
S.-C. Chang et al.: A Platform Based Bus-interleaved Architecture for De-blocking Filter in H.264/MPEG-4 AVC

Manuscript received January 14, 2005 0098 3063/05/$20.00 © 2005 IEEE

249

A Platform Based Bus-interleaved Architecture for De-blocking
Filter in H.264/MPEG-4 AVC

Shih-Chien Chang, Wen-Hsiao Peng, Shih-Hao Wang and Tihao Chiang

Abstract —In this paper, we proposed a platform based
bus-interleaved architecture for the de-blocking filter in
H.264. Specifically, to efficiently use the bus bandwidth, we
classify the filtering mode into 8 types and use an adaptive
transmission scheme to avoid redundant data transfer.
Moreover, to reduce the processing latency, we use a bus-
interleaved architecture for conducting data transmission and
filtering in parallel. As compared to the state-of-the-art
designs, our scheme offers 1.6x to 7x performance
improvement. While clocking at 100MHz, our design can
support 2560x1280@30Hz processing throughput. The
proposed design is suitable for low cost and real-time
applications. Moreover, it can be easily applied in system-on-
chip design.

Index Terms — H.264 de-blocking filter, loop filter, AVC.

I. INTRODUCTION
 H264, also known as MPEG-4 AVC [7], has been proven to
have much better visual quality as compared to the existing
standards such as MPEG-1, -2, -4, H.263 and so on. Among
various coding tools in H.264, the in-loop de-blocking filtering
has most significant impact on the visual quality improvement.
To reduce the blocking artifact, the in-loop de-blocking filter
adaptively conducts the filtering along the boundaries of each
4x4 block according to the boundary strength (bS), the
quantization parameter (Qp) and the content of the block. The
blocking artifact is removed. However, the improvement is at
the cost of intensive computation and memory access.

For real-time applications, the de-blocking filtering becomes
one of the performance bottlenecks. In [1]-[5] dedicated
hardware was developed for acceleration. Specifically, the
architecture of [5] is for frame-based filtering. The de-
blocking filtering is invoked after the reconstruction of the
entire frame. Apparently, frame-based filtering requires a
frame buffer and longer system latency. To reduce the buffer
size and latency, [1]-[4] proposed a macroblock-based (MB-
based) filtering architecture. The filtering can be started upon
the reconstruction of a MB. To achieve high throughput, in [2],
[4] two-ported SRAMs are used to simultaneously conduct the
reading and writing during the filtering. However, the high
throughput is at the cost of complex and costly memory
architecture. In addition, for filtering a MB, [2], [4] need to
first buffer the entire MB. The hardware is idled for waiting
the data. Moreover, the data movement of [2]-[5] is not mode
aware which means that the transmission overhead is not

minimized. Hence, in this paper, we propose a parallel
processing architecture and a more efficient data transmission
scheme to improve the performance.

In this paper, we propose a platform-based architecture for
de-blocking filtering. Fig. 1 shows an overview of our H.264
decoder platform [6]. Mainly, it includes an ARM9 CPU for
the data flow control and several dedicated accelerators for the
computation intensive tasks. The CPU communicates with the
accelerators via a 32-bit AHB bus. For the de-blocking
filtering, there are intensive data transmissions among CPU,
embedded memory and the accelerator. To reduce the bus
workload, we classify the filtering modes of a MB into various
types. According to the filtering type distribution, we propose
an adaptive transmission scheme. As compared to [2]-[5], the
bus bandwidth requirement of our design is reduced to 11% to
55% of [2]-[4] and 6% to 28% of [5]. Moreover, to reduce the
processing latency, we develop a bus-interleaved architecture.
As compared to [2], [3], [4], and [5], our design uses simpler
single-ported memory and averagely offers 1.6x to 7.1x
improvement on processing latency.

The remainder of this paper is organized as follows. Section
II introduces the algorithm of de-blocking filtering in H.264.
Section III describes our adaptive transmission scheme and
shows its benefits. Section IV illustrates our bus-interleaved
architecture and its operation. Section V gives the processing
latency comparisons of different designs. Section VI presents
the comparison of hardware design, memory access frequency
and system performance. Lastly, Section VII concludes this
work and shows the applications.

