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Abstract —In this paper, we proposed a platform based 
bus-interleaved architecture for the de-blocking filter in 
H.264. Specifically, to efficiently use the bus bandwidth, we 
classify the filtering mode into 8 types and use an adaptive 
transmission scheme to avoid redundant data transfer. 
Moreover, to reduce the processing latency, we use a bus-
interleaved architecture for conducting data transmission and 
filtering in parallel. As compared to the state-of-the-art 
designs, our scheme offers 1.6x to 7x performance 
improvement. While clocking at 100MHz, our design can 
support 2560x1280@30Hz processing throughput. The 
proposed design is suitable for low cost and real-time 
applications. Moreover, it can be easily applied in system-on-
chip design. 

Index Terms — H.264 de-blocking filter, loop filter, AVC. 

I. INTRODUCTION 
 H264, also known as MPEG-4 AVC [7], has been proven to 
have much better visual quality as compared to the existing 
standards such as MPEG-1, -2, -4, H.263 and so on.  Among 
various coding tools in H.264, the in-loop de-blocking filtering 
has most significant impact on the visual quality improvement. 
To reduce the blocking artifact, the in-loop de-blocking filter 
adaptively conducts the filtering along the boundaries of each 
4x4 block according to the boundary strength (bS), the 
quantization parameter (Qp) and the content of the block. The 
blocking artifact is removed. However, the improvement is at 
the cost of intensive computation and memory access. 

For real-time applications, the de-blocking filtering becomes 
one of the performance bottlenecks. In [1]-[5] dedicated 
hardware was developed for acceleration. Specifically, the 
architecture of [5] is for frame-based filtering. The de-
blocking filtering is invoked after the reconstruction of the 
entire frame. Apparently, frame-based filtering requires a 
frame buffer and longer system latency. To reduce the buffer 
size and latency, [1]-[4] proposed a macroblock-based (MB-
based) filtering architecture. The filtering can be started upon 
the reconstruction of a MB. To achieve high throughput, in [2], 
[4] two-ported SRAMs are used to simultaneously conduct the 
reading and writing during the filtering. However, the high 
throughput is at the cost of complex and costly memory 
architecture. In addition, for filtering a MB, [2], [4] need to 
first buffer the entire MB. The hardware is idled for waiting 
the data. Moreover, the data movement of [2]-[5] is not mode 
aware which means that the transmission overhead is not 

minimized. Hence, in this paper, we propose a parallel 
processing architecture and a more efficient data transmission 
scheme to improve the performance.  

In this paper, we propose a platform-based architecture for 
de-blocking filtering. Fig. 1 shows an overview of our H.264 
decoder platform [6]. Mainly, it includes an ARM9 CPU for 
the data flow control and several dedicated accelerators for the 
computation intensive tasks. The CPU communicates with the 
accelerators via a 32-bit AHB bus. For the de-blocking 
filtering, there are intensive data transmissions among CPU, 
embedded memory and the accelerator. To reduce the bus 
workload, we classify the filtering modes of a MB into various 
types. According to the filtering type distribution, we propose 
an adaptive transmission scheme. As compared to [2]-[5], the 
bus bandwidth requirement of our design is reduced to 11% to 
55% of [2]-[4] and 6% to 28% of [5]. Moreover, to reduce the 
processing latency, we develop a bus-interleaved architecture. 
As compared to [2], [3], [4], and [5], our design uses simpler 
single-ported memory and averagely offers 1.6x to 7.1x 
improvement on processing latency.   

The remainder of this paper is organized as follows. Section 
II introduces the algorithm of de-blocking filtering in H.264. 
Section III describes our adaptive transmission scheme and 
shows its benefits. Section IV illustrates our bus-interleaved 
architecture and its operation. Section V gives the processing 
latency comparisons of different designs. Section VI presents 
the comparison of hardware design, memory access frequency 
and system performance. Lastly, Section VII concludes this 
work and shows the applications. 

