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a b s t r a c t

Most periodic review models in the inventory literature have assumed a fixed length of the review
periods. In this note, we extend the work of Chiang (2008) , and consider backlogged and lost-sales
periodic review models where the review periods are of a variable length and there is a fixed cost of
ordering for replenishment. Assuming that period lengths are independently and identically distributed,
we show (using an exact method of computing inventory holding costs) that an (s, S) policy is optimal
for the infinite horizon problem. The periodic review policies developed are thus easy to implement.
The computation shows that if the fixed cost of ordering is small, one needs to use the proposed periodic
policies.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most periodic review systems in the inventory-control literature
have assumed a fixed length of the review periods. It is possible in
practice that periodic systems have the review periods of a variable
length. Such systems arise mainly from supply uncertainties. For
example, Chiang (2008) observed that many supermarkets have
suppliers who come to visit regularly and replenish inventories
for them. However, the supplier does not always come in constant
time intervals. Depending on her visit plans or work schedules, she
often arrives at a particular supermarket earlier or later than planned.
The elapsed time between two consecutive visits varies in nature. See
also Ertogral and Rahim (2005) for supply chain settings where the
replenishment epochs are not under the retailer′s control (i.e., under
the supplier′s control), and Tang and Musa (2011) for a variety of
supply chain risks or uncertainties.

To the best of our knowledge, the issue of the period length
variability or replenishment interval randomness is investigated
only recently by Ertogral and Rahim (2005) and Chiang (2008).
Ertogral and Rahim (2005) derived the expected profit per
replenishment cycle by assuming constant demand; Chiang
(2008) used dynamic programming to develop periodic review
inventory models with stochastic demand. However, these studies
assumed that the fixed cost of ordering for replenishment is zero.

In this paper, we extend the work of Chiang (2008) and
incorporate a fixed cost of ordering. It is possible that the supplier
visits a retailer and charges a service expense if the retailer′s

inventory is replenished. Moreover, instead of using an approx-
imate method as in Ertogral and Rahim (2005) and Chiang (2008),
we use an exact approach of computing inventory holding costs.
We assume that period lengths are independently and identically
distributed (iid), as in the above two studies, and examine both
the backlogged and lost-sales periodic review inventory problems.
We will show that the optimal policy is of the (s, S) type. Hence,
existing algorithms (e.g., Zheng and Federgruen, 1991) could be
used to find the optimal s and S. The periodic review models
developed can be viewed as a generalization of ordinary periodic
models where the period length is fixed.

The computation shows that when the fixed cost of ordering is
small (but not small enough to be neglected, such that an order is
always placed at a review epoch), ignoring the period length
variability can incur unnecessary large losses, especially if lead-
time is zero, shortage is costly, demand variability is small, and/or
the period length is volatile. These results agree with Chiang
(2008). Hence, one needs to use the proposed ordering policies,
and the suggestions made in Chiang (2008) apply here, e.g., if the
replenishment epochs are under the supplier′s control, the retailer
should somehow persuade the supplier to visit more regularly, or
even cooperate or form a strategic alliance with the supplier in the
long run; Prajogo et al. (2012) recently showed that strategic long-
term relationship, one of the three supplier management practices
suggested, has a positive relationship with a firm′s operational
performance, and Cheng et al. (2012) found that a purchasing firm
tends to form quanxi networks with its key supplier to improve
communication and thus reduce supply risk.. However, when the
fixed ordering cost is large, ignoring the period length variability
causes small or virtually no losses to a firm, especially if lead-time
is long or demand variability is large. The implication of this is that
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it is alright to use the ordinary periodic review models in the case
of large fixed ordering costs.

