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Summary & Conclusions - We propose a simple & practical 
probabilistic model, using multiple incomplete test concepts, for 
fault location in distributed systems using a Bayes analysis pro- 
cedure. S ice  it is easier to compare test results among processing 
units, our model is comparison-based. This approach is realistic 
& complete in the sense that it does not assume conditions such 
as permanently faulty units, complete tests, and perfect or non- 
nuhaous environments. It can handle, without any overhead, fault- 
free systems so that the test procedure can be used to monitor a 
functioning system. Given a system S with a specific test graph, 
the corresponding conditional distribution between the comparison 
test results (syndrome) and the fault patterns of S can be generated. 
To avoid the complex global Bayes estimation process, we develop 
a simple bitwise Bayes algorithm for fault location of S, which 
locates system failures with linear complexity, making it suitable 
for hard real-time systems. Hence, our approach is appealing both 
from the practical & theoretical points of view. 

. .  

1. INTRODUCTION 

This paper studies fault location using Bayes inference 
methods based on a simple probabilistic comparison model. The 
distributed systems under consideration consist of a collection 
of units (subsystems) connected through a network that 
distributes data and, possibly, processes throughout the system. 
Our approach provides a generalized solution to the randomiz- 
ed fault diagnosis problem. Previous research has highlighted 
& studied individual obstacles in the faultdiagnosis process. 
Those obstacles are: 

System diagnosis results might only be valid if the fraction 
of faulty units has a restrictive upper bound [36]. 
System can have non-permanent faults [26]. 
Faulty units can behave maliciously and lie about their results 
u71. 
Tests might be incomplete [31,32]. 

For some test strategies, faulty units have to be assumed to 
be still able to execute assigned tests [30]. 
There might be noisy environments or errors in transmit- 
ting/receiving devices [5]. 
The probability of failure can vary as the run-time advances 
[91. 4 

Probabilistic methods can cope with this list of effects; and 
important advances have been made in the past few years 
[1,3-13,15,20-22,371. Indeed, the listed randomizing effects 
might indicate that this approach is more realistic than a deter- 
ministic one. However, a general probabilistic approach in 
earlier papers involved a drastic increase in computational com- 
plexity. The idea of using comparison testing appeared in [14, 
251, and was combined with the probabilistic approach in [ 15, 
16,211. Comparison-based testing is used because it is less in- 
trusive [ 151 than having the system units devote processing time 
to testing & evaluating each other. We have shown [8,10] that 
linear complexity can be achieved both by: 1) our bitwise Bayes 
(BWB') algorithm based on the decision theoretic approach, 
and 2) a heuristic algorithm when performing classical point 
estimation. The BWB fault-location algorithm handles any 
number of faults in the same way; therefore it can diagnose a 
fault-free system as well as a system with many faulty units. 
The BWB algorithm accounts for the probability of unit failure 
[24] and incorporates the change of that probability as opera- 
tion time increases. Explicit inclusion of the probability of failure 
of a unit is also used in [3, 4, 221, although they assume the 
probability is constant. Most of the other fault-location research 
developed for multiprocessor systems more or less resembles 
the concepts developed by the Preparata, Metze, Chien (PMC) 
model [30]. The main reason for this similarity is that the same 
set of simplifying assumptions tends to be repeated, the limita- 
tions of which are in [15]. Other approaches can be found in 
[3-5,17,18,22,23,30,33,35,36], including work for general 
multiprocessor systems. 

The model for testing a system with n units involves 
distributing a set of tests to the units, observing the results of 
the tests, and running a diagnosis algorithm to locate faulty wits. 
The BWB algorithm is 0 ( n) , making it interesting for hard real- 
time applications. The simplicity of the BWB depends on decom- 
posing the system (global) b y e s  estimation into a bit-wise Bayes 
estimation by introducing a loss function. None of the data 
gathered from the tests has to be discarded. The chosen loss 
function is an admissible' Bayes decision rule [2] for fault 
location, which gives theoretical support to the approach. Some 
simulation results are discussed in section 5.  

'The BWB algorithm is called the B-algorithm in [6, 7, 11-13]. 
'Admissible implies that there is no decision rule with smaller risk 
function [2: p lo]. 
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Acronym-’ 
BWB bit-wise Bayes (algorithm) 
HPD highest posterior density 
LT likelihood table 
UUT unit under test. 

