
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0
Available online at w
journal homepage: www.elsevier .com/locate/cose
Identifying android malicious repackaged
applications by thread-grained system call
sequences
Ying-Dar Lin a, Yuan-Cheng Lai b,*, Chien-Hung Chen a, Hao-Chuan Tsai c

aDepartment of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan
bDepartment of Information Management, National Taiwan University of Science and Technology, Taipei 10607,

Taiwan
cNetwork Benchmarking Lab, National Chiao Tung University, Hsinchu 30010, Taiwan
a r t i c l e i n f o

Article history:

Received 19 February 2013

Received in revised form

5 August 2013

Accepted 16 August 2013

Keywords:

Malicious repackaged applications

Dynamic analysis

System call

Android

Longest common substring
* Corresponding author. Tel.: þ886 227376794
E-mail addresses: ydlin@cs.nctu.edu.tw (

chuan@nbl.org.tw (H.-C. Tsai).
0167-4048/$ e see front matter ª 2013 Elsev
http://dx.doi.org/10.1016/j.cose.2013.08.010
a b s t r a c t

Android security has become highly desirable since adversaries can easily repackage

malicious codes into various benign applications and spread these malicious repackaged

applications (MRAs). Most MRA detection mechanisms on Android focus on detecting a

specific family of MRAs or requiring the original benign application to compare with the

malicious ones. This work proposes a new mechanism, SCSdroid (System Call Sequence

Droid), which adopts the thread-grained system call sequences activated by applications.

The concept is that even if MRAs can be camouflaged as benign applications, their mali-

cious behavior would still appear in the system call sequences. SCSdroid extracts the truly

malicious common subsequences from the system call sequences of MRAs belonging to the

same family. Therefore, these extracted common subsequences can be used to identify any

evaluated application without requiring the original benign application. Experimental re-

sults show that SCSdroid falsely detected only two applications among 100 evaluated

benign applications, and falsely detected only one application among 49 evaluated mali-

cious applications. As a result, SCSdroid achieved up to 95.97% detection accuracy, i.e., 143

correct detections among 149 applications.

ª 2013 Elsevier Ltd. All rights reserved.
1. Introduction downloads popular benign applications, dissembles them,
Smart handheld devices have become popular because they

can provide many services with existing networks. Currently

most handheld devices adopt the Android platform because of

its openness and accessibility, and so many developers are

attracted to design new applications for Android. However, as

a result of its openness, an adversary can easily create mali-

cious applications and spread them. Among them, malicious

repackaged applications (MRAs) are undoubtedly common

(Zhou & Jiang, 2012; Zheng et al., 2012). An adversary
. Fax: þ886 227376777.
Y.-D. Lin), laiyc@cs.ntust

ier Ltd. All rights reserve
embeds malicious codes, reassembles them, and then sub-

mits the MRAs to official Android Market or third-party APP

stores (Zhou & Jiang, 2012; Zheng et al., 2012; Enck et al., 2009;

Vidas et al., 2011). For smart handheld devices, precisely

detecting MRAs from downloaded applications is highly

desirable.

The MRA detection mechanisms can be roughly catego-

rized into two categories. The first category is static analysis,

which searches malicious signatures in an application

without executing it (Enck et al., 2009; Fuchs et al., 2009; Zhou
.edu.tw (Y.-C. Lai), chchen.cs99g@nctu.edu.tw (C.-H. Chen), hao-

d.

mailto:ydlin@cs.nctu.edu.tw
mailto:laiyc@cs.ntust.edu.tw
mailto:chchen.cs99g@nctu.edu.tw
mailto:haochuan@nbl.org.tw
mailto:haochuan@nbl.org.tw
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2013.08.010&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0 341
et al., 2012). Static analysis is simple and efficient in providing

rapid detection and classification for known MRAs. Unfortu-

nately, it suffers fromhardlydetecting unknownMRAs, because

every repackaged application can have different signatures by

code obfuscation and encryption. Most static analysis methods

using traditional static signatures to detect unknownMRAswill

fail since the code has already been changed to a different

appearance. To overcome this limitation, another category, dy-

namic analysis (Enck et al., 2010; Isohara et al., 2011; Blasing et al.,

2010; Burguera et al., 2011; Shabtai et al., 2011; Zhou et al., 2012),

executesapplicationstomonitor their runtimebehavior, suchas

network access and memory modifications. Compared with

static analysis, dynamic analysis can more effectively detect

MRAs (Shabtai et al., 2011; Moser et al., 2007).

Several MRA detection mechanisms using dynamic analysis

have been proposed on Android (Enck et al., 2010; Isohara et al.,

2011; Blasing et al., 2010; Burguera et al., 2011; Shabtai et al.,

2011; Zhou et al., 2012) and most of them used system calls

(Isohara et al., 2011; Blasing et al., 2010; Burguera et al., 2011).

Since system calls are embedded in the kernel space at the low

layer of the Android architecture, it is not feasible to hide the

system calls activated by applications. However, some mecha-

nisms suffer from the drawback of requiring the original appli-

cation to compare it with the malicious repackaged one

(Burgueraetal., 2011).Forpopularapplications,wecaneasilyfind

the original one in the official Android marketplace. However,

not every MRA is repackaged from popular applications. Also,

sometimes original applications are not in the official market-

place but in a third-party marketplace. Thus it is difficult to find

the original application for every MRA. The authors in (Zhou &

Jiang, 2012) tried to find original applications for verifying MRAs

manually, but were unable to find some of them. Without the

original application, these mechanisms cannot detect the cor-

responding MRA. On the other hand, some mechanisms only

detect specific MRAs, such as those violating the permissions or

leaking sensitive data (Enck et al., 2010). Somemechanisms only

use the number of system calls, thus generating low detection

accuracy (Blasing et al., 2010; Burguera et al., 2011).
Table 1 e Related work of MRA detection on Android.

Related work Category Key feature

Kirin (Enck et al., 2009) Static Permission

ScanDroid (Fuchs et al., 2009) Static Data flow & permis

in program codes

DroidMoss (Zhou et al., 2012) Static Code instructions

TaintDroid (Enck et al., 2010) Dynamic Data flow

KBB (Isohara et al., 2011) Dynamic System calls and th

parameters

AASandbox (Blasing et al., 2010) Static &

dynamic

Number of system

CrowDroid (Burguera et al., 2011) Dynamic Amount of system

Andromaly (Shabtai et al., 2011) Dynamic Abnormal behavior

SCSdroid [this work] Dynamic System call sequen
To overcome these problems, thiswork proposes a newMRA

detection mechanism, SCSdroid (System Call Sequence Droid),

by utilizing thread-grained system call sequences during runtime.