 
Fig. 1. The proposed ARM based H.264 decoder architecture. 
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II. ALGORITHM OF DE-BLOCKING FILTERING 
The in-loop de-blocking filter in H.264 [7] is designed to 

reduce the blocking artifacts. The filter operation is applied to 
each edge of a 4x4 block. Fig. 2 shows the edge filtering order 
within a 16x16 luminance MB. As shown, the vertical edges 
are filtered first and then the horizontal ones. In addition, for 
filtering an edge of a 4x4 block, consecutive 8 pixels from the 
same row (or column) of two adjacent 4x4 blocks are required. 
For example in Fig. 2, the pixels (A0-A3, B0-B3) are accessed 
for the vertical (or horizontal) filtering of a 4x4 block. 
Particularly, each sample pixel of (A0-A3, B0-B3) is filtered 
adaptively by different filter taps.  

 

To decide the filter tap for each pixel, the following factors 
are used:  

1. Boundary strength (bS).  
2. Thresholds of α and β.  
3. The content of sample pixels. 

Fig.3 elaborates the detail about how these factors are used to 
decide the filter tap for each pixel of (A0-A3, B0-B3). As 
shown, the first step is to use (1) for deciding whether the 
filtering is required or not. Then, according to the bS level, 
thresholds (α, β) and the absolute differences of adjacent 
reconstructed pixels, different filters are applied to different 
pixels. Specifically, in Fig. 3, not all the input pixels (A0-A3, 
B0-B3) will be updated with the filtered results. For example, 
if bS is not of strongest level, only A0, B0, A1, B1 are updated. 
For those pixels without update, the original pixel values are 
unchanged. The process is continued by sliding the filtering 
window one block to the right (or to the bottom) at a time as in 
Fig. 2. Note that the updated (B0-B3) could be used for the 
filtering of next adjacent block when the filtering window 
slides one block to the right (or to the bottom).  

bS!=0 AND  |A0–B0|<α AND  |A1–A0|<β AND  |B1–B0|<β  (1)

In Fig. 3, the bS level is mainly used to decide the necessity 
of filtering and filter type. In H.264, the bS has 5 levels. The 

 
Fig. 4. Decision flow of boundary strength (bS) where P and Q denote the 
identifications of two adjacent 4x4 blocks. 

 
Fig. 5. The MB data and its adjacent blocks used for MB based de-
blocking filtering.  
 

 
Fig. 2. The sequential order for filtering the edges of 4x4 blocks in a 
luminance MB. 

Fig. 3. Decision flow of filter tap selection. 
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actual level is determined by the MB type, edge position, 
reference frame type, and motion vectors of two adjacent 
blocks. Fig. 4 shows the decision of bS level. As shown, the 
strongest bS level, i.e., bS=4, is identified when two adjacent 
blocks are intra coded and locate at the MB boundary. In this 
case, obvious blocking artifact could be noticed. As a result, 
higher bS level invokes stronger low pass filtering. On the 
other hand, when the bS is at the weakest level, i.e., bS=0, 
there is no filtering.  

In addition to the bS level, the parameters (α, β)  are used to 
preserve the real edge. In (1), the necessity of filtering is also 
controlled by the parameters (α, β) . Specifically, α and β are 
assigned with higher values to increase the possibility of 
filtering as higher quantization parameter causes more 
noticeable blocking artifact. In contrast, smaller α and β are 
used for lower quantization parameter. 

III. ADAPTIVE MACROBLOCK TRANSMISSION SCHEME 
In this paper, our de-blocking filtering is designed to   

operate at MB level. The entire frame is filtered in a MB-by-
MB manner and the MBs within a frame are processed in a 
raster scanning order. The filtering can be started upon the 
reconstruction of a MB. For filtering a MB, we need to first 
retrieve the reconstructed data from the memory (or certain 
module) and send it to the dedicated accelerator via a bus. As 
more and more dedicated accelerators are deployed, the 
limited and shared bus bandwidth could become the 
performance bottleneck. To reduce the demand of bus 
bandwidth, we propose an adaptive MB transmission scheme.  