2. Backlogged periodic review inventory models

We first consider the case where demand not satisfied at once
is backlogged. We use the same notation as in Chiang (2008).
Demand is stochastic with mean rate μ per day, and is assumed to
be non-negative and independently distributed in disjoint time
intervals. Let T denote the period length and D the demand during
T. Successive T′s are assumed to be iid random variables. Let ϕ( � )
be the probability density function (pdf) of T and g( � |T) be the
conditional pdf of D. Also, let c be the unit purchase cost, α the
discount rate, y the inventory position (i.e., inventory on hand
minus backorder plus inventory on order) after a possible order is
placed at a review epoch, and H the expected one-period inven-
tory holding and shortage costs (H is a function of y).

We assume without loss of generality (also for simplicity) that
replenishment is immediate. The case of a positive (constant) lead-
time L can be handled by appropriately redefining H, i.e., given
time 0 at a review epoch, H is charged for the time interval [L, T þ L)
(see Chiang, 2008 or Porteus, 1990). Let K denote the fixed cost of
ordering and Vn(x) the expected discounted cost with n periods
remaining until the end of the planning horizon when the starting
inventory position is x and an optimal ordering policy is used at
every review epoch. Vn(x) satisfies the functional equation

VnðxÞ ¼minxryfKδðy–xÞþcyþHðyÞþET ½e�aTEDjT ½Vn�1ðy–DÞ��g–cx;
ð1Þ

where δ( � ) is the Dirac-delta function that is equal to 1 if the
argument is positive and 0 otherwise, c(y – x) is the procurement
cost, and ET[e-αTED|T[Vn-1(y – D)]] is the expected discounted cost
from the next review epoch to the end of the planning horizon.
Since T is stochastic, the planning time horizon in (1) is of a random
length, as opposed to the fixed time horizon of N periods commonly
studied in the literature. Eq. (1) is basically the same as expression
(1) of Chiang (2008), except that a fixed cost K is presented.

Let β ¼ ET[e�αT]. Define φ( � ) � ET[e�αTg( � |T)]/β, i.e., βφ( � )¼
ET[e�αTg( � |T)] is the discount density of D and φ( � ) is the “normal-
ized” pdf of D. Chiang (2008) showed that
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where the expectation ED is taken over the pdf φ( � ). Thus, Vn(x)
can be written by

VnðxÞ ¼minxryfKδðy–xÞþcyþHðyÞþβED½Vn�1ðy–DÞ�g–cx: ð3Þ

There are a few approaches in the inventory literature of
computing the one-period cost function H(y). Chiang (2008) used
an approximate method based on Hadley and Whitin (1963,
pp. 237–239). In this paper, we adopt an exact approach that
charges the holding and shortage costs based on inventory on
hand and backlogged demand, respectively at the end of each
period. Let h′ be the holding cost per unit per period (irrespective
of its length), and p the shortage cost per unit per period. If T is
constant, H(y) is expressed by

HðyÞ ¼
Z yþ

0
h′ðy–DÞgðDjTÞ dDþ

Z 1

yþ
pðD–yÞgðDjTÞ dD; ð4Þ

where ( � )þ � max{ � , 0}. For the present model in which T is
stochastic, H(y) is given by

HðyÞ ¼
Z yþ

0
h′ðy–DÞgnðDÞ dDþ

Z 1

yþ
pðD–yÞgnðDÞ dD ð5Þ

where g*( � ) � ET[g( � |T)]. However, since the length of a period is
not constant, the holding cost could be computed in proportion to
it. Let h be the holding cost per day per unit held at the end of a
period. Then H(y) is given by

HðyÞ ¼
Z yþ

0
hE½T �ðy–DÞg′ðDÞdDþ

Z 1

yþ
pðD–yÞgnðDÞdD; ð6Þ

where g′( � )� ET[Tg( � |T)]/E[T]. Note that the two pdf′s g*( � ) and
g′( � ) do not differ much, especially if T′s variability is not large,
and h′ should be equal to hE[T].

We can easily verify that H(y), given by either (5) or (6), is
convex. Thus, we have the following theorem.

Theorem 1. The optimal policy for Vn(x) in (3) is of the (s, S) type.