Thekeyconcept is that if anMRAcanbecamouflagedasabenign

application, its malicious behavior would still appear in the

thread-grained system call sequences. SCSdroid uses thread-

grained system call sequences, rather than process-grained

ones. A thread-grained system call sequence is the system

calls recorded for a thread, while a process-grained system call

sequence is the system calls recorded for a process. That is, the

thread-grained system call sequences mean that the system

calls produced by the process and the child-threads forked from

it are independently recorded, while process-grained sequence

means that the system calls produced by the process and all its

child-threads are recorded together. Since malicious behavior

alwayshappens ina single thread,notacrossmultiple threads, it

is difficult to identify the malicious behavior if the system calls

from the process and different threads are mixed together. Pre-

viously we actually tried to adopt process-grained system call

sequences to identify MRAs and did not obtain acceptable re-

sults, although these results are not shown in this paper.

SCSdroid first captures the system call sequence of each

thread at executing MRAs and then extracts the common

subsequences, which are the common parts of these captured

system call sequences. These extracted common sub-

sequences can be only regarded as possibly malicious

behavior of MRAs because they may also exist in benign ap-

plications. Therefore, the Bayes Theorem is adopted in

SCSdroid to filter these non-discriminating common sub-

sequences and then find the common subsequences which

indicates the trulymalicious behavior presenting in theMRAs.

SCSdroid has three advantages: (1) Even if MRAs have been

encapsulated or obfuscated, the proposed mechanism,

SCSdroid, can still capture the truly malicious behavior by

extracting their common subsequences; (2) SCSdroid adopts

thread-grained system call sequences, rather than process-

grained ones, and can thus more precisely capture malicious

behavior; and (3) Without requiring the original benign
Detecting Target Main Drawbacks

MRAs violating

permissions

Only detects specific MRAs

sion MRAs having the

conflict between

permission and

data flow

Only detects specific MRAs

General MRAs Needs the original application

MRAs leaking

sensitive data

Only detects specific MRAs

eir General MRAs Generates many false positives

calls General MRAs Generates low detection accuracy

calls General MRAs 1. Needs a lot of users

2. Needs the original application

Malicious

applications

Generates many false positives

ces General MRAs

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0342
applications, SCSdroid can extract the common subsequences

from a few training MRAs.

The rest of this paper is organized as follows. Section 2

gives a brief survey of the related work on Android. Section

3 illustrates the details of SCSdroid. The experiment envi-

ronment and experiment results are described in Section 4

and Section 5, respectively. Finally, Section 6 gives our

conclusions.
2. Related work

As Table 1 summarizes, the MRA detection mechanisms on

Android can be divided into two categories. The first is static

analysis which scans the software for matching malicious

patterns without executing it. Kirin checked permissions of

applications at install-time and thus detected the MRAs that

violates a given system policy (Enck et al., 2009). However,

Kirin did not identify the MRAs that can establish communi-

cation links without requiring any permission. Similarly,

ScanDroid extracted security specifications for automatically

checking data flows and permissions in the application codes

(Fuchs et al., 2009); it also suffered from the weakness that

Kirin has. DroidMoss aimed to discover the MRAs in the third-

party marketplaces. It calculated the similarity scores by

comparing hash values of the author information and code

instructions between the original application in the official

market and the MRA in the third-party marketplace (Zhou

et al., 2012). DroidMoss suffered from two weaknesses. The

first one is that once the MRA has been distributed in both the

official market and the third-party marketplace, DroidMoss

cannot detect this MRA. The second is that it is difficult to

obtain all of the original applications from the official market

(Zhou & Jiang, 2012).

The second category is dynamic analysiswhich collects the

runtime information at executing applications. TaintDroid

tracked the sensitive data by labeling data in the memory and

detected the privacy leaking in applications (Enck et al., 2010).

However, it focused on the MRAs that attempt to obtain sen-

sitive data. KBB (Kernel-based Behavior) collected the runtime

information of applications through system calls (Isohara

et al., 2011). KBB first generated a set of regular expression

rules from the names and parameters of system calls of

training MRAs. Then it could detect the unknown MRA by

mapping its system calls and parameters with the regular

expression rules. However, KBB generated many false posi-

tives. For example, 80 applications that matched with any

signature only contain 37 malicious applications, were re-

ported in the evaluation (Isohara et al., 2011).

AAsandbox is a hybrid approach of static and dynamic an-

alyses (Blasing et al., 2010). It decompiled the installed appli-

cation and searched for suspicious patterns in the decompiled

codes. During the runtime, AAsandbox counted the number of

all system calls to detect MRAs. However, the data obtained by

AASandbox is very diverse, causing low detection accuracy

(Blasing et al., 2010). CrowDroid is another typical mechanism

to evaluate MRAs by counting the number of system calls

(Burguera et al., 2011). CrownDroid collected all the system

calls used from a set of users during the runtime. It adopted

the K-means clustering algorithm to classify the collected
data into two groups, the benign group and the malicious

group, which can be used to identify the specified user who is

running the MRA. CrowDroid needs a set of users to execute

the same original application and the same corresponding

MRA. Unfortunately, finding the original applications of all

MRAs is usually inefficient and even impossible in Android

marketplaces.

Andromaly collected several runtime features for detecting

MRAs and evaluated different kinds of learning algorithms

used in dynamic analysis for Android malware (Shabtai et al.,

2011). This work is very good for evaluating learning algo-

rithms used in dynamic analysis. However, it does not use

real-world samples to evaluate the results. Also, most MRAs

include benign and malicious behaviors because the mali-

cious payload is enclosed into benign applications. Andromaly

does not separate behaviors, with the result that the learned

characteristics about malicious behavior may be mixed with

benign behavior, and then false positives appear when iden-

tifying benign applications. In contrast, SCSdroid filters the

system call sequences recorded from benign samples to avoid

false positives.
3. The proposed SCSdroid

Although some literature uses system calls to detect MRAs,

they suffer from a few drawbacks (Isohara et al., 2011; Blasing

et al., 2010; Burguera et al., 2011; Shabtai et al., 2011). First,

they use the number of system calls, but the metric is too

coarse, resulting in lowdetection accuracy (Blasing et al., 2010;

Burguera et al., 2011). Second, they need the original benign

application so that they can distinguish the number of system

calls between the original benign application and the corre-

sponding MRA (Burguera et al., 2011). As a result, this work

proposes SCSdroid, which uses the thread-grained system call

sequences, because these sequences can be regarded as the

actual behavior of the application.