Fig. 1. The proposed ARM based H.264 decoder architecture.

IEEE Transactions on Consumer Electronics, Vol. 51, No. 1, FEBRUARY 2005 250

II. ALGORITHM OF DE-BLOCKING FILTERING
The in-loop de-blocking filter in H.264 [7] is designed to

reduce the blocking artifacts. The filter operation is applied to
each edge of a 4x4 block. Fig. 2 shows the edge filtering order
within a 16x16 luminance MB. As shown, the vertical edges
are filtered first and then the horizontal ones. In addition, for
filtering an edge of a 4x4 block, consecutive 8 pixels from the
same row (or column) of two adjacent 4x4 blocks are required.
For example in Fig. 2, the pixels (A0-A3, B0-B3) are accessed
for the vertical (or horizontal) filtering of a 4x4 block.
Particularly, each sample pixel of (A0-A3, B0-B3) is filtered
adaptively by different filter taps.

To decide the filter tap for each pixel, the following factors
are used:

1. Boundary strength (bS).
2. Thresholds of α and β.
3. The content of sample pixels.

Fig.3 elaborates the detail about how these factors are used to
decide the filter tap for each pixel of (A0-A3, B0-B3). As
shown, the first step is to use (1) for deciding whether the
filtering is required or not. Then, according to the bS level,
thresholds (α, β) and the absolute differences of adjacent
reconstructed pixels, different filters are applied to different
pixels. Specifically, in Fig. 3, not all the input pixels (A0-A3,
B0-B3) will be updated with the filtered results. For example,
if bS is not of strongest level, only A0, B0, A1, B1 are updated.
For those pixels without update, the original pixel values are
unchanged. The process is continued by sliding the filtering
window one block to the right (or to the bottom) at a time as in
Fig. 2. Note that the updated (B0-B3) could be used for the
filtering of next adjacent block when the filtering window
slides one block to the right (or to the bottom).

bS!=0 AND |A0–B0|<α AND |A1–A0|<β AND |B1–B0|<β (1)

In Fig. 3, the bS level is mainly used to decide the necessity
of filtering and filter type. In H.264, the bS has 5 levels. The

Fig. 4. Decision flow of boundary strength (bS) where P and Q denote the
identifications of two adjacent 4x4 blocks.

Fig. 5. The MB data and its adjacent blocks used for MB based de-
blocking filtering.

Fig. 2. The sequential order for filtering the edges of 4x4 blocks in a
luminance MB.

Fig. 3. Decision flow of filter tap selection.

S.-C. Chang et al.: A Platform Based Bus-interleaved Architecture for De-blocking Filter in H.264/MPEG-4 AVC 251

actual level is determined by the MB type, edge position,
reference frame type, and motion vectors of two adjacent
blocks. Fig. 4 shows the decision of bS level. As shown, the
strongest bS level, i.e., bS=4, is identified when two adjacent
blocks are intra coded and locate at the MB boundary. In this
case, obvious blocking artifact could be noticed. As a result,
higher bS level invokes stronger low pass filtering. On the
other hand, when the bS is at the weakest level, i.e., bS=0,
there is no filtering.

In addition to the bS level, the parameters (α, β)  are used to
preserve the real edge. In (1), the necessity of filtering is also
controlled by the parameters (α, β) . Specifically, α and β are
assigned with higher values to increase the possibility of
filtering as higher quantization parameter causes more
noticeable blocking artifact. In contrast, smaller α and β are
used for lower quantization parameter.

III. ADAPTIVE MACROBLOCK TRANSMISSION SCHEME
In this paper, our de-blocking filtering is designed to

operate at MB level. The entire frame is filtered in a MB-by-
MB manner and the MBs within a frame are processed in a
raster scanning order. The filtering can be started upon the
reconstruction of a MB. For filtering a MB, we need to first
retrieve the reconstructed data from the memory (or certain
module) and send it to the dedicated accelerator via a bus. As
more and more dedicated accelerators are deployed, the
limited and shared bus bandwidth could become the
performance bottleneck. To reduce the demand of bus
bandwidth, we propose an adaptive MB transmission scheme.