Notation 
S system name 
n 
G(  U ,E)  an undirected test graph with vertex set U and edge 

number of units in S 
- -  

set E 
{U& k = 0, 1 , 2 ,  ..., n - 1 } :  vertex set of n units of S 
{ (ui, uj): ui, uj E U): edge set of m comparison 
assignments of the UUT from S 
9 (U, is faulty) 

4)n-2 . . . 40: (system) fault pattern of the n units 
3 = 4,,n-~ 4,,,-2 ...4,,0 : fault status of U, when the 
fault pattern of S is 
{90,+l,. . . ,+y- : set of all possible fault patterns of 
S. The are enumerated SO that 4j,n-1 4j,n-2 ... 4j,o 
is the binary representation ofj ,  possibly with leading 
O’s, eg, cp6 = 0110 in a 4-unit system 
individual test task i that can be applied to S 
{tl, t2, ..., tp} :  test4 consisting o f p  tasks ti 
number of tests in a sequence 
{ T ( @ :  k = 1,2 ,  . . . , T }  : sequence of r tests, each T(k)  
represents a test T 
S(the results of applying T to ui & uj disagreellink 1 
connects ui & uj): 1 = 0, 1 ,  2 ,  ... m-1; eg, figure 
1 shows a complete graph of n = 4 units, and m = 
(;) = ( 4 )  links 
c,,,-~ c , -~  . .. co: global (system) comparison pattern 
of the m links 
comparison result of test T( , )  
{Co,Cl,...,C2m-l}: set of all comparison patterns. 
The Ci are enumerated so that if Ci = cmPl cmF2 . . . 
co. then c,-~ cm-g ... co is the binary representation 
of i. wssiblv with leading 0’s 
C(lj k(2) ..I C ( T ) .  

Y c“.. . J )  

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

2 .  PROBABILISTIC COMPARISON-BASED MODEL 

Assumptions 

simultaneously. 
1. System S has n units; several units can be faulty 

’me singular / plural of an acronym are always spelled the same. 
4A rest is a procedure for identifying whether a UUT is behaving nor- 
mally or abnormally - in the comparison model - by means of the 
value it returns. 

3 
Q, 

Figure 1. 4-Unit System with Complete Test-Graph 

2 .  The faults in S are identified by a fault pattern 3. Each 
fault pattern +j E 0 is possible in S. 

3. Individual tests T can be incomplete in the sense that 
they need not always cause a faulty unit to return an incorrect 
result. 

4. T(’) & T(,’) can be replications or can include different 
tasks belonging to the same class. 

5.  Sequences Tare applied periodically to S. T generates 
a sequence of T comparison patterns {c‘~’  E 9, k = 
1,2,. . . ,T} ; this sequence is analyzed probabilistically to deter- 
mine the faulty units. 4 

Let cl connect ui & uj. The behavior of the Comparison 
test of ui & uj can be characterized & modeled using the 
following conditional probability test parameters: 

p l  = Pr { q = 0 I c$i = 4j = 0} : Pr {agreement between fault-free 
units}, 

ql = Pr {q= 1 1 +i # +j} : Pr {disagreement between a faulty 
and a fault-free unit}, 

rl = Pr {cl= 1 I 4i = 4j = l }  : Pr {disagreement between faulty 
units}. 

Homogeneity Assumptions 
1. (To simplify analysis) The UUT are either identical or 

at least functionally equivalent, which is typical in 
multiprocessor-based systems. 

2. There are non-stochastic constanb p, q,  r such that: 

4 

Homogeneity-assumption 1 implies symmetry in the defini- 

p1 = p ,  41 = 4 ,  r1 = r- 

tion of ql: 

Pr{cl=l)c$i=O, 4j=l} = Pr{cl=l14i=l, 4 j = O } .  

For homogeneity-assumption 2, Chang [6] justifies that, 
in the comparison-based model, the components of C are 
mutually s-independent in the sense: 

’Russell / Kime [31,32] suggested that it is hardly feasible to generate m-1 

a complete test for the UUT; so, as indicated by Dahbura [15], the pr{ cl a} = n pr{Cil @‘I. 
most realistic approach is to assume tests are incomplete. l = O  
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Hence, the conditional distribution of Pr { CI a} can be evaluated 
as a function ofp, q,  r .  Blount [5] and Barsi [ 11 made a similar 
claim; however, the assumption is harder to justify in the PMC 
model, where each tester tests & decides the status of a subset 
of the UUT. 

Nomenclature 

Let q connect ui & up cl is: 

a p-link, when both ui & uj are fault-free, 

a q-link, when one of ui or uj is fault-free, 

an r-link, otherwise. 

2.1 Observation 

Let q be a p-link for a; then: 

Pr{q = Ola} = p,  and Pr{c1 = lla} = 1 - p. 

Let q be a fl-linlc for a (/3=q,r);  then: 

Notation 

0 
nS 
dS 

represents: p, q, or r 
number of &links, n,,+nq+n, = m 
number of misdiagnosed P-links in the comparison pat- 
tern C 

Then (1) simplifies to: 
E6 (1-0)/0. 