3.1. Overview

The key concept of SCSdroid is that MRAs belonging to the

same family, i.e., a group of MRAs which embed the same

malicious codes into benign applications, will have common

malicious behavior. Therefore SCSdroid extracts the common

subsequences contained in the thread-grained system call

sequences of MRAs belonging to the same family. Since some

common subsequences may exist in both benign applications

and MRAs, it is essential to filter those ambiguous common

subsequences to obtain the truly malicious common sub-

sequences. According to these truly malicious common sub-

sequences, the evaluated application can be effectively

identified as a MRA or a benign one.

Assume that a set of MRAs, M, of the same family has

initially been collected. LetMi denote the i-thMRA in the setM.

When executing Mi, we obtain the corresponding system call

sequence set Si, which include the system call sequences of all

threads. Si,j denotes the systemcall sequence of the j-th thread

(the process is regarded as the first thread) in the set Si and S is

the set of all Si. To efficiently obtain a common subsequence

set, CS, from all pairs of Si and Sj, the layering multi-thread

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


Filtering Phase

Extracting Phase

Recording Phase

Start

Mi exist?
Execute Mi and
record system 

call Si

i++Yes

Si Exist?

No

Extract common  
subsequences with 

S1 ~Si-1

Yes
Store extracted 

common subsequences
into CS

CSi Exist?
Count the numbers of 

CSi appearing in B
and in M

Yes
Store CSi into MCS if CSi

has high malicious 
probability

End

No

i=1

i=1

No

i=1

Calculate malicious 
probability of CSi

i++

i++

Fig. 1 e Flowchart in training phase of SCSdroid.

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0 343
comparison algorithm is proposed. Finally, Bayes theorem is

adopted to obtain the set of truly malicious common sub-

sequences, MCS, from CS. CSi and MCSi represent the i-th el-

ements in the set CS and MCS, respectively. Also let the

notation jXj denote the number of elements in the set X.

SCSdroid involves two phases: the training phase and the

identifying phase. The set of MCS, will be obtained in the

training phase, while the evaluated applications will be

identified as MRAs or benign applications in the identifying

phase. The flowchart in the training phase is shown in Fig. 1

and will be further explained in the next subsection. In the

identifying phase, if an evaluated application has system call

subsequences that exist in MCS at runtime, it is detected as a

MRA.
3.2. Training phase

The training phase is composed of three steps: the recording

step, the extracting step, and the filtering step. The recording

step generates all Si, the extraction step generates CS, and the

filtering step generates MCS.

3.2.1. Recording step
In this phase, we initially collect a set ofMRAs belonging to the

same family, M, sequentially run the i-th MRA Mi in this set,

and obtain the corresponding system call sequence set Si in

the Android system at runtime. Each system call sequence

belonging to the set Si is extracted by the process ID of Mi and

the thread IDs of its descendant threads that are derived from

Mi. For example, assume that the MRA M1 forks two child

threads. At first, the system call sequence is recorded ac-

cording to process ID of M1. Since M1 forks two child threads,

the recording step also records the system call sequences

generated by these two child threads IDs. Hence, S1, the sys-

tem call sequence set of M1, contains three system call
sequences, S1,1, S1,2, and S1,3. After recording all Si, the overall

system call sequence set S ¼ {Sij1 � i � jMj} can be obtained.

3.2.2. Extracting step
The goal of the extracting step is to extract the common

subsequences by adopting the Longest Common Substring (LCS)

algorithm to indicate the possibly malicious behavior existing

in MRAs. Assume that there are two sequences “ABABC” and

“BABCA”. The LCS algorithm will output the longest common

subsequences, “BABC”, of these two sequences.

SinceanAndroidapplicationusuallyhasmultiple threads,each

Siwill includemanysystemcall sequenceswhichare extracted for

different threads. In extracting common subsequences from the

pair ofSiandSj, a simpleway isdirectly applying theLCSalgorithm

to compare one sequence in Si with another sequence in Sj. Thus

thetotalnumberofcomparisonsis jSij � jSjj.Thisoverheadisheavy
when applications containmany threads.

To reduce theoverhead,wepropose the LayeringMulti-Thread

Comparison (LMTC ) mechanism to efficiently extract common

subsequences from system call sequences. The thread tree for

each Si is established depending on thehierarchy of threads.We

observethat thesamebehaviorappear inthethreadsatthesame

layer even if the behavior belong to different applications. Thus

themaliciousbehavioractivatedbymaliciouscodes isvery likely

to appear at the same layer in the thread treesof differentMRAs.

Hence, LMTC only apply the LCS algorithm to find the common

subsequences among Si,x and Sj,y if they are at the same layer.

LMTC significantly reduces the number of comparisons in

extracting common subsequences from multi-thread system

call sequences. Assume in Si, each thread tree has P layers on

average and each layer except the first layer has the same

number of threads. That is, there are (jSij � 1)/(P� 1) threads for

each layer except the first layer. Hence, in extracting common

subsequences from the pair of Si and Sj, the number of com-

parisons in each layer is ððjSij � 1Þ=ðP� 1ÞÞ � ðð��Sj
�
�� 1Þ=ðP� 1ÞÞ.

Since the first layer needs one comparison and there are other

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


Fig. 2 e Zygote mode.

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0344
P � 1 layers, the number of comparisons is only

1þ ðP� 1ÞððjSij � 1Þ=ðP� 1ÞÞ � ðð��Sj
�
�� 1Þ=ðP� 1ÞÞ ¼ 1þ ðjSij �

1Þ � ðjSjj �1Þ=ðP� 1Þ.
Note that the SHA-1 cryptographic hash function is used to

prevent duplicate common subsequences in the extracting

step.