A. MB Mode Classification
Fig. 5 depicts the data required for filtering a MB. As shown,

in addition to current MB, the adjacent 4x4 blocks at the right
and left boundaries are also needed. In [2]-[5], all the data as
depicted in Fig. 5 are transferred to the de-blocking filter
accelerator. However, we find that not all 4x4 blocks within a
MB need to be filtered. We can more efficiently use the bus
bandwidth by minimizing the redundant data transfer. To do so,
we define 8 MB filtering modes according to the filtering
requirements of left MB boundary, upper MB boundary and
current MB. Table I summarizes the corresponding data size

of each mode. For example, mode 5 denotes the case in which
only the left and the top MB boundaries are required for
filtering. As a result, for the luminance part, we simply need
the adjacent 4 blocks in the left MB, the adjacent 4 blocks in
the upper MB and the adjacent 7 blocks in current MB. By the
same token, we can derive the data size for the chrominance
part. Totally, the data size of mode 5 is 100 words including
60 words for luminance component and 40 words for
chrominance component. Following the same principle, one
can derive the data size for the other modes. By distinguishing
different filtering modes, we can minimize the redundant data
transfer.

B. MB Filtering Mode Distribution
 Fig. 6 shows the mode distribution of Akiyo and Foreman

sequences based on JM6.0. Without mode classification, [2]-
[5] treat all MBs as mode 1, i.e., all the input samples shown
in Fig. 5 are transferred. However, from Fig. 6, we learn that
mode 1 is actually less than 30%. Moreover, in the extreme
case of Akiyo, most MBs use skip mode that does not require
any input samples. Thus, [2]-[5] actually incur many redundant
data transfer. With the filtering mode classification, we can
more efficiently use the bus bandwidth. According to the mode
distribution, in Akiyo sequence, we can save 89% of data
transfer used in [2]-[4] and 94% of that in [5]. Similarly, in
Foreman sequence, our design can save 45% of data
movement used in [2]-[4] and 72% of that in [5]. Significant
data transfer reduction is achieved.

IV. BUS-INTERLEAVED ARCHITECTURE
To reduce the processing latency, we propose a bus-

interleaved architecture in [1]. Specifically, we perform the
filtering and the data transfer in parallel. Different from prior
designs [2], [4], and [5], the filtering can be started while the
data is being streamed in and out. The processing latency is
reduced due to the parallelism.

A. Proposed Bus-interleaved Architecture
Fig. 7 shows our proposed architecture. It mainly includes

four components:

Akiyo Skip
83%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 2 3 4 5 6 7 Skip
mode

Foreman Akiyo

Fig. 6. MB filtering mode distribution in Akiyo and Foreman sequences
coded at QCIF@15fps 64Kbps with JM6.0.

TABLE I
FILTERING MODES OF A MACROBLOCK

Mode Left* Upper* Current
MB

Data Size**

1 Y Y Y 144
2 N Y Y 128
3 Y N Y 128
4 N N Y 96
5 Y Y N 100
6 N Y N 64
7 Y N N 64

Skip N N N 0
*: The MB boundary required for filtering.

**: Data transfer size in words.

IEEE Transactions on Consumer Electronics, Vol. 51, No. 1, FEBRUARY 2005 252

1. One-dimensional Adaptive FIR Filter
The one-dimensional FIR filter adaptively performs the
horizontal/vertical filtering in a row-by-row manner. For
each row, it takes 8 input samples from two adjacent 4x4
blocks to conduct filtering. Accordingly, it produces 4
filtered results and 4 intermediate results for the filtering of
next block.

2. Single-ported SRAM
A single-ported SRAM is used as a local memory for
buffering the horizontally filtered and transposed MB.
Specifically, it stores all the 4x4 blocks in current MB (i.e.,
96x32 bits) and the adjacent 4x4 blocks in the upper and left
MBs (,i.e., 44x32 bits). The total size of the SRAM is
140x32 bits.

