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Renewable energy has been increasingly promoted and used to substitute non-renewable fossil-fuels,
which cause negative effects on the environment. The Taiwan Statute for Renewable Energy Develop-
ment has regulated and promoted renewable energy since 2009. A feed-in tariff (FIT) for renewable
energy is one of the incentives that the government uses to promote the installation of green power
generation facilities. The price of the electricity feed-in tariff is based on the current and future costs of
renewable energy generation. When analyzing cost trends for renewable energy installation, many
researchers use a single factor cost learning curve model. However, past studies indicate that there are
multiple factors affecting the overall cost of installing renewable energy. Hence, this research develops a
hierarchical installation cost learning model which considers multiple factors to accurately model and
forecast wind energy development. This research uses wind power development data from Taiwan as a
case study. We identify the cost factors, evaluate the learning effects, and compare the hierarchical
learning curve model to the basic (non-hierarchical) learning curve model. The research results show an
improved fit between the hierarchical model and the actual data when compared to the basic learning
model. The study also provides new insights between the wind power learning progression of Taiwan
and three countries in Europe.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

According to the International Energy Association report (IEA,
2008), the projected world demand for energy will increase 45%
between 2006 and 2030 with an average annual growth rate of
1.6%. Oil remains the dominant fuel in the primary energy mix
(IEA, 2008). Further, global climate change remains an important
issue with global average sea levels increasing at an average rate of
about 3.1 mm per year from 1993 to 2003 and the annual average
Arctic sea ice shelf is shrinking 2.7% per decade since 1973 (IPCC,
2007). In order to help resolve the problem of energy demand and
climate change, most of countries have increased their investment
in renewable energy. Global investment in renewable energy in
ll rights reserved.
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2004 was $22 US billion dollars and reached to $211 US billion
dollars in 2010 (REN21, 2011).

Renewable power generation policies have been implemented in
96 countries and represent the most common type of support policy.
Two of the most popular policies for governments to stimulate the
deployment of renewable energy are the implementation of Renew-
able Portfolio Standard (RPS) and Feed-in-Tariffs (FIT). RPS requires
electricity supply companies to produce a specified fraction of their
electricity from renewable energy sources and the renewable energy
generators sell their electricity back to supply companies. RPS relies
almost entirely on the private market for its implementation.
Therefore, this approach helps deliver renewable energy at a lower
cost, allowing renewable energy to compete with cheaper fossil fuel
energy sources. Unlike RPS, FIT offers long-term contracts, which last
15 years to 25 years, where renewable energy producers guarantee
to purchase all the generated renewable energy based on the cost of
electricity generation. FIT is the most widely implemented policy
with at least 61 countries and 26 states or provinces in the world
implementing FIT. Ten countries and at least 50 other jurisdictions,
including 30 U.S. states and British Columbia have implemented
RPS (REN21, 2011). The Taiwan government passed the Statute
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Fig. 1. A typical learning curve.

A.J.C. Trappey et al. / Int. J. Production Economics 146 (2013) 386–391 387
for Renewable Energy Development in 2009 and used FIT as
the incentive policy to promote investment in renewable energy.
The goal of the statute is to increase the installed capacity of
renewable energy to 8000 MW over the next 20 years.

Wind power has become the fastest growing source of renewable
energy. According to the REN 21 Report (REN21, 2012), global wind
capacity increased by 20% (from 198 GW in 2010 to 238 GW in 2011)
which is more than any other renewable technology. Over 68 count-
ries have added more than 10 MW of reported capacity, with 22 of
these countries passing the 1 GW level during 2011. Taiwan is an
island with an extensive coastal region. The Taiwan potential for wind
energy can be developed by 3000MW and is considered the most
suitable for development than other renewable energies (Liou, 2010).
The government regularly revises FIT prices for new installations in
order to ensure economic efficiency and to minimize windfall profits
for renewable energy installers. In other words, the government
reduces FIT prices if renewable energies reach mature development
and stable installation costs. Thus, for countries with the potential for
developing wind energy and adopting FIT policies, understanding the
trend between the relationships of wind energy costs and wind
energy production and utilization is important. Learning curves offer
important strategic implications for industrial production (Chand and
Sethi, 1990). Product output are depicted by a production cost curve
and its variation with output level. Previous studies (McDonald and
Schrattenholzer, 2001; Ibenholt, 2002) utilized the learning curve to
analyze the relationship betweenwind power generation cost and the
accumulated wind power production. The empirical results help
governments and power plant installers understand the installation
cost changes and trends for wind-power electricity production.
Nonetheless, these studies usually adopt a single factor learning curve
model to describe the cost trend. Some researchers note that single
factor learning curve models provide a weak explanation of the causal
effects and may bias the estimation of cost trends (Nemet, 2006; Yu
et al., 2011). Therefore, this study develops a hierarchical cost learning
curve model to interpret the cost trends of a wind power facility. The
purpose is to discover the multiple factors that significantly impact
the relationship between wind cost and accumulated wind produc-
tion. The results provide information for policy makers to improve
the design of wind energy systems and to optimize wind energy
development.

