hardware accelerator of BF and SVRF are built using the
commercial 1GHz 32-bit SRAM-based FPGA, which the
datapath between memory and processing unit has a width
of 32 bits. We assume that each built-in SRAM and DRAM
access in the FPGA requires 10ns and 50ns respectively, and
each comparison operation requires 1 cycle.

Fig.4 presents the average packet processing latency expe-
rienced by the reference switch versus the maximum member-
ship capacity φ at steady state in the reference network. We
compare both H/W and S/W-implemented SVRF(16,2E-10)
and SVRF(16,2E-20) to BF(0.1,3,16) and BF(1E-08,27,16)
as described above, which depicts the low-bound and up-
bound of compared schemes. Although the H/W BF(0.1,3,16)
has an advantage over any existing schemes, note that it is
almost useless to the most applications. The curves show that
H/W SVRF(16,2E-10) can offer better performance than H/W
BF(1E-08,27,16) schemes, and the H/W SVRF(16,2E-16) also
offer similar (indeed better) performance than H/W BF(1E-
08,27,16) schemes in the packet processing latency. The curves
also show that S/W SVRF is much efficient than all S/W BF
schemes in the packet processing latency with no more than
29 groups.

Fig.5 presents the average packet processing latency expe-
rienced by the reference switch versus the number of flows
n, where the maximum membership capacity is fixed at 216.
In order to execute a membership query, BF must scan the
whole predefined memory space to compare each bit with the
hash. Hence it costs a constant time to determine the final
results. Due to the memory usage of SVRF is progressively
increases, thus it is not necessary to access full-scale ranges
of memory blocks when only part of the memory is in need
of calculating the scalar-pair. The results fully demonstrate

TABLE I
THE MAJOR COMPONENTS USED FOR COMPARED SCHEMES

Components SVRF BF
DRAM(Cdram) 4 N/A
SRAM(Csram) 6 6
Integer Divider(Cdiv) 10–20K N/A
Hash(Chash1) N/A 1–2K
Prime Hash(Chash2) 5–10K N/A
Multiplex(Cmux) 1K 0.5K

that our scheme is effectively reduces latency in multicast
routing and forwarding of the SDN switches. Indeed, proposed
algorithm have become less efficient of time in ultra-scalable
routing/forwarding engines (i.e., φ(n) > 216). because the
characteristic of prime number. We still not find a way to
go beyond this hurdle, neither Bloom filter and its variants.

The only drawback of the proposed scheme is about its
time efficiency. We expect that a lot of questions will be
raised on the time complexity of our proposed scheme, this
task is also a typical topic for calculating very large numbers
in computational number theory [56]. Nevertheless, based on
Moore’s law, we believe that the performance of ‘very long
integer divider’ such as 8192b/4096b hardware divider would
become feasible eventually, if network industries in need of it.
And it could be deployed to achieve a routing and forwarding
decision in a few clock cycles.

C. Hardware Costs

In this subsection, we estimate the efficiency of proposed
scheme by counting and comparing the hardware costs with
Bloom filter. Table.I summarizes the major components and
their costs (unit: gate counts) required by the compared
schemes. We then describe the cost models that are utilized to
estimate the hardware costs. By Table.I, the total cost function
of Bloom filter can be formulated as

Cbf =

ρ∑
i=1

(
k∑

j=1

(
Chash1

)
+

m(bf)∑
n=1

(
Csram

)
+Cmux

)
.

(22)
The total cost function of the proposed scheme is defined

as

Csvrf =

[m(svrf)∑
i=1

Cdram +
ν∑

i=1

Csram

+Chash2 + 2Cid +Cmux

]
, (23)

where ν denotes the minimum cache memory requirements
depending on the speed of integer dividers and access time
of DRAM. m(bf) and m(svrf) denote the memory usages
in BF and SVRF respectively, which reported in the pre-
vious subsection. By using the cost models, Fig.6 shows
the comparison results of compared schemes. The costs of
compared schemes are in direct proportion to their maximum
membership capacities φ and maximum port capacities ρ,
regardless of their manufacturing costs. Observably, the total
hardware costs of BF are much greater than proposed scheme’s
in any conditions, especially for achieving low false positive
probabilities.