2.2 Example Use of (2). 

Assumptions 

1. A system has 4 functionally-identical units with a com- 
plete connection assignment and one of the possible fault 
patterns. 

2a. = 43 42 41 r$o = OOO1; 
2b. C = ~5 ~4 ~3 ~2 ~1 CO = OOO110. 4 

Then, 

5 

Pr{cp} = n Pr{qIa} = p3.(1-q) -42. 
1=0 

Here there is 1 faulty unit (U,,) and 1 erroneous com- 
parison result (co) as in figure 2. 

The objective of testing a system is to find out whether 
a failure exists in the system at the time of the test, and then 

to locate any failed unit(s). After the fault location process is 
completed, some level of repair or reconfiguration must be 
initiated. 

+ = o  
3 

4 =  1 
' 0  

1 
@ - 0  

Figure 2. Possible Comparison Outcome with 1 Faulty Unit 

2.3 Likelihood Table 

The Ciaj can be combined into a likelihood table (LT) 
listing all the values of Pr { Ci laj} ; LT is a probabilistic com- 
parison table and can be computed prior to operation of the 
system, however its storage size is O(2"- U "), eg, table 1 for 
the system in figure 1. 

Chang [6] developed an analytic method to avoid the need 
to store this enormous amount of data. The method requires 
O(m) time to retrieve a data item or O(1og m) time when 
prestored reference data are used. The number of data items 
retrieved at test time is small and has an absolute upper bound 
of 7. Section 6 provides an illustration. 

3. ASSIGNMENT OF MULTIPLE TEST SETS 

Tests T(k)  are repeated 7 times, thereby attempting to 
achieve pseudo-exhaustive testing [27], with variation of the 
individual tasks ti within a class of test tasks, both to improve 
test coverage, since the test might not be complete, and account 
for random effects in the test environment as discussed in the 
Introduction. 

The 7 comparison results are conditionally s-independent, 
ie, 

7 

pr { c ( 1.. .7)  I$} = n Pr{c(s)14jj.), 
s = l  

Pr { C(') I aj} can be obtained from the probabilistic comparison 
table for j = 0, 1, ..., 2"-1. Consequently, the posterior 
distribution can be evaluated by Bayes theorem: 
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*O 
m 

*I 
oo01 

TABLE 1 
Likelihood Table of Pr{Cjl*j} 

Ip=0.95, q=0.90, r=0.75; the Pr{C,Jaj} values are multiplied by lo4] 

0010 0011 0100 0101 0110 0111 loo0 1001 1010 1011 
*2 *3 *4 *5 *6 *7 *E *9 *IO *I1 *I2 

1100 
~ 

C,=CXlOOOO 
c, = m 1  
q = m 1 0  

C4=oo0100 
C5=oo0l0l 
C,=oo0110 

c8=001000 
~ = O o l O o l  
c,o =001010 
c, , =001011 
c,2=001100 

C3=oooOll 

C7 = oo01 1 1 

CI3=OOllOl 
Cl4 =00lllO 
Cl5 = 001 11 1 
C,6 = 0 1 m  
c,,=o1oo01 
c,8=010010 

c, =010100 ,, =010101 
~ = O l O l 1 0  
q3=010111 
q , = O l l O o O  
C,=Oll001 
q 6 = 0 1  1010 
q7=0i1011 
q8 = 01 1 100 
c, =011101 
C,=Olll10 
c3, =oil111 