A. MB Mode Classification 
Fig. 5 depicts the data required for filtering a MB. As shown, 

in addition to current MB, the adjacent 4x4 blocks at the right 
and left boundaries are also needed. In [2]-[5], all the data as 
depicted in Fig. 5 are transferred to the de-blocking filter 
accelerator. However, we find that not all 4x4 blocks within a 
MB need to be filtered. We can more efficiently use the bus 
bandwidth by minimizing the redundant data transfer. To do so, 
we define 8 MB filtering modes according to the filtering 
requirements of left MB boundary, upper MB boundary and 
current MB. Table I summarizes the corresponding data size 

of each mode. For example, mode 5 denotes the case in which 
only the left and the top MB boundaries are required for 
filtering. As a result, for the luminance part, we simply need 
the adjacent 4 blocks in the left MB, the adjacent 4 blocks in 
the upper MB and the adjacent 7 blocks in current MB. By the 
same token, we can derive the data size for the chrominance 
part. Totally, the data size of mode 5 is 100 words including 
60 words for luminance component and 40 words for 
chrominance component. Following the same principle, one 
can derive the data size for the other modes. By distinguishing 
different filtering modes, we can minimize the redundant data 
transfer. 

B. MB Filtering Mode Distribution  
 Fig. 6 shows the mode distribution of Akiyo and Foreman 

sequences based on JM6.0. Without mode classification, [2]-
[5] treat all MBs as mode 1, i.e., all the input samples shown 
in Fig. 5 are transferred. However, from Fig. 6, we learn that 
mode 1 is actually less than 30%. Moreover, in the extreme 
case of Akiyo, most MBs use skip mode that does not require 
any input samples. Thus, [2]-[5] actually incur many redundant 
data transfer. With the filtering mode classification, we can 
more efficiently use the bus bandwidth. According to the mode 
distribution, in Akiyo sequence, we can save 89% of data 
transfer used in [2]-[4] and 94% of that in [5]. Similarly, in 
Foreman sequence, our design can save 45% of data 
movement used in [2]-[4] and 72% of that in [5]. Significant 
data transfer reduction is achieved. 

IV. BUS-INTERLEAVED ARCHITECTURE 
To reduce the processing latency, we propose a bus-

interleaved architecture in [1]. Specifically, we perform the 
filtering and the data transfer in parallel. Different from prior 
designs [2], [4], and [5], the filtering can be started while the 
data is being streamed in and out. The processing latency is 
reduced due to the parallelism. 

A. Proposed Bus-interleaved Architecture 
Fig. 7 shows our proposed architecture. It mainly includes 

four components:  
 

Akiyo Skip
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40%
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60%
70%
80%
90%

1 2 3 4 5 6 7 Skip
mode

Foreman Akiyo

 
Fig. 6. MB filtering mode distribution in Akiyo and Foreman sequences 
coded at QCIF@15fps 64Kbps with JM6.0. 

 

TABLE I 
FILTERING MODES OF A MACROBLOCK 

Mode Left* Upper* Current 
MB 

Data Size** 

1 Y Y Y 144 
2 N Y Y 128 
3 Y N Y 128 
4 N N Y 96 
5 Y Y N 100 
6 N Y N 64 
7 Y N N 64 

Skip N N N 0 
*: The MB boundary required for filtering.  

**: Data transfer size in words. 
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1. One-dimensional Adaptive FIR Filter  
The one-dimensional FIR filter adaptively performs the 
horizontal/vertical filtering in a row-by-row manner. For 
each row, it takes 8 input samples from two adjacent 4x4 
blocks to conduct filtering. Accordingly, it produces 4 
filtered results and 4 intermediate results for the filtering of 
next block. 

2. Single-ported SRAM  
A single-ported SRAM is used as a local memory for 
buffering the horizontally filtered and transposed MB. 
Specifically, it stores all the 4x4 blocks in current MB (i.e., 
96x32 bits) and the adjacent 4x4 blocks in the upper and left 
MBs (,i.e., 44x32 bits). The total size of the SRAM is 
140x32 bits. 