2656 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 12, DECEMBER 2013

V. CONCLUSION

Multicast routing algorithm and its theoretical results have
continued to be a very important research topic in the areas of
networking. In this research area, Bloom Filter is an efficient
algorithm to compress the multicast forwarding states, but
significant traffic leakage may occur when group membership
querying is false positive. In this paper, we present a novel
unified unicast and multicast forwarding algorithm based
on the prime number and Chinese remainder theorem in
SDN-based datacenter networks, to overcome the scalability
problems in terms of multicast forwarding states. We prove
that this traditional method can efficiently resolve the exact
multiple membership problem. The simulation results indicate
that our proposed scheme offers remarkable performance in
reducing the memory space, processing time and hardware
cost compared with the general Bloom filter. It is also worth
noting that scalability and 100% accuracy of proposed scheme
are beyond comparison to standard Bloom filter.

The SDN switches used in today’s datacenter networks do
not scale well with increasing forwarding states and speed.
Rather than continuing to scale the Bloom Filters to theirs
limit, or build SDN switches with ever larger and faster
memory such as CAM in the control plane. Our proposed
scheme provides an alternative solution to effectively support
the growing demands of multicast applications in managing
the software-defined datacenter networks. Network customers,
vendors and administrators will thus be benefited by the
proposed scheme. We believe that future SDN switches should
leverage the proposed scheme as a more scalable and cost-
effective solution. In addition, the work in this paper can be
extended for different applications. Apart from improving the
performance of network routing, it can be extensively applied
in many functions of computer science which are dominated
by the Bloom filter previously.

REFERENCES

[1] A. Benslimane, Multimedia Multicast on the Internet. London, UK:
ISTE, Wiley, 2010.

[2] A. Bianco, P. Giaccone, E. M. Giraudo, F. Neri, and E. Schiattarella,
“Multicast support for a storage area network switch,” in GLOBECOM,
Nov. 2006, pp. 1–6.

[3] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, R. Burgess,
G. Chockler, H. Li, and Y. Tock, “Dr. multicast: Rx for data center
communication scalability,” in Proc. 5th European conference on Com-
puter systems, ser. EuroSys ’10. New York, NY, USA: ACM, 2010,
pp. 349–362.

[4] S. Keshav and R. Sharma, “Issues and trends in router design,” Comm.
Mag., vol. 36, no. 5, pp. 144–151, May 1998.

[5] H. Holbrook, B. Cain, and B. Haberman, “Using Internet Group Man-
agement Protocol Version 3 (IGMPv3) and Multicast Listener Discovery
Protocol Version 2 (MLDv2) for Source-Specific Multicast,” RFC 4604,
Internet Engineering Task Force, Aug. 2006.

[6] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “Esm: efficient and scalable data
center multicast routing,” IEEE/ACM Trans. Netw., vol. 20, no. 3, pp.
944–955, Jun. 2012.

[7] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[8] C. Ding, D. Pei, and A. Salomaa, Chinese remainder theorem: appli-
cations in computing, coding, cryptography. River Edge, NJ, USA:
World Scientific Publishing, 1996.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Aug. 2008.

[10] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 131–145,
Oct. 2001.

[11] R. Callon and M. Suzuki, “A Framework for Layer 3 Provider-
Provisioned Virtual Private Networks (PPVPNs),” RFC 4110, Internet
Engineering Task Force, Jul. 2005.

[12] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: state
of the art and research challenges,” Comm. Mag., vol. 47, no. 7, pp.
20–26, Jul. 2009.

[13] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scal-
able and fault-tolerant network structure for data centers,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4, pp. 75–86, Aug. 2008.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” Commun. ACM, vol. 54, no. 3, pp. 95–104, Mar.
2011.

[15] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 4, pp. 39–50, Aug. 2009.

[16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 4, pp. 63–74, Aug. 2009.

[17] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center
networks,” in Proc. 8th ACM SIGCOMM Workshop on Hot Topics in
Networking (HotNets), Oct. 2009.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[19] J. Moy, “Multicast Extensions to OSPF,” RFC 1584, Internet Engineer-
ing Task Force, Mar. 1994.

[20] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei,
“An architecture for wide-area multicast routing,” SIGCOMM Comput.
Commun. Rev., vol. 24, no. 4, pp. 126–135, Oct. 1994.

[21] D. Waitzman, C. Partridge, and S. Deering, “Distance Vector Multicast
Routing Protocol,” RFC 1075, Internet Engineering Task Force, Nov.
1988.