3. 4x4 Pixel Arrays (Reg1 and Reg2)
In Fig. 7, Reg1 buffers the intermediate results produced by
the FIR filter. On the other hand, Reg2 acts as a transposed
memory. Particularly, Reg2 performs the transposition by
storing the data in either Horizontal-In-Vertical-Out or
Vertical-In-Horizontal-Out fashion. Fig. 8 shows an example
of the transposition where Row(n, Bm) represents the n-th
row of m-th block and Col(n, Bm) denotes the n-th column
of m-th block. Specifically, Fig. 8 (a) depicts the case as the
horizontally filtered Block 0 is being written to Reg2 in a

row-by-row manner. After Block 0 is completely buffered in
Reg2, Fig. 8 (b) illustrates that the transposition is done by
writing Block 0 to the SRAM in a column-by-column
manner. Particularly, after Col(1, B0) is stored in the SRAM,
we filled out the left space in Reg2 with Row(1, B1), i.e., the
first row of next horizontally filtered block. Such
replacement is continued until horizontally filtered Block 1 is
completely buffered in Reg2. Since Block 1 is stored
column-by-column in Reg2, we transpose Block 1 by
outputting the data row-by-row to the SRAM. Such cyclical
rotation between Horizontal-In-Vertical-Out and Vertical-In-
Horizontal-Out is conducted throughout the entire de-
blocking process. Traditional designs [2], [4], and [5] require
stalls for block transposition. However, our seamless design
requires no stalls.

4. Data Flow Control Unit
The data flow control unit consists of a finite state machine
which controls synchronization among 1-D FIR filter, 4x4
pixel arrays and local SRAM buffer. Moreover, it responses
to the de-blocking filtering request from the AHB bus.

B. Operation of Bus-interleaved Architecture
To describe the operation of our bus-interleaved

architecture, we use the filtering of a mode 1 MB as an
example. Fig. 9 shows the processing order of horizontal and
vertical filtering for a MB of mode 1 and Fig. 10 shows the
corresponding block input order to the dedicated hardware. In
Fig. 11, we show the status of our bus-interleaved architecture
during the horizontal filtering. Here, we assume Reg1 has
buffered the unfiltered samples of Block 0. To perform the
horizontal filtering for the edge between Block 0 and Block 1

Fig. 7. The proposed bus-interleaved architecture.

Fig. 8. Operation of the transposed memory (Reg2).

Fig. 9. The edge processing order of (a) horizontal filtering (b) vertical
filtering in a luminance MB.

Fig. 10. The 4x4 block input order to the dedicated hardware.

S.-C. Chang et al.: A Platform Based Bus-interleaved Architecture for De-blocking Filter in H.264/MPEG-4 AVC 253

in Fig. 10, the FIR filter takes Row(1,B1) from the bus and
Row(1,B0) from the 1st row of Reg1 for computation. After the
filtering, we overwrite the 1st row of Reg1 with the
intermediate results, Row(1,B1)_intermediate, and save the
horizontally filtered results, Row(1,B0)_h, in the 1st row of
Reg2. The other rows are processed in the same way. When
the horizontally filtered Block 0 is completely stored in the
Reg2, we transpose the block by writing it to the SRAM in a
column-by-column fashion. While the SRAM is being written,
the FIR filter performs the horizontal filtering for the edge
between Block 1 and Block 2 by receiving Row(n,B2) from
bus and retrieving Row(n,B1)_intermediate from Reg1. Such
process is continued until the horizontal filtering of a MB is
done. After the horizontal filtering, we read the horizontally
filtered MB from the SRAM and perform the vertical filtering
in the same manner. Specifically, during the vertical filtering,
the input data of FIR filter is now configured to be from the
SRAM. In addition, the filtered and transposed data is written

to the CPU instead of local SRAM. Fig. 12 shows the
configuration of our bus-interleaved architecture during the
vertical filtering.

C. Overlapping of bS Level Calculation
In our design, vertical filtering can only be initiated until the

last horizontally filtered block buffered in Reg2 is completely
written to the SRAM. This constraint is posed by the fact that
single-ported SRAM cannot simultaneously perform writing and
reading. While the last horizontally filtered block buffered in
Reg2 is being written to the SRAM, the FIR filter is stalled.
During this turn-around time, we calculate the bS level for the
next MB so that the average processing latency of a MB can be
further reduced.