Proof. H(y) is convex and Vn(x) is in the form of expression (1) of
Iglehart (1963). □

Hence, a stationary (s, S) policy is optimal for the infinite
horizon model; in other words, if x r s, order the amount S – x;
otherwise if x 4 s, do not order. Define

GðyÞ � cyð1�βÞþHðyÞ: ð7Þ
To compute the two optimal operational parameters s* and S*, we
use G(y) and the discount renewal density βφ( � ) in a solution
procedure (e.g., Veinott and Wagner, 1965). If α ¼ 0 (i.e., the
undiscounted-cost criterion is used), we use H(y) and the density
ET[g( � |T)] instead. For discrete demand distributions, Zheng and
Federgruen (1991) had developed an efficient algorithm to obtain
s* and S*, along with the long-run average cost C(s, S). If T is
constant, denote by s′ and S′ the two optimal parameters obtained.

If K ¼ 0, an order-up-to policy is optimal and the optimal S* is
found by minimizing G(y) (Veinott and Wagner, 1965), which is
the expected cost of the upcoming period (not including the
constant procurement cost cβED[D]). In other words, S* is the
solution toZ 1

S
gnðDÞdD¼ ½cð1–βÞþh′�=ðh′þpÞ ð8Þ

if H(y) given by (5) is used, or the solution toZ 1

S
hE½T �g′ðDÞdDþ

Z 1

S
pgnðDÞdD¼ cð1–βÞþhE½T � ð9Þ

if H(y) given by (6) is used. Since p should be greater than c(1 – β),
S* is guaranteed to be obtained.

3. Lost-sales periodic review inventory models

Next, we consider the situation where demand not satisfied at
once is lost. Assume that replenishment is immediate. Let z be the
order quantity placed at a review epoch and redefine x as the
starting on-hand inventory. Then Vn(x) satisfies the recursive
equation

VnðxÞ ¼minzZ0fKδðzÞþczþHðxþzÞþET ½e�αTEDjT ½Vn�1ððxþz–DÞþ Þ��g

¼minxryfKδðy–xÞþcyþHðyÞþET ½e�αTEDjT ½Vn�1ððy–DÞþ Þ��g–cx:
ð10Þ

Eq. (10) is the same as expression (9) of Chiang (2008), except that
a fixed ordering cost is presented. Through a transformation as in
(2), we can rewrite (10) by

VnðxÞ ¼minxryfKδðy–xÞþcyþHðyÞþβED½Vn�1ððy–DÞþ Þ�g–cx: ð11Þ
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Veinott and Wagner (1965) showed that (11) can be viewed as a
backlog model in which a credit of βc is given to each unit of
demand actually backlogged. Thus, the following result holds.

Theorem 2. The optimal policy for Vn(x) in (11) is of the (s, S) type.

Note that G(y) in (7) is replaced by

GðyÞ � cyð1–βÞþHðyÞ–βc
Z 1

y
ðD–yÞφðDÞdD; ð12Þ

where the last term is the credit given to demand not satisfied. If α
¼ 0, (12) simplifies to

GðyÞ ¼
Z y

0
h′ðy–DÞgnðDÞdDþ

Z 1

y
ðp–cÞðD–yÞ gnðDÞdD; ð13Þ

if the holding cost is charged irrespective to the length of a period,
or simplifies to

GðyÞ ¼
Z y

0
hE½T �ðy–DÞg′ðDÞdDþ

Z 1

y
ðp–cÞðD–yÞ gnðDÞdD; ð14Þ

if the holding cost is computed in proportion to the length of a
period. Notice that p (the shortage cost per unit) has a different
meaning in the lost-sales problem; it should be larger here, since it
usually includes the sales price.