3.2.3. Filtering step
The extracted common subsequences cannot be directly used

in detectingMRAs because some of them appear in bothMRAs

and benign applications. These non-discriminating common

subsequences do not denote truly malicious behavior and

must be filtered out. Let the malicious probability of the

common subsequence CSi be denoted as P(MjCSi), which is the

probability of an application being the MRA when the com-

mon subsequence CSi is extracted from this application. We

use Bayes Theorem to calculate this probability as

PðMjCSiÞ ¼ PðCSijMÞ � PðMÞ
PðCSijMÞ � PðMÞ þ PðCSijBÞ � PðBÞ ; (1)

where P(B) and P(M ) are the probabilities that given applica-

tions are benign applications and MRAs, respectively. P(CSijB)
Fig. 3 e Experimenta
and P(CSijM ) represent the probabilities that the common

subsequence CSi appears in benign applications and in MRAs,

respectively.

To obtain P(CSijB) and P(CSijM ), we first count each com-

mon subsequence appearing in how many benign applica-

tions and how many MRAs. Then, for each CSi, the malicious

probability P(MjCSi) is calculated by Equation (1). To obtain the

set of truly malicious common subsequences MCS, we extract

the common subsequences that are only appear in MRAs, but

not in benign applications. Thus the common subsequenceCSi
with 100% malicious probability, i.e., P(MjCSi) ¼ 100%, are

reserved in the set MCS. That is, the subsequences in MCS

should be the truly malicious behavior.
4. Experiment environment

For easy management of the execution environment, the

emulator of Android version 2.1 was adopted because this is

the most suitable version to execute samples. Before

executing any application, we re-established a new execution

environment to maintain its integrity and correctness, and

only installed the application. This can prevent the applica-

tion from being obstructed by other unrelated executing

applications.

We used an emulator, rather than a real Android device, to

do our experiments because of two reasons. First, conducting

the experiments on an Android device takes a lot of efforts.

We have to install a MRA or a benign application, record its

system call sequences, identify it, and then clean it (recover

the original image), in an Android device. For each application,

we have to manually do the same procedure to obtain the
l environment.

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


Table 2 e The numbers of training and evaluated
samples.

Malware family Number of
training samples

Number of
evaluated samples

Kmin 10 9

ADRD 9 9

AnserverBot 9 9

Geinimi 8 7

Zsone 6 6

DroidDream 4 4

BaseBridge 4 3

DroidDream Light 3 2

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0 345
testing results. However, using an emulator, we can write

some programs to automatically operate the procedure. Sec-

ond, we actually spent a lot of efforts to detect someMRAs in a

Android device. The detecting results on an Android device

fully matched those on an emulator. Thus the testing results

on an Android emulator should be convincing.

To record the system calls at runtime, the tool “strace”

(Strace) was used to trace system calls in the Linux kernel. The

boot configuration of the Android emulator was changed to

make strace attach to Zygote, which is a process that focuses on

processing the request for executing a new Android applica-

tion (Ehringer, 2010). As shown in Fig. 2, a new application is

forked from Zygote and then executed in the Dalvik virtual

machine architecture (Ehringer, 2010). Since all of the Android

applications are forked from Zygote, strace monitors all of the

executed Android applications by tracing the child processes

of Zygote and individually records system calls of different

processes into separate files by monitoring their process IDs.

Note that when the application accesses some system ser-

vices, it must utilize binder Interprocess Communication (IPC)

to feedback the request of execution. Moreover, whether the

thread has forked any child threads can be found by clone and

fork system calls in the system call sequence. The system call

sequences of child threads are also extracted in order to

memorize the complete behavior.

Fig. 3 illustrates the experimental environment, including

the system call recorder module, the trainer module, and the

detector module. Since some behavior of the application

might interact with the Internet, the system call recorder

module is implemented in the emulator, which continuously

communicates with the Internet to capture all network-
Table 3 e The numbers of sequences and common subsequen

Malware family Number of
sequences (S )

Num
subs

Kmin 181

ADRD 82

AnserverBot 192

Geinimi 95

Zsone 51

DroidDream 90

BaseBridge 86

DroidDream Light 30
related behavior of the application. The trainer module is

responsible for extracting the truly malicious common sub-

sequences, MCS, and the detector module detects the evalu-

ated applications by using MCS.

Eight families of MRAs, including Kmin (Encyclopedia),

ADRD (Android), AnserverBot (Zhou & Jiang, 2011), Geinimi

(Strazzere & Wyatt, 2011), Zsone (Security), DroidDream

(Lookout), BaseBridge (Android) and DroidDream Light (Security

alert), were used to evaluate the effectiveness of SCSdroid.

The MRAs in each family are divided into two sets, training

samples and evaluated samples. The training samples are

used to extract the common subsequences from the recorded

system call sequences, while the evaluated samples are used

to evaluate the SCSdroid performance. The numbers of

training malicious samples and evaluated malicious samples

are shown in Table 2. In addition, the training benign samples

are used to calculate the malicious probabilities of the com-

mon subsequences for SCSdroid while the evaluated benign

samples are used to evaluate the SCSdroid performance.

There are 300 training benign samples and another 100 eval-

uated benign samples that were downloaded from the Google

official market and third-party markets, and had been

confirmed as benign applications by utilizing several anti-

virus tools (VirusTotal).
5. Experiment results

Let the true positive ratio (TP) denote the ratio of the MRAs

that are correctly detected, and the false negative ratio (FN )

denotes the ratio of the MRAs that are falsely detected as

benign applications. On the contrary, the true negative ratio

(TN ) denotes the ratio of benign applications that are correctly

detected, and the false positive ratio (FP) denotes the ratio of

benign applications that are falsely detected as MRAs. More-

over, NB and NM denote the numbers of the evaluated benign

applications and MRAs, respectively. Then a performance

metric, detection accuracy, denoted as DA, is defined as

DA ¼ TP�NM þ TN�NB

NM þNB
� 100%: (2)

Some experiments were conducted to make some obser-

vations: (1) For MRAs, what is the distribution of malicious

probability for the extracted common subsequences? (2) Can

SCSdroid detect the evaluated MRAs with high detection
ces in each malware type.

ber of common
equences (CS )

Number of malicious common
subsequences (MCS )

241 158 (65.6%)

102 28 (27.4%)

387 79 (20.4%)

156 28 (17.9%)

63 7 (11.1%)

105 9 (8.6%)

74 3 (4.1%)

28 3 (10.7%)

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


Fig. 4 e The distribution of malicious probabilities of subsequences.