V. PROCESSING LATENCY ANALYSIS
Fig. 13 shows the comparisons of the MB processing latency

in different approaches. For filtering a MB, the Case 1 shows the
processing latency of [2], [4] and the Case 2 illustrates the one of
[4] which also includes 50 bS calculation cycles. Accordingly,
the Case 3 depicts the latency of our design in worst case. Note
that the worst case of our design occurs when we have MB type
of mode 1 which requires most of data transmission. Due to the
parallelism of data transmission and filtering, Fig. 13 shows that
our design is 1.7 times faster than [2], [4]. Moreover, with the
overlapping of bS calculation, the Case 4 shows that the
processing latency can be further reduced. In addition, the Case

Fig. 11. Data flow of horizontal filtering in the bus-interleaved
architecture.

Fig. 12. Data flow of vertical filtering in the bus-interleaved
architecture.

Fig. 13. Comparison of MB processing latency.

IEEE Transactions on Consumer Electronics, Vol. 51, No. 1, FEBRUARY 2005 254

5 illustrates that our best case is 7.7X faster than [3] and 12X
faster than [2], [4]. In the best case, the skip mode is detected.
There is no need to conduct data movement between the
memory and the accelerator. With mode classification, our
design can detect skip mode and avoid the redundant data
movement. However, without mode aware, traditional design
[2]-[4] requires redundant data movement even in skip mode.

Table II lists the cycle counts of each mode in our design. In
addition, Fig. 14 shows the average cycle counts for processing a
MB in different sequences. As shown, our design averagely
requires 86 to 241 cycles for filtering a MB while the works in
[2], [4]-[5] need more than 600 cycles. Significant latency
improvement is achieved.

VI. EXPERIMENTS
In this Section, we show the comparisons of different hardware

designs. Moreover, we analyze the memory access frequency in
different approaches. Lastly, we use an ARM based H.264
decoder as an example to demonstrate the system performance
of our design.

A. Comparison of Hardware Implementation
Table III compares our accelerator with the state-of-the-art

designs in [2]-[5]. As shown, for filtering a MB, our design
requires less cycle counts. Specifically, as compared to [2], [4],
and [5], we provide 2.5x to 7.1x performance improvement with
simpler and smaller single-ported memory. In addition, as
compared to [3], we have 1.6x to 4.5x performance
improvement. While clocking at 100MHz, our design can
support 2560x1280@30Hz processing throughput. Additionally,
our bus bandwidth requirement is down to 11% to 55% of [2]-[4]
and 6% to 28% of [5]. For the memory size, our work is a bit

bigger than that in [3]. However, we can reduce the memory size
to 96x32 bits without increasing the processing latency by
sharing the memory for the luminance and chrominance filtering.
Currently, we separately allocate memory for the luminance and
chrominance components. However, in our bus-interleaved
architecture, the filtering of luminance and chrominance
components is done sequentially. Thus, we can actually reduce
the local memory size by sharing the memory.

B. Comparison of Memory Access Frequency
Table IV further compares the local SRAM access frequency

of different approaches. For filtering a MB, both [2], [4] and [5]
require memory read and write operation for input sample
buffering, horizontal filtering and vertical filtering. On the other
hand, our design simply needs one write operation for horizontal
filtering and one read operation for vertical filtering. Significant
memory access reduction is achieved. Less frequent memory
access and simpler memory architecture bring the advantages of
lower power consumption and lower cost.