Suppose now that there is a positive (constant) lead-time L
for replenishment which is less than or equal to the minimum T
(i.e., there is at most one outstanding order at any time). The
dynamic program can be formulated by adding Kδ(z) into expres-
sion (8) of Chiang (2008). However, the resulting program
becomes more difficult to solve than expression (8) of Chiang
(2008) (see references therein). If K is small or can be neglected,
we suggest that one uses the heuristic policy proposed in Chiang
(2008). If K is large, Section 4 shows that ignoring the period
length variability incurs insignificant or no losses for the case of L
¼ 0. We suspect that this is also true for L 4 0, given the result in

Table 6 (explained below) and the finding in Chiang (2008) that a
positive L would dilute the effect of the variable T on expected
cost. Hence, one can safely use the dynamic programming for-
mulation (17)–(19) of Chiang (2007) where T is fixed, and solve it
directly (see Chiang, 2007 for more details and computational
results).

4. Computational results

We investigate the effect of the variable T on expected cost, if a
firm fails to incorporate it when developing inventory control
policies. The common data used are α ¼ 0, h ¼ $0.1 (i.e., the
holding cost is charged per day per unit held at the end of a
period), and E[T] ¼ 5 days. We assume that the period length T is
either triangularly or uniformly distributed. In the former case, Pr
(T ¼ 4) ¼ Pr(T ¼ 6) ¼ 1/4 and Pr(T ¼ 5) ¼ 1/2; in the latter case,
Pr(T ¼ 4) ¼ Pr(T ¼ 5) ¼ Pr(T ¼ 6) ¼ 1/3. Also, we assume that
demand is Poisson or compound Poisson distributed. For Poisson
demand, μ ¼ 5/day. Let pi denote the probability of the order size
of i units for each customer arrival. If demand is compound
Poisson, then μ ¼ 2/day and p1 ¼ p2 ¼ p3 ¼ p4 ¼ 0.25 and pi
4 0 for i 4 4 (hence, the mean of demand still equals 5 per day
but the variance is larger than that of the simple Poisson case).

Consider the backlogged model. Suppose first that K ¼ $0 and L
¼ 0. As we see from Tables 1 and 2, ignoring T′s variability, i.e.,
using S′ of the ordinary periodic model when in fact T is random,
can incur unnecessary large costs, especially if T is uniformly
distributed (i.e., has a larger variability) or p is high. Moreover, it
appears that the variable T has a less significant impact on cost if
demand variability is large (i.e., demand is compound Poisson).
Now if L ¼ 4 (other things being equal as in Table 1), we see from
Table 3 that a positive L will dilute the effect of the variable T on
cost. These results agree with those found in Chiang (2008).

Table 1
Effect of variable T on cost (K ¼ 0, L ¼ 0, and demand is Poisson).

p S′ (A) T is triangularly distributed (B) T is uniformly distributed

S* G(S*) G(S′) % off S* G(S*) G(S′) % off

5 32 33 5.60 5.74 2.5 34 5.79 6.09 5.2
20 35 38 7.45 8.32 11.7 38 7.68 9.02 17.4
80 38 41 9.12 10.97 20.3 42 9.30 12.08 29.9

Table 2
Effect of variable T on cost (K ¼ 0, L ¼ 0, and demand is compound Poisson).

p S′ (A) T is triangularly distributed (B) T is uniformly distributed

S* G(S*) G(S′) % off S* G(S*) G(S′) % off

5 37 38 8.97 9.02 0.6 38 9.14 9.22 0.9
20 44 45 12.22 12.31 0.7 46 12.43 12.62 1.5
80 49 52 15.18 15.69 3.4 52 15.44 16.24 5.2

Table 3
Effect of variable T on cost (K ¼ 0, L ¼ 4, and demand is Poisson).