c33= loo001 
c,= loo010 
c35 = loo01 1 
c,= 100100 
c37= 100101 
c3, = 1001 10 

C,=lOloo0 
c,, = 101001 
c,, = 101010 
c43 = 10101 1 
C,=lOll00 

c,= 1011 10 
c,, = 101 11 1 
c,= 1 1 m  
c49 = 1 loo01 
C,=ll00lO 

c,, = 110100 
css = 110101 
C,=llOllO 
c5s = 1101 11 
c, = 1 1 lo00 

cS8= 11 1010 

C,=llll00 
c,, = 111 101 
c,, = 11 11 10 
c,, = 11 11 11 

CI9=OlOOl 1 

C32 = 1OOOOO 

c39 = 100111 

C45 = 101 101 

C5, = 1 1001 1 

c57 = 1 1 1001 

c59 = 11 101 1 

7351 
387 
387 
20 

387 
20 
20 

1 
387 
20 
20 

1 
20 

1 
1 
0 

387 
20 
20 

1 
20 

1 
1 
0 

20 
1 
1 
0 
1 
0 
0 
0 

387 
20 
20 

1 
20 

1 
1 
0 

20 
1 
1 
0 
1 
0 
0 
0 

20 
1 
1 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

9 
77 
77 

694 
77 

694 
694 

6250 
0 
4 
4 

37 
4 

37 
37 

329 
0 
4 
4 

37 
4 

37 
37 

329 
0 
0 
0 
2 
0 
2 
2 

17 
0 
4 
4 

37 
4 

37 
37 

329 
0 
0 
0 
2 
0 
2 
2 

17 
0 
0 
0 
2 
0 
2 
2 

17 
0 
0 
0 
0 
0 
0 
0 
1 

9 
77 
0 
4 
0 
4 
0 
0 

77 
694 

4 
37 
4 

37 
0 
2 

77 
694 

4 
37 
4 

37 
0 
2 

694 
6250 

37 
329 
37 

329 
2 

17 
0 
4 
0 
0 
0 
0 
0 
0 
4 

37 
0 
2 
0 
2 
0 
0 
4 

37 
0 
2 
0 
2 
0 
0 

37 
329 

2 
17 
2 

17 
0 
1 

0 
1 
2 
6 
2 
6 

19 
58 
2 
6 

19 
58 
19 
58 

173 
519 

2 
6 

19 
58 
19 
58 

173 
5 19 

19 
58 

173 
519 
173 
519 

1558 
4675 

0 
0 
0 
0 
0 
0 
1 
3 
0 
0 
1 
3 
1 
3 
9 

27 
0 
0 
1 
3 
1 
3 
9 

27 
1 
3 
9 

27 
9 

27 
82 

246 

9 
0 

77 
4 
0 
0 
4 
0 

77 
4 

694 
37 
4 
0 

37 
2 
0 
0 
4 
0 
0 
0 
0 
0 
4 
0 

37 
2 
0 
0 
2 
0 

77 
4 

694 
37 
4 
0 

37 
2 

694 
37 

6250 
329 

37 
2 

329 
17 
4 
0 

37 
2 
0 
0 
2 
0 

37 
2 

329 
17 
2 
0 

17 
1 

0 
2 
1 
6 
2 

19 
6 

58 
2 

19 
6 

58 
19 

173 
58 

519 
0 
0 
0 
0 
0 
1 
0 
3 
0 
1 
0 
3 
1 
9 
3 

27 
2 

19 
6 

58 
19 

173 
58 

519 
19 

173 
58 

519 
173 

1558 
5 19 

4675 
0 
1 
0 
3 
1 
9 
3 

27 
1 
9 
3 

27 
9 

82 
27 

246 

0 
2 
2 

19 
0 
0 
0 
1 
1 
6 
6 

58 
0 
0 
0 
3 
2 

19 
19 

173 
0 
1 
1 
9 
6 

58 
58 

5 19 
0 
3 
3 

27 
2 

19 
19 

173 
0 
1 
1 
9 
6 

58 
58 

519 
0 
3 
3 

27 
19 

173 
173 

1558 
1 
9 
9 

82 
58 

5 19 
519 

4675 
3 

27 
27 

246 

0 
0 
0 
1 
1 
4 
4 

13 
0 
1 
1 
4 
4 

13 
13 
38 

1 
4 
4 

13 
13 
38 
38 

114 
4 

13 
13 
38 
38 

114 
114 
342 

1 
4 
4 

13 
13 
38 
38 

114 
4 

13 
13 
38 
38 

114 
114 
342 

13 
38 
38 

114 
114 
342 
342 

1025 
38 

114 
114 
342 
342 

1025 
1025 
3075 

9 
0 
0 
0 

77 
4 
4 
0 
0 
0 
0 
0 
4 
0 
0 
0 

77 
4 
4 
0 

694 
37 
37 
2 
4 
0 
0 
0 

37 
2 
2 
0 

77 
4 
4 
0 

694 
37 
37 
2 
4 
0 
0 
0 

37 
2 
2 
0 

694 
31 
37 
2 

6250 
329 
329 

17 
37 
2 
2 
0 

329 
17 
17 
1 

0 
2 
2 

19 
1 
6 
6 

58 
0 
0 
0 
1 
0 
0 
0 
3 
2 

19 
19 

173 
6 

58 
58 

519 
0 
1 
1 
9 
0 
3 
3 

27 
2 

19 
19 

173 
6 

58 
58 

519 
0 
1 
1 
9 
0 
3 
3 

27 
19 

173 
173 

1558 
58 

519 
519 

4675 
1 
9 
9 

82 
3 

27 
27 

246 

0 
2 
0 
0 
2 

19 
0 
1 
2 

19 
0 
1 

19 
173 

1 
9 
1 
6 
0 
0 
6 

58 
0 
3 
6 

58 
0 
3 

58 
5 19 

3 
27 
2 

19 
0 
1 

19 
173 

1 
9 

19 
173 

1 
9 

173 
1558 

9 
82 
6 

58 