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0346
accuracy? (3) What are the effects of the number of training

samples on the detection accuracy? (4) Compared with fixed-

length common subsequences, do the longest common sub-

sequences adopted in SCSdroid have the better detection

accuracy?

5.1. Distribution of the malicious probability

Table 3 shows the number of total recorded sequences for

each family of MRAs. By applying the LMTC mechanism, the

common subsequences set CS can be obtained from the

recorded system call sequences. For example, 241 different

common subsequences are extracted from ten training MRAs

infected by Kmin.

Table 3 also shows the number of the common sub-

sequences with 100%malicious probability in each family.We

observed wide ranges from 4.1% (3/74, BaseBridge) to 65.6%

(158/241, Kmin). One reason might be that there are few

trainingMRA samples in some families. Another reasonmight

be that the behavior of some MRAs is similar to those of

benign applications, and thus only a few extracted common

subsequences do not appear in benign applications, such as

DroidDream and BaseBridge.
100

77.78

88.89

100100 100 100 98100 98.17 99.08 98.13

Kmin ADRD AnserverBot Geinimi

P
er

ce
nt

ag
e 

(%
)

True Positive True Negat

Fig. 5 e TP, TN, and DA for di
Fig. 4 shows the distribution of the malicious probability of

the common subsequences for five families of MRAs. Many

common subsequences have malicious probability of 5%e

15%, meaning that they also appear in many training benign

applications and are not applicable to be chosen into MSC. On

the contrary, about half common subsequences have the

malicious probability of 100%. Since their amount is enough,

we only choose them as MSC, i.e., the common subsequences

only appear in MRAs and do not appear in any benign

application.

5.2. Detection accuracy

Fig. 5 shows the results of TP, TN, and DA for five families of

MRAs. In the experimental results, 2 of 100 evaluated benign

applications were detected as theMRA Geinimi. As a result, the

TN is (98/100) ¼ 98%. Also, since two false positives exist

among 100 benign applications, its DA is (7 þ 98)/

(7 þ 100) ¼ 98.13%. On the other hand, one evaluated Droid-

Dream Light and two evaluated ADRDs were not detected as

MRAs. Hence, the TP of DroidDream Light is (1/2)¼ 50% and its

DA is (1 þ 100)/(2 þ 100) ¼ 99.02%. The TP of ADRD is (7/

9) ¼ 77.78% and its DA is (7 þ 100)/(9þ 100)¼ 98.17%. The TP of
100 100 100

50

100 100 100 10099.02 100 100 99.02

Zsone DroidDream BaseBridge DroidDream
Light

ive Detection Accuracy

fferent families of MRAs.

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


95.92 91.84 91.84

44

86

98

61.07

86.58
95.98

49 Benign Samples 150 Benign Samples 300 Benign Samples

P
er

ce
nt

ag
e 

(%
)

True Positive True Negative Detection Accuracy

Fig. 6 e TP, TN, and DA for different numbers of training

benign samples.

Table 4 e Number of subsequences between different
approaches.

Mechanism Number of
common

subsequences
(CS )

Number of
malicious
common

subsequences
(MCS )

Longest common

subsequences

614 201

Fixed length

subsequences

(length ¼ 15)

6206 2956

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0 347
AnserverBot is (8/9) ¼ 88.89% and its DA is (8 þ 100)/

(9 þ 100) ¼ 99.08%.

In overall, SCSdroid can effectively distinguish most

benign applications and MRAs, albeit with a few positives and

false negative. SCSdroid can achieve the overall detection

accuracy of (9 þ 7 þ 8 þ 7 þ 6 þ 4 þ 3 þ 1 þ 98)/

(9 þ 9 þ 9 þ 7 þ 6 þ 4 þ 3 þ 2 þ 100) ¼ 95.97%.
5.3. Effects of the number of training samples

To further clarity the effects of the number of training sam-

ples on TP, TN, and DA, we first changed the number of

training benign applications and then changed the number of

training MRAs. First, we fixed the original 49 training MRAs

and changed the number of training benign applications as 49,

150, 300 samples. Fig. 6 shows the results for different

numbers of training benign samples. The more the training

benign samples, the better the TN. The reason is that more

non-discriminating common subsequences will be filtered

when there are more training benign samples. Thus the ob-

tained MCS is purer. On the contrary, the TP is slightly

reduced. Four false negative occurred at using 150 and 300

benign samples. The reason might be insufficient training

MRA samples and too many benign samples simultaneously.

Then the number of training MRA samples was changed.

We only focused on Kmin and Geinimi because the numbers of

MRAs in other families were too small. Fig. 7 shows the results

for different numbers of training MRA samples. In this figure,

the TP is unchanged, meaning that SCSdroid using fewer

MRAs can still capture enough truly malicious subsequences.

However, it is somewhat strange that the TN slightly
100 100 100 100 001001001 001001001 98 98.13

Kmin (10 samples) Kmin (5 samples) Geinimi (8 samples) Geinimi (4 samples)

P
er

ce
nt

ag
e 

(%
)

True Positive True Negative Detection Accuracy

Fig. 7 e TP, TN, and DA for different numbers of training

MRA samples.
decreased with more training MRA samples for Geinimi. This

might be that the extracted common subsequences might

involve some harmless system call sequences, such as

repeatedly open files, read files, and close files. Since the

common subsequence does not exist in the training benign

samples, it is reserved in MCS. Once the evaluated benign

application contains this subsequence, falsely detecting it as

an MRA is possible. Hence, for some families of MRAs, if the

number of training MRA samples increase, it is essential to

increase the number of training benign samples to obtain a

better TN.

5.4. Fixed length and longest common subsequences

On a personal computer, Rozenberg et al. divided the system

call sequence into fixed-length sequences and found their

fixed-length common subsequences to detect malicious files

(Rozenberg et al., 2011). They claimed that the subsequences

with the fixed length equal to 15 had the best detection results.

In this study the fixed-length subsequences and longest

common subsequences are compared to verify the superiority

of the latter.