This research paper is organized as follows. Section 2 is a
literature review which introduces learning curves and the hier-
archical linear model. Sections 3 and 4 describe the methodology
and present a case study, respectively. For the case study, the
learning curve is used to compare the fitness of hierarchical model
with general learning curve model. The progression rate is
compared with similar studies conducted in Denmark, Germany
and the United Kingdom. Section 5 provides a conclusion and
overview of the research results and contribution.
2. Literature review

In this section, the concepts of basic and hierarchical linear
curve models and the related research literatures are reviewed.

2.1. Basic learning curves and related literature

A learning curve offers a means of analyzing past cost devel-
opment that had been adapted to analyze future cost development
(Neij, 2008). The curve shows the relation between accumulated
production quantity or experience and unit production time or
cost for a given activity or product. The learning curve effect
(Fig. 1) depicts that as the total production quantity (in units)
doubles, the cost per unit declines by a constant percentage (Jaber
and El Saadany, 2011). Wright (1936) was one of the first
researchers to describe and apply the learning effect. By observing
the aircraft industry, he proposed a mathematical model to
describe the declining trend of required labor hours needed to
produce one unit of product at a constant rate. Learning curves
have been widely applied and each application typically has a
unique learning rate. The usefulness of learning curves was
demonstrated during World War II as a very effective means for
predicting the cost and time for constructing ships and aircraft
(Yelle, 1979).

The learning curve can be applied to describe effects of groups as
well as individual performance, e.g., a group comprising direct and
indirect labor. Technological or skill progresses are considered types
of learning. The industrial learning curve can be used to model
the improved skill of an individual by repetition of simple opera-
tions. It can also be used to describe more complex systems, such as
group efforts of people on production lines and others in supportive
positions, all working to progressively improve a common task
(Jaber and Bonney, 1999). Learning curves are described by the
following equation (Berndt, 1991):

Ct ¼ C1nt
αeut

where Ct represents the unit production cost at time t and C1 is the
first unit production cost. nt Is the production quantities accumu-
lated to time t, α is the learning index, ut is the stochastic term, and
eut is the error term following a normal distribution.

A reliable learning curve model is a useful tool for the planning
and control of operations. The predictions of future performance are
more reliable, the use of resources are better planned, the sequen-
cing of operations are more precise, and the cost of future produc-
tion are more accurately estimated when learning effects are taken
into consideration (Andrade et al., 1999). Plaza and Rohlf (2008)
focused on the relationship between the capabilities of a project
team and consulting-cost management. They proposed a model
based on learning curves to study the impact of training on project
cost and duration. In order to further define production ramp-up,
Terwiesch and Bohn (2001) modeled the complex dynamics of a
new product's ramp-up by providing concrete values for the cost
and benefits of learning efforts. Specifically relevant to this research,
there are research papers which apply learning curves to renewable
energy production. Wang et al. (2011) simulated wind energy
industry development in China using a logistic learning curve model.
Ibenholt (2002) constructed learning curves of wind power produc-
tion costs in three countries, i.e., Denmark, Germany and United
Kingdom. He compared the aerodynamic conditions and renewable
energy policies which affect the costs and utilizations of wind power
in these countries. Neij (2008) presented an analytical framework,
which was based on an assessment of available experience curves.
The analysis was complemented with a bottom-up analysis of
sources of cost reductions and expert assessments of long-term



Table 1
HLM model types.

Type Level 1 Level 2

Full model
Yij ¼ β0j þ β1jXij þ εij

β0j ¼ γ00 þ γ01Zj þ u0j

β1j ¼ γ10 þ γ11Zj þ u1j

Intercept model Yij ¼ β0j þ β1jXij þ εij β0j ¼ γ00 þ γ01Zj þ u0j

Coefficient model Yij ¼ β0j þ β1jXij þ εij β1j ¼ γ10 þ γ11Zj þ u1j

Construct hierarchical learning
curve model

Collect relevant data

Use PASW Statistic 18 to find
suitable model

Compare the learning effect
with other countries

Compare the proposed model
with general learning curve

model

Fig. 2. Constructing a hierarchical learning curve of wind power installation in
Taiwan.
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analysis of future costs for developing new technologies of green
electricity generation. Qiu and Anadon (2012) used bidding data for
wind power projects from 2003 to 2007 in China and applied
learning curve models to predict development costs.