[22] T. Ballardie, P. Francis, and J. Crowcroft, “Core based trees (cbt),”
SIGCOMM Comput. Commun. Rev., vol. 23, no. 4, pp. 85–95, Oct.
1993.

[23] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[24] D. Thaler and M. Handley, “On the aggregatability of multicast forward-
ing state,” in Proc. 21th IEEE INFOCOM, Apr. 2000, pp. 1654–1663.

[25] F. Németh, A. Stipkovits, B. Sonkoly, and A. Gulyás, “Towards smart-
flow: case studies on enhanced programmable forwarding in openflow
switches,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 85–86,
Aug. 2012.

[26] W. chang Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Stochastic fair
blue: A queue management algorithm for enforcing fairness,” in Proc.
21th IEEE INFOCOM, Apr. 2001, pp. 1520–1529.

[27] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 2–14, Feb. 2005.

[28] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese,
“Beyond bloom filters: from approximate membership checks to ap-
proximate state machines,” SIGCOMM Comput. Commun. Rev., vol. 36,
no. 4, pp. 315–326, Aug. 2006.

[29] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2003.

[30] B. Grönvall, “Scalable multicast forwarding,” SIGCOMM Comput. Com-
mun. Rev., vol. 32, no. 1, pp. 68–68, Jan. 2002.

[31] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter:
an efficient data structure for static support lookup tables,” in Proc.
15th annual ACM-SIAM symposium on Discrete algorithms (SODA ’04),
Philadelphia, PA, USA, Jan. 2004, pp. 30–39.

[32] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[33] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604–612, Oct. 2002.

[34] R. P. Laufer, P. B. Velloso, and O. C. M. B. Duarte, “A generalized
bloom filter to secure distributed network applications,” Comput. Netw.,
vol. 55, no. 8, pp. 1804–1819, Jun. 2011.

[35] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Supporting scalable and
adaptive metadata management in ultralarge-scale file systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 4, pp. 580–593, Apr. 2011.

JIA and WANG: A UNIFIED UNICAST AND MULTICAST ROUTING AND FORWARDING ALGORITHM FOR SOFTWARE-DEFINED ... 2657

[36] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE J. Sel. A. Commun., vol. 24, no. 12,
pp. 2327–2339, Dec. 2006.

[37] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proc. 2003 ACM
SIGMOD international conference on Management of data (SIGMOD
’03), Jun. 2003, pp. 241–252.

[38] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 120–133,
Jan. 2010.

[39] D. Guo, H. Chen, and X. Luo, “Theory and network applications of
dynamic bloom filters,” in Proc. 25th IEEE INFOCOM, Apr. 2006, pp.
1–12.

[40] A. Kirsch and M. Mitzenmacher, “Distance-sensitive bloom filters,” in
Proc. 8th Workshop Algorithm Eng. and Experiments (ALENEX ’06).
SIAM, Jan. 2006, 0898716101.

[41] B. Xiao and Y. Hua, “Using parallel bloom filters for multiattribute
representation on network services,” IEEE Trans. Parallel Distrib. Syst.,
vol. 21, no. 1, pp. 20–32, Jan. 2010.

[42] H. Song, F. Hao, M. S. Kodialam, and T. V. Lakshman, “Ipv6 lookups
using distributed and load balanced bloom filters for 100gbps core router
line cards,” in Proc. 28th IEEE INFOCOM, Apr. 2009, pp. 2518–2526.

[43] F. Hao, M. S. Kodialam, T. V. Lakshman, and H. Song, “Fast multiset
membership testing using combinatorial bloom filters,” in Proc. 28th
IEEE INFOCOM, Apr. 2009, pp. 513–521.

[44] F. Hao, M. S. Kodialam, and T. V. Lakshman, “Incremental bloom
filters,” in Proc. 27th IEEE INFOCOM, Apr. 2008, pp. 1067–1075.

[45] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting bloom filter,” in Proc. 31th IEEE INFOCOM, Apr. 2012, pp.
1880–1888.

[46] IEEE 802.1AB Station and Media Access Control Connectivity
Discovery, IEEE Std., May 2005. [Online]. Available:
http://standards.ieee.org/getieee802/download/802.1AB-2005.pdf

[47] S. Bhattacharyya, “An Overview of Source-Specific Multicast (SSM),”
RFC 3569, Internet Engineering Task Force, Jul. 2003.