Table 4 shows the numbers of common subsequences and

the malicious common subsequences in different approaches

for 29 training MRAs including Kmin (Encyclopedia), Geinimi

(Strazzere & Wyatt, 2011), DroidDream (Lookout), BaseBridge

(Android) and DroidDream Light (Security alert). The fixed-

length approach generated more common subsequences

and malicious common subsequences than SCSDroid which

uses the longest common subsequences.

Next, TP, TN, and DA were evaluated by using these two

malicious common subsequences. As Fig. 8 shows, SCSdroid

has a high TN because it falsely detected only two benign

applications among 100 evaluated benign samples as the
Fig. 8 e TP, TN, and DA between fixed length and longest

common subsequences.

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


1 stat64("/data/data/com.droiddream.lovePositions/shared_prefs/pref_config_setting.xml", 0xbea238c8) = -1 ENOENT 
(No such file or directory) 

2 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
3 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
4 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
5 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
6 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
7 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
8 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
9 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
10 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
11 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
12 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
13 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
14 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
15 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
16 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
17 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
18 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
19 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
20 mprotect(0x41adf000, 8192, PROT_READ|PROT_WRITE) = 0 
21 socket(PF_INET6, SOCK_STREAM, IPPROTO_IP) = -1 EAFNOSUPPORT (Address family not supported by 

protocol) 
22 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 26 
23 getsockname(26, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 
24 bind(26, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, 128) = 0 
25 getsockname(26, {sa_family=AF_INET, sin_port=htons(60670), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 
26 ioctl(26, FIONBIO, [1]) = 0 
27 getsockname(26, {sa_family=AF_INET, sin_port=htons(60670), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 
28 connect(26, {sa_family=AF_INET, sin_port=htons(8080), sin_addr=inet_addr("184.105.245.17")}, 128) = -1 

EINPROGRESS (Operation now in progress)

Fig. 9 e The common subsequence of malicious behavior.

c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0348
MRAs. However, the fixed length approach falsely detected 12

benign applications as MRAs. This is because the fixed length

approach generated 2956 subsequences to detect MRAs. It is

very likely to generate a higher FP. On the contrary, SCSdroid

falsely detects one MRA as a benign one. The reason is that

SCSdroid extracts fewer subsequences than the fixed length

approach. In overall, SCSdroid has a much better DA than the

fixed length approach.

5.5. Case study

Two further cases were investigated. In the first case the

common subsequence of malicious behavior was studies, and
1 prctl(0x8, 0x1, 0, 0, 0) = 0 
2 setgroups32(2, [3003, 1015]) = 0 
3 setgid32(10028)         = 0 
4 setuid32(10028)         = 0 
5 gettid()                = 251 

…… 
95 open("/data/app/com.moonbeam.android.magi
96 lseek(24, 0, SEEK_CUR)  = 0 
97 lseek(24, 0, SEEK_END)  = 3493907 
98 lseek(24, 0, SEEK_SET)  = 0 
99 lseek(24, 3493885, SEEK_SET) = 3493885 
100 read(24, "P", 1)        = 1 
101 read(24, "K", 1)        = 1 
102 read(24, "\5", 1)       = 1 
103 read(24, "\6", 1)       = 1 
104 lseek(24, 0, SEEK_CUR)  = 3493889 
105 lseek(24, 0, SEEK_CUR)  = 3493889 
106 lseek(24, 0, SEEK_END)  = 3493907 
107 lseek(24, 3493889, SEEK_SET) = 3493889 
108 lseek(24, 3493889, SEEK_SET) = 3493889 
109 read(24, "\0\0\0\0\30\1\30\1\2H\0\0\373\0075\
110 lseek(24, 0, SEEK_CUR)  = 3493907 
111 lseek(24, 0, SEEK_END)  = 3493907 
112 lseek(24, 3493907, SEEK_SET) = 3493907 
113 lseek(24, 3475451, SEEK_SET) = 3475451 
114 read(24, "PK\1\2\24\0\24\0\10\0\10\0\262\246
115 lseek(24, 3479547, SEEK_SET) = 3479547 
116 read(24, "\0\0\0\367\226i;H\360\30PH\266\0\0

Fig. 10 e The case o
in the second a false positive existing in our experiments was

investigated.

5.5.1. Malicious behavior
Fig. 9 shows a piece of the common subsequence which has

malicious behavior. This common subsequencewas extracted

from the MRA “DroidDream”. The primary goal of the common

subsequence is to allow an attacker to steal information.

Referring to Fig. 9, the application initially checks whether the

file “pref_config_setting.xml” exists in the file system. If the

handheld was compromised by DroidDream, the file “pre-

f_config_setting.xml” exists in the file system. This checking

can avoid stealing information from the same device. In this
cshop.apk", O_RDONLY|O_LARGEFILE) = 24 

0\0\0", 18) = 18 

T=j\260l\257\322\34\0"..., 4096) = 4096 

H\266\0\0\23\0\0\0\0"..., 4096) = 4096

f false positive.

http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0 349
case, the file “pref_config_setting.xml” does not exist since our

environment has not been compromised initially. Then, the

application starts to query the remote server (184.105.245.17)

which will silently establish the file “pref_config_setting.xml”

to attack this device.

5.5.2. False positive
In our experiments, SCSdroid had two false positives, which

were caused by the same common subsequence extracted

from the MRA “Geinimi”. Fig. 10 contains the common subse-

quence that leads the false positive. It involves the prepara-

tion operations when the application activates, that is, it

contains some operations before the system reads the sub-

stance of the application. Although these operations are the

harmless behavior, they are not filtered in the filtering phase.

This is because the common subsequence includes 116 sys-

tem calls, i.e., it is very long. The preparation operations of

most applications are very similar but with a few differences.

Hence, if the extracted subsequences of evaluated MRAs

involve preparation operations of many system calls, a few

variation of system call sequences might happen and thus

there is a small probability to lead the false positive.
6. Conclusions

This work proposes a MRA detection mechanism, SCSdroid,

based on thread-grained system call sequences. SCSdroid first

captures the system call sequence of each thread. Then

SCSdroid utilizes the proposed LTMCmechanism to efficiently

compare the pair of system call sequences in the same layer

and adopts the LCS algorithm to effectively extract the com-

mon subsequences of MRAs. Finally, SCSdroid adopts Bayes

Theorem to find the truly malicious common subsequences.