0 
3 

58 
519 

3 
27 
58 

5 19 
3 

27 
519 

4675 
27 

246 

0 
0 
1 
4 
0 
1 
4 

13 
1 
4 

13 
38 
4 

13 
38 

114 
0 
1 
4 

13 
1 
4 

13 
38 
4 

13 
38 

114 
13 
38 

114 
342 

1 
4 

13 

4 
13 
38 

114 
13 
38 

114 
342 
38 

114 
342 

1025 
4 

13 
38 

114 
13 
38 

114 
342 
38 

114 
342 

1025 
114 
342 

1025 
3w5 

38 

0 
0 
2 
0 
2 
0 

19 
1 
2 
0 

19 
1 

19 
1 

173 
9 
2 
0 

19 
1 

19 
1 

173 
9 

19 
1 

173 
9 

173 
9 

1558 
82 
1 
0 
6 
0 
6 
0 

58 
3 
6 
0 

58 
3 

58 
3 

519 
27 
6 
0 

58 
3 

58 
3 

519 
27 
58 
3 

519 
27 

519 
27 

4675 
246 

*I3 
1101 

0 
1 
0 
4 
0 
4 
1 

13 
1 

13 
4 

38 
4 

38 
13 

114 
1 

13 
4 

38 
. 4  
38 
13 

114 
13 

114 
38 

342 
38 

342 
114 

1025 
0 
4 
1 

13 
1 

13 
4 

38 
4 

38 
13 

114 
13 

114 
38 

342 
4 

38 
13 

114 
13 

114 
38 

342 
38 

342 
114 

1025 
114 

1025 
342 

3075 

- 
*I4 

1110 

0 
1 
1 

13 
1 

13 
13 

114 
0 
4 
4 

38 
4 

38 
38 

342 
0 
4 
4 

38 
4 

38 
38 

342 
1 

13 
13 

114 
13 

114 
114 

1025 
0 
4 
4 

38 
4 

38 
38 

342 
1 

13 
13 

114 
13 

114 
114 

1025 
1 

13 
13 

114 
13 

114 
114 

1025 
4 

38 
38 

342 
38 

342 
342 

3075 

- 
*i5 
1111 

2 
7 
7 

22 
7 

22 
22 
66 
7 

22 
22 
66 
22 
66 
66 

198 
7 

22 
22 
66 
22 
66 
66 

198 
22 
66 
66 

198 
66 

198 
198 
593 

7 
22 
22 
66 
22 
66 
66 

198 
22 
66 
66 

198 
66 

198 
198 
593 
22 
66 
66 

198 
66 

198 
198 
593 
66 

198 
198 
593 
198 
593 
593 

1780 
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TABLE 2 
Simplified Bitwise Likelihood Table of Pr{Cll&] 

[Based on table 1. Pr{+,=O} =0.8, Pr{&=l} = 1 -0.8=0.2, for 
all k. The Pr{C,laj} values are multiplied by lo4.  See table 1 

for the bit-patterns for each C,.] 

(3) 
I 4jI. fi {+j} pr{c( l  ... 7 )  

P~{$~Ic ( ' . . . ~ )}  = 
2"-1 c pr{c(l-.T) I4jl *fi{+i) 
i=o 

j = 0, 1, ...) 2"-1. &)=o & ) = I  g , = o  +1=1 &=O 42=1 6 3 = 0  d3=1 

As a rationale for the prior distribution on the parameter 
of interest, +€e,  we assume, as others have done, that ip 

$J,,-~ ... $,, is i.i.d. with an exponential distribution 
[19,28,29,34,37,38]. The choice of the prior probability Pr{@} 
does not affect the discussion in section 4. Hence the procedure 
is robust with respect to the choice of the prior distribution. 

4. BAYES ANALYSIS OF FAULT LOCATION 

4.1 Background 

In general, there are two ways to locate faults using Bayes 
analysis. 

1. As in classical inference methods that mostly deal with 
the posterior distribution, choose either point estimation or set 
estimation to locate a fault [6,8-131. 

2. Use a loss function and turn the problem into one from 
decision theory. 

We use #2, the Bayes decision-theoretic approach, which 
enables us to estimate the fault status of each unit by point 
estimation with the choice of a reasonable loss function [2]. 
Distance is a reasonable measure for all misdiagnosed results. 
The loss function is computed bitwise from the global fault pat- 
tern. We use this loss function because it is computationally 
efficient and its center mean & mode are the same. 