[48] H. Miyatake, M. Tanaka, and Y. Mori, “A design for high-speed low-
power cmos fully parallel content-addressable memory macros,” IEEE
J. Solid-State Circuits, vol. 36, no. 6, pp. 958–968, Jun. 2001.

[49] A. J. McAuley and P. Francis, “Fast routing table lookup using cams,”
in Proc. 12th IEEE INFOCOM, Apr. 1993, pp. 1382–1391.

[50] J. Wade and C. Sodini, “A ternary content addressable search engine,”
IEEE J. Solid-State Circuits, vol. 24, no. 4, pp. 1003–1013, Aug. 1989.

[51] D. Newman, “10 gig access switches: Not just packet-pushers anymore,”
Netw. World, vol. 25, no. 12, pp. 34–39, Mar. 2008.

[52] D. E. Knuth, The art of computer programming, volume 2: seminumeri-
cal algorithms, 3rd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing, 1997.

[53] A. A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers
on automata,” Soviet Physics Doklady, vol. 7, pp. 595–596, 1963.

[54] M. Lu, Arithmetic and Logic in Computer Systems. Hoboken, New
Jersey: Wiley-Interscience, 2004.

[55] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method:
An approach to store-and-forward communication network design,”
Networks, vol. 3, no. 2, pp. 97–133, Jun. 1973.

[56] V. Shoup, A computational introduction to number theory and algebra.
New York, NY, USA: Cambridge University Press, 2005.

Wen-Kang Jia (S’09–M’11) received his Ph.D.
degree from the Department of Computer Science,
National Chiao Tung University (NCTU), Hsinchu,
Taiwan, in 2011. Before returned to school, he
had been a senior engineer and manager since
1991 in various networking areas including ICT
Manufacturer, Network Integrator, and Telecomm
Service Provider. His recent research interests are
the OSI Layer2∼5 such as TCP/IP protocols design,
mobile management, error resilience coding, multi-
media communications, NAT traversal, routing and

switching, multicasting and broadcasting, teletraffic engineering, IP-optical
convergence networks, P2P overlay networks, and wireless networks. He has
published over 15 journal articles, over 30 international conference papers, 3
book chapters, and 3 patents. His work has been cited more than 300 times.

Li-Chun Wang (M’96–SM’06–F’11) received the
B.S. degree from National Chiao Tung University,
Taiwan, R. O. C., in 1986, the M.S. degree from
National Taiwan University in 1988, and the Ms.Sci.
and Ph.D. degrees from the Georgia Institute of
Technology, Atlanta, in 1995, and 1996, respec-
tively, all in electrical engineering. From 1990 to
1992, he was with the Telecommunications Labora-
tories of the Ministry of Transportation and Commu-
nications in Taiwan (currently the Telecom Labs of
Chunghwa Telecom Co.). In 1995, he was affiliated

with Bell Northern Research of Northern Telecom, Inc., Richardson, TX.
From 1996 to 2000, he was with AT&T Laboratories, where he was a
Senior Technical Staff Member in the Wireless Communications Research
Department. Since August 2000, he has joined the Department of Electrical
and Computer Engineering of National Chiao Tung University in Taiwan
and is the current Chairman of the same department. His current research
interests are in the areas of radio resource management, crosslayer optimized
techniques for heterogeneous wireless networks, and cloud computing for
mobile applications.

Dr. Wang was elected to the IEEE Fellow grade in 2011 for his contri-
butions in cellular architecture and radio resource management in wireless
networks. He won the Distinguished Research Award of the National Science
Council, Taiwan, in 2012, and was a co-recipient (with Gordon L. Stüber and
Chin-Tau Lea) of the 1997 IEEE Jack Neubauer Best Paper Award for his
paper “Architecture Design, Frequency Planning, and Performance Analysis
for a Microcell/Macrocell Overlaying System,” IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY, vol. 46, no. 4, pp. 836848, 1997. He has
published over 150 journal and international conference papers. He served
as an Associate Editor for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS from 2001 to 2005, the Guest Editor of the Special
Issue on “Mobile Computing and Networking” for the IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS in 2005 and on “Radio
Resource Management and Protocol Engineering in Future IEEE Broadband
Networks” for IEEE Wireless Communications Magazine in 2006. He holds
10 US patents.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