3. 4x4 Pixel Arrays (Reg1 and Reg2)  
In Fig. 7, Reg1 buffers the intermediate results produced by 
the FIR filter. On the other hand, Reg2 acts as a transposed 
memory. Particularly, Reg2 performs the transposition by 
storing the data in either Horizontal-In-Vertical-Out or 
Vertical-In-Horizontal-Out fashion. Fig. 8 shows an example 
of the transposition where Row(n, Bm) represents the n-th 
row of m-th block and Col(n, Bm) denotes the n-th column 
of m-th block. Specifically, Fig. 8 (a) depicts the case as the 
horizontally filtered Block 0 is being written to Reg2 in a 

row-by-row manner. After Block 0 is completely buffered in 
Reg2, Fig. 8 (b) illustrates that the transposition is done by 
writing Block 0 to the SRAM in a column-by-column 
manner. Particularly, after Col(1, B0) is stored in the SRAM, 
we filled out the left space in Reg2 with Row(1, B1), i.e., the 
first row of next horizontally filtered block. Such 
replacement is continued until horizontally filtered Block 1 is 
completely buffered in Reg2. Since Block 1 is stored 
column-by-column in Reg2, we transpose Block 1 by 
outputting the data row-by-row to the SRAM. Such cyclical 
rotation between Horizontal-In-Vertical-Out and Vertical-In-
Horizontal-Out is conducted throughout the entire de-
blocking process. Traditional designs [2], [4], and [5] require 
stalls for block transposition. However, our seamless design 
requires no stalls.  

4. Data Flow Control Unit 
The data flow control unit consists of a finite state machine 
which controls synchronization among 1-D FIR filter, 4x4 
pixel arrays and local SRAM buffer. Moreover, it responses 
to the de-blocking filtering request from the AHB bus. 

B. Operation of Bus-interleaved Architecture 
To describe the operation of our bus-interleaved 

architecture, we use the filtering of a mode 1 MB as an 
example. Fig. 9 shows the processing order of horizontal and 
vertical filtering for a MB of mode 1 and Fig. 10 shows the 
corresponding block input order to the dedicated hardware. In 
Fig. 11, we show the status of our bus-interleaved architecture 
during the horizontal filtering. Here, we assume Reg1 has 
buffered the unfiltered samples of Block 0. To perform the 
horizontal filtering for the edge between Block 0 and Block 1 

 
Fig. 7. The proposed bus-interleaved architecture. 

 

 
Fig. 8.  Operation of the transposed memory (Reg2). 

 
Fig. 9.  The edge processing order of (a) horizontal filtering (b) vertical 
filtering in a luminance MB. 

 
Fig. 10. The 4x4 block input order to the dedicated hardware. 
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in Fig. 10, the FIR filter takes Row(1,B1) from the bus and 
Row(1,B0) from the 1st row of Reg1 for computation. After the 
filtering, we overwrite the 1st row of Reg1 with the 
intermediate results, Row(1,B1)_intermediate, and save the 
horizontally filtered results, Row(1,B0)_h, in the 1st row of 
Reg2. The other rows are processed in the same way. When 
the horizontally filtered Block 0 is completely stored in the 
Reg2, we transpose the block by writing it to the SRAM in a 
column-by-column fashion. While the SRAM is being written, 
the FIR filter performs the horizontal filtering for the edge 
between Block 1 and Block 2 by receiving Row(n,B2) from 
bus and retrieving Row(n,B1)_intermediate from Reg1. Such 
process is continued until the horizontal filtering of a MB is 
done. After the horizontal filtering, we read the horizontally 
filtered MB from the SRAM and perform the vertical filtering 
in the same manner. Specifically, during the vertical filtering, 
the input data of FIR filter is now configured to be from the 
SRAM. In addition, the filtered and transposed data is written 

to the CPU instead of local SRAM. Fig. 12 shows the 
configuration of our bus-interleaved architecture during the 
vertical filtering. 