To assist the Bayes analysis, it is necessary to transform 
the likelihood table, Pr { Cil ipj} ,  to a bitwise version of the 
likelihood table, Pr { Ci 1 &}. As shown in table 2, the number 
of columns (which was 2" in table 1) has become simply 2n. 
We extend the expressions from previous sections and consider 
the case 4k = 6, where 6 = 0 or 1 ,  to obtain: 

(4) 

The marginal probabilities Pr{CiJ&}, k = 0, ..., n-1 in 
table 2 are generated from the conditional probability distribu- 
tion in table 1. Hence the column sums of the table are 1, but 
this is not true of the row sums - as anticipated. Table 2 is 
generated using (4) and was validated by two different programs 
written separately in the C & Matlab languages. The shape of 
the distribution in each column is similar to that in table 1 but 
the rate at which the values decrease is slower than in table 1.  
This observation is reasonable since the bitwise conditional 
distribution in table 2 compresses all possible fault conditions 
of S given the fault status, 4k=6, of a single unit. Although 
this bitwise distribution has a less pronounced shape than the 
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global distribution in table 1, table 2 is far smaller. Together 
with the bitwise method in this section, the smal l  size of the 
table appreciably reduces the complexity of the analysis. Besides 
that, P r { c i l & = o }  f P r { C i l & = 1 }  in general. Such an 
equality, rarely occurring in practice, would yield an in- 
conclusive test result and compromise the comparison steps in 
the diagnosis process (see step 3 of BWB in this section and 
remark 5.5).  

4.2 Point Estimation 

Use the obseryed comparison pattems to determine &ML 
= ... & ... 4o E e. +m is the ‘generalized maximum 
likelihood estimate’ of +, viz, the largest mode of the posterior 
distribution Pr{@ I d’-”} [2: p 1331; this maximum likelihood 
estimate is anticipated to be unique. It is O(2”) to examine all 

E 8 to find the maximum of all the Pr{91 C(’-‘)} if all 
have to be examined. However, [8,10] gave a heuristic-based 
search algorithm to find 6m; it has only O(n) worst case com- 
plexity to locate the faults with a 1 -a s-confidence level [2: 
p 4141. 

- 

4.3 Set Estimation 

It is possible to obtain the 1 -a highest posterior density 
(HPD) credible region for the r.v. e, given some smal l  real 
number a. To calculate the HPD we consider all subsets r’ 
c 8 such that Pr{r’ 1 C(’-.’)} 1 1 -a. Among these subsets 
r ’ we must find the one with the highest density of posterior 
probability, viz, the subset such that ~(r’) = min(Pr{aj1 c( 1.. .r)  }: 

The HPD for @ is the subset I’ which maximizes ~(r’): 

E r’) is the largest. 

The computation cost of finding all such r ’ is exponential. An 
alternative is to find a set I” for which the Pr{@ji)C(l-.r)} for 
all @j E r ’ are relatively large and use that r ’ as a reasonable 
replacement for r . since &m is the most likely system fault 
pattem, the other fault pattems 3 E 8 can be considered as 
misdiagnosed. Hence the number of misdiagnosed units can be 
used as a measure of distance of any fault pattem from &m. 

Notation 

d ( A , B )  distance between A & B 
@ ‘exclusive OR’ operation, 

The Pr{$jlC(1...7)} decreases as d(@j, 
we construct r’ using only those +j closest to &ML. 

[6,8,10]. Hence 

n-1 

d(&, 3) E I&-+j,kl, wthatd(&, @ j ) E  {0,1,...,n} 
k=O 

Furthermore, since & = o or I ,  and 4 j , k  = o or 1, it follows 
that: 

n-1 n-1 

k=O k=O 

n-1 

k=O 

The remaining step is to construct a l-a credible region 
for @ which we anticipate to approximate the HPD region. 
Although Pr{+jlC(1-.7)] does not necessarily decrease as 
d(&,,  3) increases, the fault pattem with fewer misdiag- 
nosed links should appear more freque?tly. Therefore we in- 
clude the that have the smallest d(@’ML, Gj) first. In this 
manner, it is possible to find the minimu? h E (0, 1, 2, . .., 
n} such that if r = {aj E 8 : 0 I d(iPML, 3) I h} then 
Pr(I’(C(’-‘)} 2 1-a. Thus, the region is a l-a credible 
region for a. Since I’ does not necessarily contain all E 8 
that have higher posterior density than 3. f r, I’ cannot be 
assumed to be the 1 -a HPD credible region for Cp. However, 
the computation of I’ is more efficient. 