p S′ (A) T is triangularly distributed (B) T is uniformly distributed

S* G(S*) G(S′) % off S* G(S*) G(S′) % off

5 54 55 6.87 6.97 1.5 56 7.03 7.22 2.7
20 59 61 9.14 9.33 2.1 61 9.33 9.70 4.0
80 63 65 11.14 11.57 3.9 66 11.36 12.08 6.3
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Next, consider the case of K 4 0. Assume L ¼ 0. We show in
Tables 4 and 5 the effect of the variable T on the long-run average
cost. As we see, T′s variability impacts less on the cost than when K
¼ 0 in Tables 1 and 2, respectively. This is because a positive K
usually yields a higher S, thus reducing the effect of a possibly long
T on shortage. However, if K is small enough, s* is not very lower
than S* (which may equal its counterpart when K ¼ 0), indicating
that one actually uses an order-up-to policy (i.e., K is always
incurred). Nevertheless, if K is not small enough (such that an
order may not be placed at a review epoch), ignoring T′s variability
can still cause large losses, especially if demand variability is small,
shortage is costly, and/or T′s variability is high. However, as K

becomes larger (K ¼ $80, for example), a firm incurs smaller or
virtually no losses if using the optimal s′ and S′ of the ordinary
periodic model. Now if L ¼ 4 (other things being equal as in
Table 4), we observe from Table 6 that a positive L will dilute the
effect of the variable T on the long-run average cost. In fact, as L
becomes longer, the variable T has a less (and eventually no)
impact on cost (more computational results are available from the
author upon request).

Finally, consider the lost-sales model with zero lead-time.
Computation (for α ¼ 0) will yield the same operational para-
meters as in Tables 1 and 2 (if K ¼ 0) or in Tables 4 and 5 (if K 4
0), if p is varied such that (p – c) is the same as p in the backlogged

Table 4
Effect of variable T on cost (K 4 0, L ¼ 0, and demand is Poisson).

K p (A) T is triangularly distributed (B) T is uniformly distributed

(s′, S′) (s*, S*) C(s*, S*) C(s′, S′) % off (s*, S*) C(s*, S*) C(s′, S′) % off

10 5 (23, 32) (24, 34) 15.59 15.74 1.0 (24, 34) 15.79 16.09 1.9
20 (28, 35) (30, 38) 17.45 18.32 5.0 (32, 38) 17.68 19.02 7.6
80 (32, 38) (34, 41) 19.12 20.97 9.7 (35, 42) 19.30 22.08 14.4

20 5 (21, 56) (21, 57) 22.07 22.10 0.1 (21, 58) 22.29 22.34 0.2
20 (27, 60) (28, 63) 24.60 24.82 0.9 (29, 63) 24.92 25.27 1.4
80 (31, 64) (33, 67) 26.66 27.20 2.0 (34, 68) 27.02 27.89 3.2

50 5 (18, 80) (18, 81) 34.42 34.43 0.0 (18, 82) 34.52 34.54 0.1
20 (25, 85) (26, 87) 37.36 37.46 0.3 (26, 88) 37.60 37.76 0.4
80 (30, 89) (31, 92) 39.65 39.88 0.6 (32, 93) 39.90 40.35 1.1

80 5 (16, 102) (16, 101) 43.40 43.40 0.0 (16, 100) 43.34 43.35 0.0
20 (24, 108) (25, 108) 46.52 46.56 0.1 (25, 108) 46.69 46.76 0.1
80 (29, 112) (31, 113) 48.92 49.11 0.4 (31, 113) 49.14 49.49 0.7

Table 5
Effect of variable T on cost (K 4 0, L ¼ 0, and demand is compound Poisson).