C. Overlapping of bS Level Calculation 
In our design, vertical filtering can only be initiated until the 

last horizontally filtered block buffered in Reg2 is completely 
written to the SRAM. This constraint is posed by the fact that 
single-ported SRAM cannot simultaneously perform writing and 
reading. While the last horizontally filtered block buffered in 
Reg2 is being written to the SRAM, the FIR filter is stalled. 
During this turn-around time, we calculate the bS level for the 
next MB so that the average processing latency of a MB can be 
further reduced.  

V. PROCESSING LATENCY ANALYSIS 
Fig. 13 shows the comparisons of the MB processing latency 

in different approaches. For filtering a MB, the Case 1 shows the 
processing latency of [2], [4] and the Case 2 illustrates the one of 
[4] which also includes 50 bS calculation cycles. Accordingly, 
the Case 3 depicts the latency of our design in worst case. Note 
that the worst case of our design occurs when we have MB type 
of mode 1 which requires most of data transmission. Due to the 
parallelism of data transmission and filtering, Fig. 13 shows that 
our design is 1.7 times faster than [2], [4]. Moreover, with the 
overlapping of bS calculation, the Case 4 shows that the 
processing latency can be further reduced. In addition, the Case 

 
Fig. 11.  Data flow of horizontal filtering in the bus-interleaved 
architecture.  

 
Fig. 12.  Data flow of vertical filtering in the bus-interleaved 
architecture.  
 

Fig. 13. Comparison of MB processing latency. 
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5 illustrates that our best case is 7.7X faster than [3] and 12X 
faster than [2], [4]. In the best case, the skip mode is detected. 
There is no need to conduct data movement between the 
memory and the accelerator. With mode classification, our 
design can detect skip mode and avoid the redundant data 
movement. However, without mode aware, traditional design 
[2]-[4] requires redundant data movement even in skip mode.  

Table II lists the cycle counts of each mode in our design. In 
addition, Fig. 14 shows the average cycle counts for processing a 
MB in different sequences. As shown, our design averagely 
requires 86 to 241 cycles for filtering a MB while the works in 
[2], [4]-[5] need more than 600 cycles. Significant latency 
improvement is achieved. 

VI. EXPERIMENTS 
In this Section, we show the comparisons of different hardware 

designs. Moreover, we analyze the memory access frequency in 
different approaches. Lastly, we use an ARM based H.264 
decoder as an example to demonstrate the system performance 
of our design. 

A. Comparison of Hardware Implementation 
Table III compares our accelerator with the state-of-the-art 

designs in [2]-[5]. As shown, for filtering a MB, our design 
requires less cycle counts. Specifically, as compared to [2], [4], 
and [5], we provide 2.5x to 7.1x performance improvement with 
simpler and smaller single-ported memory. In addition, as 
compared to [3], we have 1.6x to 4.5x performance 
improvement. While clocking at 100MHz, our design can 
support 2560x1280@30Hz processing throughput. Additionally, 
our bus bandwidth requirement is down to 11% to 55% of [2]-[4] 
and 6% to 28% of [5].  For the memory size, our work is a bit 

bigger than that in [3]. However, we can reduce the memory size 
to 96x32 bits without increasing the processing latency by 
sharing the memory for the luminance and chrominance filtering. 
Currently, we separately allocate memory for the luminance and 
chrominance components. However, in our bus-interleaved 
architecture, the filtering of luminance and chrominance 
components is done sequentially. Thus, we can actually reduce 
the local memory size by sharing the memory.  

B. Comparison of Memory Access Frequency 
Table IV further compares the local SRAM access frequency 

of different approaches. For filtering a MB, both [2], [4] and [5] 
require memory read and write operation for input sample 
buffering, horizontal filtering and vertical filtering. On the other 
hand, our design simply needs one write operation for horizontal 
filtering and one read operation for vertical filtering. Significant 
memory access reduction is achieved. Less frequent memory 
access and simpler memory architecture bring the advantages of 
lower power consumption and lower cost. 