4.4 Bayes Decision Theoretic Approach 

We now turn to the decision theoretic approach to point 
estimation. A decision rule is a mapping from the test results 
C(l- .r)  to the fault pattems 3: Given a particular test result, 
the rule decides on a particular fault pattem. The Bayes approach 
considers the true fault pattem which we denote by iP = 
... t$k . . . 40, although it is unknown, of cuurse. We must then 
choose a reasonable loss function. In section 4.3, we claimed 
that distance is a reasonable measure of the amount of 
misdiagnosis in a pattem. Given the test result C(1-.7) suppose 
an arbitrary decision rule assigns the fault pattem 4 = &-I 

. . .&. . .60 E e. Then consider the loss function: 

n-1 n- I  

k=O k=O 

n-1 

k=O 

The statistical importance of this function is that, since Cbk 

& & only take the values 0 & 1 ,  it has the same properties as 
the square-error loss and absoluteerror loss. Moreover, the loss 
function is computationally practical since it can be evaluated 
by the ‘exclusive OR’ operation which is efficient. This shortens 
the unit computation time. 

Given a loss function, we have to consider the fact that 
CP is unknown and, in fact, every aj is possible and, given 
C(l-.T), the probability of Q, being is exactly the posterior 
probability P r { 3  1 C(1,..7)}. We define a risk function p as the 
s-expected loss, given this probability distribution for *: 
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In this equation the r.v. which is conditionally s-dependent on 
~ ( 1 . .  .r) is ip. The risk function can be expanded to explicit sums 
as follows, but the sums here are over 2" elements: 

* E 9  

Now we can select the Bayes decision rule which makes 
... 4; ... 4; E 0, to be the correspond to ipi = c(1 . . .T) 

one that minimizes the risk function: 

n - 1  

k=O 

The full derivation is given in [6,13]; and the r.v. which are 
conditionally sdependent on C(l...r) are 9 and its components 
&. Then = +.*-1...r#$...40. minimizes p(4$, a) iff 4; 
minimizes p ( # ,  4) for all k = 0, 1, 2, ..., n-1. Hence the 
complex global analysis of all the ih E 0 is decomposed into 
a simple bitwise analysis. In other words, in order to compute 
the ip i  assigned by the global Bayes decision rule, it is suffi- 
cient to find all bitwise assignments 4; = 0 or 1 (k = 0, 1, 
2, ..., n-1) that minimize: 
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replaced by the sum of two terms! However, it can be reduced 
further by using the fact that: 

since 4: & & are binary variables, we know that if 42=O, then 

Hence: 

4!@ 4k = 4k. 

Therefore, 

The decision process outlined above can be summarized 
as the following bitwise (BWB) version of the Bayes decision 
algorithm to perform fault location: 

4.5 BWB for Fault Location 

Choose the components 4;- 
For each k = n-1, ..., 0: 

1. If r(&; l}  > r(rbk; 0}, then choose 4; = 1. 
2. If I(&; l} < r(&; 0}, then choose 4; = 0. 
3. Otherwise, the test is inconclusive. 

If a set estimation is desired, the procedures developed in 
section 4.3 can be applied to ?btain a 1 -a credibility region 
for ip by substituting ip; for &. 

.+;. . .& of 4$ as follows: 

or equivalently minimize the numerator, 
5 .  REMARKS 

The complexity of analysis, by using this methodology, 
has been reduced dramatically since sums with 2" terms are 

7 

5.1 Pr{C(l..,r)l&} = Pr{C(S)(r&} 
s=l 

is computable, since Pr{C(')I&} can be obtained from the 
simplified bitwise likelihood table, eg, table 11. Furthermore, 
the size of this likelihood table is 2"-n-2 = n.2"+', which 
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is much smaller than 2m 2" = 2m+" of the full likelihood table 
such as table I. Also the data in the both tables can be com- 
puted prior to run-time. 

5.2 The run-time complexity of BWB is 0 (n). This use 
of bitwise analysis dramatically surpasses previous results in 
the literature and is a very good result in theory & practice. 
From the theoretical point of view, it reduces the complexity 
of the Bayes analysis; this complexity is one of the main defi- 
ciencies of the Bayes approach. In practice, BWB outperforms 
other methods in the literature since it does not really require 
any assumptions. The only disadvantage is in the generation 
of the probabilistic comparison table. Again, this is a one time 
computation. 

5.3 Since the loss function is square-error loss, the 
posterior mean E{4klC(1.-r)} is the Bayes rule [2: p 161, 
result 31. However, because 4; is binary, it is reasonable to 
choose r#= 1 if E{4kIC(1...r)} > 0.5 (the same decision rule 
as step 1). If the loss function were generalized to a weighted 
square-error loss, then the Bayes rule can also be obtained [2: 
p 161, result 41. However, that form of the Bayes rule is not 
as simple as the BWB. In addition, since the loss function is 
also the absolute error loss, the median of Pr{&l C('. . . ')}  also 
provides a Bayes rule [2: p 162, result 51. Again, since @ is 
binary, this is equivalent to the BWB. If the loss function is 
generalized to a linear loss, the decision rule can be obtained 
in a similar fashion [2: p 162, result 61. Thus, BWB is valid 
for a class of the usual loss functions. 