For most studies related to energy production learning curves,
a one-factor learning curve model was applied. Thus, only the
relation between the production cost and the production quantity
(the accumulated capacity when used in renewable energy) was
modeled. In addition to the learning effect generated from experi-
ence, Nemet (2006) considered that other observable factors played
important roles in decreasing production costs. He identified seven
factors that affect photovoltaic module costs and found that plant
size, module efficiency, and the cost of silicon are critical factors
that impact the production cost of solar power. More importantly,
the accumulated production quantity, which is usually represented
by the learning experience curve, weakly explains decreasing costs.
Yu et al. (2011) also noted that the one factor learning curve model
only explains cost declines in the initial development stage of a new
technology and cannot fully describe the cost changes caused by
other factors such as key material (input) prices. Ibenholt (2002)
also indicated that the connection between wind power electricity
production cost and accumulated production quantity may be
influenced by factors such as R&D investment, policy measures,
changes in input material prices (e.g., steel), competition in the
market, economies of scale, and other technology specific variables.
The relationship among these factors and wind power production
quantity and cost are often discussed and planned in a nested and
hierarchical fashion. Thus, this paper incorporates the hierarchical
linear model concept as a cost learning curve model to include
multiple factors that significantly influence cost changes.

2.2. Hierarchical linear model (HLM) and related literature

Hierarchical linear models are a statistical model of parameters
that vary at more than one level. These models are generalizations of
linear models, which can be extended to non-linear models. HLM is
appropriate for research where the data are described in a nested
structure, such as students in a class where within a cohort there
may be many varying factors such as weight, sex, and height. HLM is
applied frequently in the educational domain, since it fits the classical
nested structure of student and faculty populations (Wen and Chiou,
2011). To estimate the likelihood of success of students, Cyrenne and
Chan (2012) track the performance of university students and
analyze with a least squares dummy variable model and a hierarch-
ical linear model. Perry et al. (2007) applied HLM and regression
techniques to explore the effects of teacher practices in promoting
student academic achievement, behavioral adjustment, and feelings
of competence. Other areas such as sociology and consumer science
have also applied HLM as a method to understand attitudes, motiva-
tions, and behaviors. Gentry and Martineau (2010) describe HLM as
an example of a multilevel methodological approach to examine
changes over time in the evaluation of human resource team leader-
ship development. Addressing the multilevel relation among time
variance, disposable income, and U.S. entertainment consumption,
Chen (2012) adopted a hierarchical linear model to determine that
time variance and disposable income are positively related to
entertainment expenditures over different entertainment categories.
As reported by Wen (2006), HLM applications have also been used in
biostatistics and economics.

HLM was first developed by Lindley and Smith (1972). In
general, the model of HLM can be classified as the full model,
the intercept model, and the coefficient model (Table 1).

For the full model, level 1 is the basic structure of HLM, which
denotes the relation between the dependent variable Yij and the
explanatory variable Xij. In level 2, two dependent variables are
derived as the intercept (β0j) and coefficient (β1j) of the linear
model in level 1. Both are influenced by the explanatory variable Zj.
By the values of parameters γ00, γ01, γ10 and γ11 in level 2 equations
indicate the degree that Zj interacts with the variables β0j and β1j
can be determined. ɛij, u0j and u1j are the error terms for both
models in level 1and level 2. For the intercept model, Zj deter-
mines β0j which is the intercept in level 1. While in the coefficient
model, the coefficient β1j of level 1 is estimated by Zj in level 2.

Gill (2005) explains that HLM has several advantages over
standard linear models. Their arguments include that hierarchical
models are ideal tools for identifying and measuring structural
relationships that fall at different levels of the data generating
procedure with virtually no limit to the dimension of their hierarchy.
Hierarchical models also directly express the exchangeability of
units, whereas nonhierarchical models applied to multilevel data
typically underestimates the variance. Finally, hierarchical models
facilitate the testing of hypotheses across different levels of analysis,
whereas nonhierarchical models can be nested within hierarchical
models, allowing a likelihood or Bayes factor test of the validity of
the proposed hierarchical structure.
3. Methodology

In order to build a hierarchical learning curve of the cost of
installing wind power in Taiwan, we collect relevant data and use
statistic software to fit the model (Fig. 2). Residual analysis is used
to confirm the fitness of the hierarchical learning curve model and
compare the model to the basic learning curve model. Finally, the
study compares the learning effect of Taiwan wind power installa-
tion with the cases of Denmark, Germany and the United Kingdom
described by Ibenholt (2002).