C. System Performance Evaluation
In Table V, we show the system performance comparison

using H.264 decoder. Table VI shows the encoder parameters.
Specifically, we use our prior work [6] as the baseline. In [6],
we implemented two dedicated accelerators for IQ/IDCT and

TABLE III
COMPARISON OF DEDICATED HARDWARE DESIGN

 [2], [4] [3] [5] Our design
Latency per
MB (cycles)

614 386 >600 86 - 241

Memory
Architecture

Two-port Single-port Two-port Single-port

Memory Size
(Bits)

96x32
+64x32

80x32 Frame size 140x32
(96x32

after
reduction)

Bandwidth
Requirement
(Normalized
factor with

respect to [5])

50%

50%

100%

6% - 28%

Processing
Rate

(100MHz)

1280x720@
30Hz

2048x1024
@30Hz

1280x720
@30Hz

2560x1280
@30Hz

Gate Count
with UMC
0.18 um

20.6K

9.2K

N/A

11.8K

TABLE IV
COMPARISONS OF LOCAL MEMORY ACCESS FREQUENCY

 [2], [4], [5] Our design, [3]
Read/Write for
Input Sample

Buffering

Read/Write

None

Read/Write for
Horizontal Filtering

Read/Write

Write

Read/Write for
Vertical
Filtering

Read/Write

Read

TABLE II
LATENCY OF DIFFERENT TRANSMISSION MODES

Transmission Mode Latency Per MB (cycles)
1 342
2 310
3 310
4 246
5 254
6 182
7 182

SKIP 50

0

100

200

300

400

500

600

Coast Foreman Mother Container Akiyo
Test Sequeces

C
yc

le
s P

er
 M

B Prior Work[2]
Our Design

Fig. 14. Comparison of average latency per MB.

S.-C. Chang et al.: A Platform Based Bus-interleaved Architecture for De-blocking Filter in H.264/MPEG-4 AVC 255

motion compensation. Also, we use optimized software for the
other tasks. In this work, we additionally add the accelerator
for de-blocking filter. In this system, the ARM966 CPU is
running at 130MHz and the FPGA module is running at
20MHz. As shown, the performance improvement is sequence
dependent. For Coastguard and Foreman, we show 25% to
30% throughput improvement. However, in Akiyo and
Container sequences, the improvement is minor because most
of MBs are skip modes. As compared to the software
implementation, our performance gain mainly comes from the
bus-interleaved architecture and hardware acceleration. In skip
mode, the filtering is not applied. That is why our dedicated
hardware has minor improvement in Akiyo and Container
sequences. In contrast, as compared to the other hardware
implementations [2]-[5], skip mode will have huge benefits as
shown in Fig. 13 because our mode aware design can avoid the
latency caused by the redundant data transfer.

VII. CONCLUSION
In this paper, we present a platform based bus-interleaved

architecture for de-blocking filter in H.264. We have shown
that performing the data transmission and filtering in parallel
can significantly reduce the processing latency. Moreover,
classifying MB filtering mode can avoid redundant data
transfer. In addition, we use an ARM based H.264 decoder to
demonstrate the feasibility of our design. The proposed design
is suitable for low cost and high performance multimedia
applications. Also, it can be quickly integrated into the ARM
based system-on-chip design.

REFERENCES
[1] S. C. Chang, W. H. Peng, S. H. Wang and T. Chiang, “A Platform

Based Bus-interleaved Architecture for De-blocking Filter in
H.264/MPEG-4 AVC”, IEEE Int’l Conf. on Consumer Electronics,
2005.

[2] T. C. Chen, Y. W. Huang, C. H. T, T. W. Chen and L. G. Chen, “A 1.3
TOPS H.264/AVC single-chip encoder for HDTV applications“, IEEE
Int’l Solid-State Circuits Conf., 2005

[3] C. C. Cheng and T. S. Chang, “An hardware efficient deblocking filter
for H.264/AVC”, IEEE Int’l Conf. on Consumer Electronics, 2005.

[4] Y. W. Huang, T. W. Chen, B. Y. Hsieh, T. C. Wang, T. H. Chang and
L. -G. Chen, “Architecture design For de-blocking filter in
H.264/JVT/AVC”, IEEE Int’l Conf. on Multimedia and Expo., 2003.

[5] M. Sima, Y. Zhou and W. Zhang, “An efficient architecture for adaptive
de-blocking filter of H.264/AVC”, IEEE Trans. on Consumer
Electronics, vol. 50, no. 1, pp. 292-296, 2004.