5.4 BWB is consistent with one's intuition and has the im- 
portant property of positive Bayes decision rules, namely ad- 
missibility. This gives extra trust in our intuition. 

5.5 If the inconclusive test result described in step 3 of 
BWB were to occur, it could be resolved by upgrading the quali- 
ty of the test tasks ti or by increasing 7, the number of tests. 
The latter would be necessary if faults were intermittent. 

5.6 BWB accommodates all possible faulty & fault-free 
systems under test, without any increase in complexity when 
the fault-free state is diagnosed, permitting the algorithm to be 
applied to monitor a system periodically. Further, BWB is able 
to distinguish truly faulty units from those which appear faulty 
due to the imperfect environment, thus eliminating unnecessary 
hardware replacement or reconfiguration before the system 
recovery process performs rollback to a fault-free state. 
5.7 The comparison-based probabilistic model and the Bayes 

inference algorithm make BWB complete in the statistical sense, 
since the model together with the BWB can accommodate all 
possible random effects. It is practical because the computa- 
tions are simple binary operations, with linear complexity. The 
necessary data are directly observable during the testing process. 

5.8 A visual simulation tool (ViSiT) [7] has been im- 
plemented in C f +  to test the validity of BWB. Test results 
have demonstrated that the algorithm is both efficient & ac- 
curate. When testing the algorithms for the early phase of system 
operation, 98% of the tests gave exact fault coverage. For tests 
corresponding to the late phase of system operation, 85% of 
the tests gave exact fault coverage. In both cases, the remain- 
ing tests diagnosed as faulty both the actual faulty units and some 
of the fault-free units. ViSiT also demonstrates that the excess 
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of fault-free units being misdiagnosed begins to show when the 
fraction of faulty units exceeds 50%. 

6. EXAMPLE OF LOCATING SYSTEM FAULTS 

Figure 1 is a 4-unit system; figure 2 shows the possible 
comparison outcome with 1 faulty unit. Let 7= 10. The follow- 
ing comparison patterns are observed: 

These patterns are sorted & counted as follows: 

Patterns (sorted) CO Clo C34 Ca C42 C57 
count 1 1 1 2 4 1  

According to BWB, all we need to do is to sum Pr{C(1-.10)14k 
= l } . P r ( ~ , = l }  from table 11 and compare it with the cor- 
responding sum of Pr{C('-lo)l+k=O} .Pr{4k=0}. Repeat the 
same step until all the bits are done: k = 0 to 3, in this case. 
This also implies the bitwise computations are carried out only 
on the relevant 4k column. Let k=O and compute for 40= 1: 

Similarly, for qjO=O: 

pr { c" . ..IO) I&=O} -Pr{40=0} = 10-40*[3767*101 * 101 - 10l2 

-8M4 *76] - (0.8). 

Since Pr{C( l~-*o)~~o=l}  -Pr{+o=l) is obviously smaller than 
pr { c" . . .lo) ~ ~ o = O } ~ P r { ~ o = O } ,  we choose 4;=0. In the next 
step, k is increment4 by 1 and the process repeats. We con- 
clude from the iterations of BWB that the fault pattern of the 
system is ip' = +;+@;+; = 0100 = ip4. 
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Reliability obeys model I 

n = 5  
py = 50 pounds, Dy = 0.1, D, = 0.05. 
An average of 1 units (for n = 5 )  fails at the severe test condi- 
tions. Thus, at the 95% s-confidence level, RL,s = /30.0~(4,2) 
= 0.342. 4 

R ~ , ~ = o . 9 9 9 , ’  7 = 5% 

The result is: 

A = 0.34216, B = -0.97613, 

6 = 1.40. 

The test level is therefore S = 50.1.4 = 70 pounds. 

of the reliability at the test level is: 
During the test, 2 out of the 5 units failed. The 95 % LCB 

working conditions based on poor reliability demonstrated at 
the test level. 
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px,L= 67 pounds 

RL,N = 0.9977 < 0.999 (the requirement). 

5 .  PRACTICAL APPLICATIONS 

The procedure is based on testing a few units at a severe 
level, rather than testing many units under working conditions. 
Typical situations are 4 - 5 units without failure in 20% - 30% 
amplifidattenuated test levels rather than 200 - 300 units 
without failure under nominal working conditions. 

While implementing the procedure, its underlying assump- 
tions should be thoroughly examined & tested to assess their 
validity in the given problem. The selected test level should not 
be too far from the working conditions, to prevent a change 
in the failure mechanism. We recommend a “success-oriented 
approach” during the selection of the test level so that mainly 
successes are anticipated. Even though it is not a mathematical 
restriction, it is not desirable to deduce high reliability at the 
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