Table 2
The output table generated by PASW Statistic 18.

Model Coefficient Standard error t

Intercept 6.475n 0.104 62.461
Cumulative capacity 0.156n 0.049 3.167
Steel price� cumulative capacity 0.001nn 0.000 2.446
Oil price� cumulative capacity −0.003nn 0.001 −2.805

n po0.001.
nn po0.05.
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The data was checked to determine whether the learning curve
factors would interfere with the relationship between accumu-
lated wind energy capacity and wind power installation costs.
This study utilizes the coefficient models to construct the hier-
archical learning curve model of installing wind power in Taiwan
and the detailed data analysis is presented in Section 4. The model,
as shown in Eqs. (1) and (2), assumes that β0 and β1 have fixed
effects.

Level 1 : C ¼ β0X
β1ε ð1Þ

Level 2 : β1 ¼ γ0 þ γ1Z1 þ γ2Z2 þ⋯þ γmZm þ δ ð2Þ
natural logarithms are used to estimate parameters and Eqs.
(1) and (2) are combined into Eq. (3).

ln C ¼ ln β0 þ γ0ln X þ γ1Z1ln X þ⋯þ γnZnln X þ ln ε ð3Þ
where C and X separately denote the wind power installation costs
and accumulated installed wind power capacity, respectively. Z1,
Z2, …, Zn are considered as the variables that may interfere with
the relationship between the cost and the accumulated installed
wind-power capacity. The estimated parameters contain the
intercept (ln β0), the learning index γ0, and the interference
coefficients γ1, …, γn.
 6.4

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Basic model Hierarchical Model Real data  Unit of C:€/kW 

Fig. 3. The costs estimated by the hierarchical and basic models, compared to
historical costs.
4. The cost learning curve of installing wind power

In order to reduce emission of carbon dioxide and promote
development of renewable energy, Taiwan passed the Statute for
Renewable Energy Development in 2009. The electricity purchase
program, which is related to the installation cost, is a critical
incentive encouraging people to install renewable energy. This
research used wind power installation in Taiwan as a case study to
collect data and demonstrate the building of hierarchical cost
learning curve model.

4.1. Hierarchical learning curve cost model—the Taiwan wind power
sector case

For the Taiwan learning curve cost model for installing wind
power, we consider the relation between cumulative capacity, the
installation costs and other variables which may impact costs. The
above-mentioned factors, except changes in input prices, are not
easily quantified. Steel cost plays a key role on the increase or
decrease in wind power installation costs. International oil prices
also drive renewable energy demand. Thus, the global steel price
index and the oil price are used as variables Z1 and Z2 in our
model. The reference installation cost (C, in the unit of €/kW) used
in the research is based on the report published by the European
Wind Energy Association (2009). Since offshore wind power has
not yet developed in Taiwan, we only use the historical data of
onshore installation costs in the case study. The cumulative
capacity and oil price from 2000 to 2010 was collected from the
Taiwan Bureau of Energy (Bureau of Energy, 2011, 2012). The
global steel index was sourced from the CRU (2012), which
publishes annual data in mining, metals, and fertilizers. The global
steel price index (Z1) and the oil price (Z2) are the inputs of level
2 model and Eq. (3) is expressed as follows:

ln C ¼ lnβ0 þ γ0ln X þ γ1Z1ln X þ γ2Z2ln X þ ln ε ð4Þ
we use PASW Statistic 18 (IBM, 2012) to estimate the parameters
and the statistical report is shown in Table 2.

Table 2 shows that the relationship between wind power
installation costs and the accumulated wind power installed
capacity is significant and positive. The steel price has a significant
and positive effect, which interferes with the relationship between
the cost of installing wind power and the accumulated installed
capacity. The oil price has a significant but negative effect. Thus,
decreasing oil prices strongly affects the relationship between the
installation costs and the accumulated installed wind power
capacities.

Progression rate (PR) explains the rate of the increase or decline
in cost, determining the percentage of cost that will likely occur
when cumulative capacity is doubled (Ibenholt, 2002). The PR is
calculated using Eq. (5).

PR¼ 2α ð5Þ
where α represents the learning index (α is equal to γ0 in this
study). Therefore, the learning index of Taiwan is 0.156 and PR is
111.4%. The value PR (¼111.4%) shows that the cost of installing
wind power in Taiwan will increase 111.4% from the former level
when the cumulative installed wind power capacity is doubled.