According to these truly malicious common subsequences,

the evaluated application can be effectively identified as a

MRAor a benign one. Experimental results show that SCSdroid

falsely recognizes only one malicious application among 25

MRAs and only two benign applications among 100 benign

applications, achieving a high detection accuracy of 97.6%.

Some interesting observations can be summarized as fol-

lows. The first is that the behavior of some families of MRAs,

such as DroidDream and BaseBrige, is very similar to that of

benign applications. Only a few subsequences do not appear in

benign applications and thus it is more difficult to detect these

MRAs. The second is that for some families of MRAs, if more

training malicious samples exist, it is essential to simulta-

neously increase the number of training benign samples to

obtain a better TN. The third is that the longest common sub-

sequences can extract purer subsequences to more correctly

detect theMRAs, comparedwith thefixed lengthsubsequences.

There are a number of directions for future study that will

improve SCSdroid. First, SCSdroid can detect unknown MRAs

which belong to the family we have already trained. However,

it cannot detect MRAs belonging to an untrained family since

the system call sequences for the family had not been ob-

tained. Thus we want to extend SCSdroid to a more generic

approach which can detect any untrained family of MRAs in

the future. Second, SCSdroid can only record the behaviors

which are automatically generated from applications.
However, applications have more behaviors when users

perform the operations. Therefore, it is necessary to consider

how to grab the complete behaviors in the applications. Third,

from our sample set, it is preliminarily verified that SCSdroid

can detect MRAs very well. Currently some datasets with

more Androidmalware have been collected (Zheng et al., 2012;

Zheng et al.). Using these sample sets to validate the appli-

cability of SCSdroid in real world scenarios is a good future

direction.

Acknowledgments

This work was supported in part by National Science Council

and Institute of Information Industry in Taiwan.
r e f e r e n c e s

Android.Adrdjsymantec. Available at: http://www.symantec.com/
security_response/writeup.jsp?docid¼2011-021514-4954-99.

Android.Basebridge. Available at: http://www.symantec.com/
security_response/writeup.jsp?docid¼2011-060915-4938-99.

Blasing T, Batyuk L, Schmidt A-D, Camtepe SA, Albayrak S. An
android application sandbox system for suspicious software
detection. In: Proceedings of the 5th international conference
on malicious and unwanted software (Malware 2010), Nancy,
France 2010. p. 55e62.

Burguera I, Zurutuza U, Simin NT. Crowdroid: behavior-based
malware detection system for Android. In: Proceedings of the
1st ACM workshop on security and privacy in smartphones
and mobile devices, Chicago, IL, USA October 2011. p. 15e25.

Ehringer D. The Dalvik virtual machine architecture. Available at,
avidehringer.com/software/android/The_Dalvik_Virtual_
Machine.pdf; March 2010.

EnckW, Ongtang M, McDaniel P. Understanding Android security.
IEEE Security & Privacy Magazine 2009;7(1):10e7.

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification. In: Proceedings of the 16th ACM
conference on computer and communications security,
Chicago, IL, USA November 2009. p. 235e45.

Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, Sheth AN.
TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: Proceedings of the 9th
USENIX conference on operating systems design and
implementation, Vancouver, BC, Canada October 2010.
p. 393e407.

Encyclopedia entry: Trojan:AndroidOS/Kmin.A. Available at: http://
www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.
aspx?Name¼Trojan%3AAndroidOS%2FKmin.A.

Fuchs AP, Chaudhuri A, Foster JS. SCanDroid: automated security
certification of Android applications. Technical report.
University of Maryland; 2009.

Isohara T, Takemori K, Kubota A. Kernel-based behavior analysis
for Android malware detection. In: Proceedings of the 7th
international conference on computational intelligence and
security, Sanya, Hainan, China December 2011. p. 1011e5.

Lookout mobile security technical tear down. Lookout Mobile
Security.

Moser A, Kruegel C, Kirda E. Limits of static analysis for malware
detection. In: Proceeding of annual computer security
applications conference, Miami December 2007. p. 421e30.

Rozenberg B, Gudes E, Elovici Y, Fledel Y. A method for detecting
unknown malicious executables. In: Proceedings of the 2011

http://www.symantec.com/security_response/writeup.jsp%3fdocid%3d2011-021514-4954-99
http://www.symantec.com/security_response/writeup.jsp%3fdocid%3d2011-021514-4954-99
http://www.symantec.com/security_response/writeup.jsp%3fdocid%3d2011-021514-4954-99
http://www.symantec.com/security_response/writeup.jsp%3fdocid%3d2011-060915-4938-99
http://www.symantec.com/security_response/writeup.jsp%3fdocid%3d2011-060915-4938-99
http://www.symantec.com/security_response/writeup.jsp%3fdocid%3d2011-060915-4938-99
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref1
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref1
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref1
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref1
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref1
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref1
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref2
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref2
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref2
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref2
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref2
http://avidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://avidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref4
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref4
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref4
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref5
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref5
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref5
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref5
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref5
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref6
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref6
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref6
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref6
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref6
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref6
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref6
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx%3fName%3dTrojan%253AAndroidOS%252FKmin.A
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx%3fName%3dTrojan%253AAndroidOS%252FKmin.A
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx%3fName%3dTrojan%253AAndroidOS%252FKmin.A
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx%3fName%3dTrojan%253AAndroidOS%252FKmin.A
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref7
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref7
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref7
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref8
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref8
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref8
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref8
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref8
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref9
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref9
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref9
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref9
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref10
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref10
http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010


c om p u t e r s & s e c u r i t y 3 9 ( 2 0 1 3 ) 3 4 0e3 5 0350
IEEE 10th international conference on trust, security and
privacy in computing and communications, Changsha, China
November 2011. p. 190e6.

Security alert: new DroidDream Light variant published to
Android market. Available at: http://blog.mylookout.com/
blog/2011/07/08/security-alert-new-droiddream-light-variant-
published-to-android-market/.

Security alert: Zsone Trojan found in Android market. Available
at: https://blog.lookout.com/blog/2011/05/11/security-alert-
zsone-trojan-found-in-android-market/.

Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y. ‘Andromaly’: a
behavioral malware detection framework for Android devices.
Journal of Intelligent Information Systems January
2011;38(1):161e90.

Strace. Available at: http://sourceforge.net/projects/strace/.
Strazzere T, Wyatt T. Geinimi trojan technical teardown. Lookout

Mobile Security; 2011.
Vidas T, Votipka D, Christin N. All your droid are belong to us: a

survey of current Android attacks. In: Proceedings of the 5th
USENIX conference on offensive technologies, San Francisco,
CA, USA August 2011.

VirusTotal e free online virus, malware and URL scanner.
Available at: https://www.virustotal.com/.

Zheng M, Lee PPC, Lui JCS. ADAM: an automatic and extensible
platform to stress test Android anti-virus systems. In:
Proceedings of the 9th conference on detection of intrusions
and malware & vulnerability assessment (DIMVA’12),
Heraklion, Crete, Greece July 2012.

Zheng M, Sun M, Lui JCS. DroidAnalytics: a signature based
analytic system to collect, extract, analyze and associate
Android malware. Available at: http://arxiv.org/abs/1302.
7212.

Zhou Y, Jiang X. Dissecting Android malware: characterization
and evolution. In: Proceedings of the 33rd IEEE symposium on
security and privacy, San Francisco, CA, USA May 2012.
p. 95e109.

Zhou Y, Jiang X. An analysis of the AnserverBot Trojan. Technical
report; September 2011.

Zhou W, Zhou Y, Jiang X, Ning P. Detecting repackaged
smartphone applications in third-party Android
marketplaces. In: Proceedings of the 2nd ACM conference on
data and application security and privacy, San Antonio, TX,
USA February 2012. p. 317e26.

Zhou Y, Wang Z, Zhou W, Jiang X. Hey, you, get off of my market:
detecting malicious apps in official and alternative Android
markets. In: Proceedings of the 19th network and distributed
system security symposium, San Diego, CA, USA February
2012.

Ying-Dar Lin is professor of computer science, founder and di-
rector of the Network Benchmarking Lab (www.nbl.org.tw), and
founder of the Embedded Benchmarking Lab (www.ebl.org.tw) at
National Chiao Tung University. His research interests include
design, analysis, implementation, and benchmarking of network
protocols and algorithms; quality of service; network security;
deep-packet inspection; P2P networking; and embedded hard-
ware/software codesign. He is an IEEE fellow and on the editorial
boards of IEEE Transactions on Computers, Computer, IEEE
Network, IEEE Communications Magazine Network Testing Se-
ries, IEEE Communications Surveys and Tutorials, IEEE Commu-
nications Letters, Computer Communications, Computer
Networks, and IEICE Transactions on Information and Systems.
Contact him at ydlin@cs.nctu.edu.tw.

Yuan-Cheng Lai received the Ph.D. degree in computer science
fromNational Chiao Tung University in 1997. He joined the faculty
of the Department of Information Management at National
Taiwan University of Science and Technology in 2001 and has
been a professor since 2008. His research interests include wire-
less networks, network performance evaluation, network secu-
rity, and content networking. He can be reached at laiyc@cs.ntust.
edu.tw.

Chien-Hung Chen performed this research while at National
Chiao Tung University. He is now an engineer at TrendMicro. His
research interests include embedded system design, multimedia
applications, and performance evaluation. He has an MS in com-
puter science from National Chiao Tung University. Contact him
at cfhung@cs.nctu.edu.tw.

Hao-Chuan Tsai received the BS degree in mathematics in 2002
from SooChow University, Taipei, Taiwan, the MS degree in
computer science and information engineering in 2004 from Fu
Jen Catholic University, Taipei, Taiwan, and the Ph.D degree in
computer science and information engineering in 2010 from Na-
tional Chung Cheng University, Chiayi, Taiwan. He is currently a
Post Doc Researcher at Network Benchmarking Lab, National
Chiao Tung University, Taiwan. His research interests include
cryptography, image hiding, and malware detection algorithms.

http://refhub.elsevier.com/S0167-4048(13)00127-2/sref10
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref10
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref10
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref10
http://blog.mylookout.com/blog/2011/07/08/security-alert-new-droiddream-light-variant-published-to-android-market/
http://blog.mylookout.com/blog/2011/07/08/security-alert-new-droiddream-light-variant-published-to-android-market/
http://blog.mylookout.com/blog/2011/07/08/security-alert-new-droiddream-light-variant-published-to-android-market/
https://blog.lookout.com/blog/2011/05/11/security-alert-zsone-trojan-found-in-android-market/
https://blog.lookout.com/blog/2011/05/11/security-alert-zsone-trojan-found-in-android-market/
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref11
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref11
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref11
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref11
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref11
http://sourceforge.net/projects/strace/
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref12
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref12
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref13
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref13
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref13
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref13
https://www.virustotal.com/
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref14
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref14
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref14
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref14
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref14
http://arxiv.org/abs/1302.7212
http://arxiv.org/abs/1302.7212
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref15
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref15
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref15
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref15
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref15
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref16
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref16
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref17
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref17
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref17
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref17
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref17
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref17
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref18
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref18
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref18
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref18
http://refhub.elsevier.com/S0167-4048(13)00127-2/sref18
http://www.nbl.org.tw
http://www.ebl.org.tw
mailto:ydlin@cs.nctu.edu.tw
mailto:laiyc@cs.ntust.edu.tw
mailto:laiyc@cs.ntust.edu.tw
mailto:cfhung@cs.nctu.edu.tw
http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010

	Identifying android malicious repackaged applications by thread-grained system call sequences
	1 Introduction
	2 Related work
	3 The proposed SCSdroid
	3.1 Overview
	3.2 Training phase
	3.2.1 Recording step
	3.2.2 Extracting step
	3.2.3 Filtering step


	4 Experiment environment
	5 Experiment results
	5.1 Distribution of the malicious probability
	5.2 Detection accuracy
	5.3 Effects of the number of training samples
	5.4 Fixed length and longest common subsequences
	5.5 Case study
	5.5.1 Malicious behavior
	5.5.2 False positive


	6 Conclusions
	Acknowledgments
	References