K p (A) T is triangularly distributed (B) T is uniformly distributed

(s′, S′) (s*, S*) C(s*, S*) C(s′, S′) % off (s*, S*) C(s*, S*) C(s′, S′) % off

10 5 (25, 38) (25, 40) 18.59 18.68 0.5 (26, 41) 18.69 18.85 0.9
20 (33, 44) (34, 46) 22.00 22.22 1.0 (35, 47) 22.18 22.56 1.7
80 (40, 50) (42, 52) 25.03 25.36 1.3 (42, 53) 25.26 25.83 2.3

20 5 (22, 60) (23, 61) 24.37 24.39 0.1 (23, 61) 24.45 24.48 0.1
20 (31, 68) (32, 69) 28.32 28.40 0.3 (33, 70) 28.48 28.61 0.5
80 (38, 74) (40, 76) 31.72 31.97 0.8 (41, 77) 31.95 32.34 1.2

50 5 (19, 83) (19, 84) 35.99 35.99 0.0 (19, 84) 36.03 36.03 0.0
20 (29, 92) (30, 92) 40.31 40.32 0.0 (30, 93) 40.44 40.46 0.1
80 (36, 98) (38, 100) 43.91 44.06 0.3 (38, 100) 44.10 44.35 0.6

80 5 (16, 100) (17, 100) 44.53 44.53 0.0 (17, 100) 44.55 44.56 0.0
20 (27, 108) (28, 109) 49.07 49.11 0.1 (28, 110) 49.18 49.24 0.1
80 (35, 115) (37, 117) 52.78 52.89 0.2 (37, 117) 52.95 53.15 0.4

Table 6
Effect of variable T on cost (K 4 0, L ¼ 4, and demand is Poisson).

K p (A) T is triangularly distributed (B) T is uniformly distributed

(s′, S′) (s*, S*) C(s*, S*) C(s′, S′) % off (s*, S*) C(s*, S*) C(s′, S′) % off

10 5 (44, 54) (44, 55) 16.86 16.97 0.7 (45, 56) 17.02 17.22 1.2
20 (50, 59) (52, 61) 19.14 19.33 1.0 (52, 61) 19.33 19.70 1.9
80 (55, 63) (57, 65) 21.14 21.57 2.0 (58, 66) 21.36 22.08 3.4

20 5 (42, 77) (42, 78) 22.90 22.93 0.1 (42, 79) 23.07 23.13 0.3
20 (49, 83) (50, 85) 25.85 25.94 0.3 (50, 86) 26.11 26.29 0.7
80 (54, 87) (56, 90) 28.29 28.66 1.3 (56, 91) 28.60 29.18 2.0

50 5 (38, 101) (38, 102) 35.04 35.05 0.0 (38, 103) 35.13 35.15 0.1
20 (47, 107) (47, 109) 38.44 38.49 0.1 (48, 110) 38.62 38.71 0.2
80 (52, 112) (54, 115) 41.10 41.37 0.7 (54, 116) 41.34 41.77 1.0

80 5 (36, 122) (36, 122) 43.81 43.81 0.0 (36, 121) 43.85 43.85 0.0
20 (45, 130) (46, 130) 47.50 47.56 0.1 (46, 129) 47.64 47.72 0.2
80 (51, 135) (53, 136) 50.30 50.50 0.4 (53, 135) 50.49 50.81 0.6
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model. This result can be seen by comparing, for example, (14)
to (6).

5. Conclusions

In this paper, we consider periodic inventory models where the
review periods are of a variable length and there is a fixed cost of
ordering for replenishment. Assuming that period lengths are
independently and identically distributed, we show that an (s, S)
policy is optimal for the infinite horizon problem. Hence, existing
algorithms could be used to obtain the optimal s and S. The
periodic review inventory policies developed in this paper are thus
easy to implement.

The computation shows that when the fixed ordering cost is
small, ignoring the period length variability can incur large costs if
lead-time is zero, shortage is costly, and/or demand variability is
small. It also shows that a firm is more vulnerable to the period
length variability if the period length is volatile. These results
agree with those in Chiang (2008); hence, the suggestions made in
Chiang (2008) apply here.

The computation also shows that when the fixed ordering cost
is large, ignoring the period length variability incurs insignificant
or no loss, particularly if lead-time is long or demand variability is
large. This means that one need not use the proposed periodic
review models in the case of large fixed ordering costs.
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