4.2. Comparison of learning curve models

The traditional basic model is compared with the hierarchical
model since the basic learning curve model does not contain
interfering and nesting effects. The basic learning curve only
considers cumulative capacity X, which may influence the esti-
mated learning index. The estimated basic cost learning curve is
shown in Eq. (6).

ln C ¼ 6:677þ ð0:079Þln X ð6Þ
by comparing the costs estimated by the two models in a period of
10 years (2001–2010) with the actual installation costs, the results
show that the hierarchical learning curve better describes the
fluctuation of costs. Fig. 3 depicts the log values of costs (in €/kW)
from 2001 to 2010 estimated by the basic model and the
hierarchical model, with the corresponding real data as reference.
Table 3 indicates that the hierarchical model is a better fit with
much higher values on both R2 and adjusted R2. The learning index
for the basic model is 0.079 and the resulting PR is 105.6%. Table 4
shows the different learning indexes and PR values when using the
hierarchical and basic learning curve models. The PR calculated
using the hierarchical learning curve is higher than the basic



Table 3
R2 and adjusted R2 of the hierarchical and basic models.

Hierarchical learning curve (%) Basic learning curve (%)

R2 87.1 70.1
Adj. R2 80.6 64.4

Table 4
The learning index and PR estimated by the hierarchical and basic models.

Hierarchical learning curve Basic learning curve

Learning index (γ0) 0.156 0.079
Progression rate (PR) (%) 111.4 105.6
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learning curve. If the basic cost learning curve is applied which
considers the cumulative capacity as the only influencing factor,
then the future wind power installation costs in Taiwan will likely
be over projected.

4.3. Comparing the learning index and PR with other countries

According to the research reports published by Ibenholt (2002)
and ISET (2000), the progression rates (PRs) of the wind power
installations in Denmark, Germany and the United Kingdom are
92–93% (1984–1999), 92% (1990–1998), and 75% (1991–1999)
respectively. A lower PR shows that doubling the cumulative
capacity will decrease cost faster. The PR value of UK is the lowest
among three countries, yet Denmark and Germany have no
significant difference in the same period of time. For the renew-
able energy development, the United Kingdom has adopted RPS as
its policy. The tender system, which is used to set the price,
enhances the competition between wind power generators and
leads to installation cost reductions. However, according to some
reports (Ibenholt, 2002), a lower PR value may also reflect the
hampering of diffusion because of a competitive and fierce market.
Unlike the United Kingdom, Denmark and Germany both use FIT as
the renewable energy development policy which creates stable
conditions for installing wind power generators and increases the
cumulative capacity (Ibenholt, 2002). Taiwan's development of
renewable energy has occurred much later in comparison to these
three countries. Taiwan's government did not pass the Statute for
Renewable Energy Development until 2009 and has only recently
implemented FIT as its renewable energy development approach.
With a less matured wind power market and a lower level of
accumulated wind power capacity, Taiwan's PR (¼111.4%) repre-
sents that the installation costs will increase to 111.4% of the
previous costs if installation capacity is doubled. Taiwan has the
highest PR comparing to the three countries since the market has
not reached an equivalent scale of economy where the learning
effect can impact the installation costs. In addition, due to an
oligopoly in the Taiwan power generation market, the market is
dominated by a small number of firms that cannot efficiently
develop wind power and benefit fully from the learning effect.
5. Conclusions

Countries are actively developing renewable energy and wind
power is one of the most potential sources of renewable energy.
Previous studies constructed the level-1 basic (general) wind
learning curve model, which biases the estimated learning index.
This paper proposes a hierarchical cost learning curve model for
wind power and uses the accumulated wind power installation in
Taiwan as a case study. This study includes two price variables, the
steel price index and the oil price, to construct a hierarchical cost
learning curve model for wind power. The research shows that
both the steel price index and the oil price have significant effects
on the relationship between the wind power installation costs and
accumulated wind power installation capacity. When the steel
price index increases and the oil price decreases, then wind energy
development is obstructed and policy makers must provide sub-
sidies or raise wind tariffs to stimulate wind energy investment. In
addition, by comparing the basic learning curve model, the cost
estimated by the hierarchical model provides a better R2 and
adjusted R2 and shows that the fitness of hierarchical learning
curve is superior to the basic learning curve.

The present research uses the hierarchical cost learning curve
model to explore the effects of steel and oil prices on the
relationship between the installation costs of wind power facilities
and accumulated wind power production. The research provides
opportunities for researchers and policy makers to apply the
advanced learning curve modeling techniques to the new areas
of renewable energy sector, e.g., offshore wind, solar, geothermal
heat, ocean tides, to provide reliable and effective strategic
development and incentive plans.
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