C. System Performance Evaluation 
In Table V, we show the system performance comparison 

using H.264 decoder. Table VI shows the encoder parameters. 
Specifically, we use our prior work [6] as the baseline. In [6], 
we implemented two dedicated accelerators for IQ/IDCT and 

TABLE III 
COMPARISON OF DEDICATED HARDWARE DESIGN 

 [2], [4] [3] [5] Our design 
Latency per 
MB (cycles) 

614  386 >600 86 - 241  

Memory 
Architecture 

Two-port Single-port Two-port Single-port 

Memory Size 
(Bits) 

96x32 
+64x32 

80x32 Frame size 140x32 
(96x32 

after 
reduction) 

Bandwidth 
Requirement 
(Normalized 
factor with 

respect to [5]) 

 
 

50% 

 
 

50% 

 
 

100% 

 
 

6% - 28% 

Processing 
Rate 

(100MHz) 

1280x720@
30Hz 

2048x1024
@30Hz 

1280x720
@30Hz 

2560x1280
@30Hz 

 
Gate Count 
with UMC 
0.18 um 

 
20.6K 

 
9.2K 

 
N/A 

 
11.8K 

TABLE IV 
COMPARISONS OF LOCAL MEMORY ACCESS FREQUENCY 

 [2], [4], [5] Our design, [3] 
Read/Write for 
Input Sample 

Buffering 

 
Read/Write 

 
None 

Read/Write  for 
Horizontal Filtering 

 
Read/Write 

 
Write 

Read/Write  for 
Vertical  
Filtering 

 
Read/Write 

 
Read 

 

TABLE  II 
LATENCY OF DIFFERENT TRANSMISSION MODES 

Transmission Mode Latency Per MB (cycles) 
1 342 
2 310 
3 310 
4 246 
5 254 
6 182 
7 182 

SKIP 50 
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C
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Fig. 14. Comparison of average latency per MB. 
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motion compensation. Also, we use optimized software for the 
other tasks. In this work, we additionally add the accelerator 
for de-blocking filter. In this system, the ARM966 CPU is 
running at 130MHz and the FPGA module is running at 
20MHz. As shown, the performance improvement is sequence 
dependent. For Coastguard and Foreman, we show 25% to 
30% throughput improvement. However, in Akiyo and 
Container sequences, the improvement is minor because most 
of MBs are skip modes. As compared to the software 
implementation, our performance gain mainly comes from the 
bus-interleaved architecture and hardware acceleration. In skip 
mode, the filtering is not applied. That is why our dedicated 
hardware has minor improvement in Akiyo and Container 
sequences. In contrast, as compared to the other hardware 
implementations [2]-[5], skip mode will have huge benefits as 
shown in Fig. 13 because our mode aware design can avoid the 
latency caused by the redundant data transfer. 

VII. CONCLUSION 
In this paper, we present a platform based bus-interleaved 

architecture for de-blocking filter in H.264. We have shown 
that performing the data transmission and filtering in parallel 
can significantly reduce the processing latency. Moreover, 
classifying MB filtering mode can avoid redundant data 
transfer.  In addition, we use an ARM based H.264 decoder to 
demonstrate the feasibility of our design. The proposed design 
is suitable for low cost and high performance multimedia 
applications. Also, it can be quickly integrated into the ARM 
based system-on-chip design.   
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TABLE  V 
SYSTEM PERFORMANCE COMPARISON USING H.264 DECODER 

Sequence SW* OUR* Throughput 
improvement 

Coastguard 3.61  fps 4.68  fps 29.6% 
Foreman 3.71  fps 4.61  fps 24.5% 
Mother 6.80  fps 7.30  fps 7.3% 

Container 8.64  fps 9.38  fps 8.7% 
Akiyo 10.31 fps 10.34 fps 0.4% 

SW*:  [6] with software de-blocking filter 
OUR*: [6] with proposed hardware de-blocking filter   

TABLE VI 
ENCODER PARAMETERS FOR EXPERIMENTS 

Frame Size QCIF 
Frame Rate 15fps 

Qp I(28)P(31) 
Group of Picture 1I + 149P 

Reference Frame Number 5 
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