[6] S. -H. Wang, W. -H. Peng, Y. He, G. -Y. Lin, C. -Y. Lin, S. -C. Chang,
C. -N. Wang and T. Chiang, “A platform-based MPEG-4 advanced
video coding (AVC) decoder with block level pipelining”, IEEE Pacific
Rim Conf. On Multimedia, 2003.

[7] T. Weigand, “Draft ITU-T recommendation and final draft international
standard of joint video specification (ITU-T Rec. H.264 | ISO/IEC
14496-10 AVC)”, JVT-G050, 2003.

Shih-Chien Chang was born in Taichung, Taiwan in
1981. He received the B.S. degree in Electronics
Engineering from National Chiao-Tung University,
Hsinchu, Taiwan, in 2003, where he is currently working
toward the M.S. degree in the Institute of Electronics.
His research interests are video compression and VLSI
implementation.

Wen-Hsiao Peng received the B.S. and M.S. degrees in
Electrics Engineering from National Chiao-Tung
University, Taiwan, in 1997 and 1999 respectively.
During 2000-2001, he was an intern in Intel
Microprocessor Research Lab, U.S.A. In 2002, he joined
the Institute of Electric Engineering of National Chiao-
Tung University, where he is currently a Ph.D candidate.

His major research interests include scalable video coding, embedded entropy
coding, video codec optimization and platform based architecture design for
video coding applications. Since 2000, he has been working with video
coding development and implementation. He has actively contributed to the
development of MPEG-4 Fine Granularity Scalability (FGS) and MPEG-21
Scalable Video Coding.

Shih-Hao Wang was born in Tainan, Taiwan, R.O.C. in
1977. He received the M.S. degree in Electrical and
Control Engineering from National Chiao-Tung
University, Hsinchu, Taiwan, in 2001, where he is
currently working toward the Ph.D. degree in the Institute
of Electronics. His research interests are video
compression and VLSI implementation.

Tihao Chiang was born in Cha-Yi, Taiwan, Republic of
China, 1965. He received the B.S. degree in electrical
engineering from the National Taiwan University, Taipei,
Taiwan, in 1987, and the M.S. degree in electrical
engineering from Columbia University in 1991. He
received his Ph.D. degree in electrical engineering from
Columbia University in 1995. In 1995, he joined David
Sarnoff Research Center as a Member of Technical Staff.

Later, he was promoted as a technology leader and a program manager at
Sarnoff. While at Sarnoff, he led a team of researchers and developed an
optimized MPEG-2 software encoder. For his work in the encoder and
MPEG-4 areas, he received two Sarnoff achievement awards and three
Sarnoff team awards. Since 1992 he has actively participated in ISO's Moving
Picture Experts Group (MPEG) digital video coding standardization process
with particular focus on the scalability/compatibility issue. He is currently the
co-editor of the part 7 on the MPEG-4 committee. He has made more than 90
contributions to the MPEG committee over the past 10 years. His main
research interests are compatible/scalable video compression, stereoscopic
video coding, and motion estimation. In September 1999, he joined the
faculty at National Chiao-Tung University in Taiwan, R.O.C. Dr. Chiang is
currently a senior member of IEEE and holder of 13 US patents and 30
European and worldwide patents. He was a co-recipient of the 2001 best
paper award from the IEEE Transactions on Circuits and Systems for Video
Technology. He published over 50 technical journal and conference papers in
the field of video and signal processing.

TABLE V
SYSTEM PERFORMANCE COMPARISON USING H.264 DECODER

Sequence SW* OUR* Throughput
improvement

Coastguard 3.61 fps 4.68 fps 29.6%
Foreman 3.71 fps 4.61 fps 24.5%
Mother 6.80 fps 7.30 fps 7.3%

Container 8.64 fps 9.38 fps 8.7%
Akiyo 10.31 fps 10.34 fps 0.4%

SW*: [6] with software de-blocking filter
OUR*: [6] with proposed hardware de-blocking filter

TABLE VI
ENCODER PARAMETERS FOR EXPERIMENTS

Frame Size QCIF
Frame Rate 15fps

Qp I(28)P(31)
Group of Picture 1I + 149P

Reference Frame Number 5

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

