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Abstract: Ray marching is an important technique to generate volumetric lighting effects. However, it is very expensive for each
pixel on the screen, especially in dynamic scenes. The authors propose an adaptive approach to reduce samples for volumetric
shadows in the time domain. In dynamic scenes, shadow volumes of moving objects are created and are rasterised to decide pixels
that cannot be reused. The authors use a stencil buffer to maintain the information of screen pixels by recomputing or just using
the previous information. Experimental results show that the proposed approach is simple to implement. Moreover, compared to
the previous method, the proposed approach achieves a specific speedup and maintains similar visual quality.
1 Introduction

Realistic rendering is important to the movie and gaming
industries. However, it is a challenging task for simulating
radiance transport in participating media efficiently and
accurately. Some simplifying assumptions are often made
about scenes to maintain interactivity. One common
assumption limits light interactions to surfaces. It ignores
contributions from light scattered by particles in the air.
This means that radiance is constant along rays between
surfaces. However, there are many real-world situations
where this assumption is inaccurate, such as scattering from
particles in the air, volumetric shadows and so on.
Scattering in participating media generates volumetric
lighting effects, which greatly enhance the realism in virtual
scenes. However, the computation cost is very expensive as
scattering occurs at every point in sampling space.
For single-scattering effects, ray marching [1] is usually

used, which needs to integrate in-scattered light along a ray
emanating from the viewpoint. Consequently, the
computation cost scales with the number of rays and samples
along the ray. The previous work [2] uses down sampling to
reduce the number of rays, and restricts ray marching regions
to lit segments. Another approach [3] uses irregular sampling
and interpolates to reduce the number of rays. However, the
computation cost will be very expensive for dynamic scenes.
In this paper, we present an adaptive sampling algorithm in

the time domain for volumetric shadows. We can reduce the
number of rays by reusing the results from the previous frame
in dynamic scenes. We determine pixels on the screen
whether they are needed to be updated or not. We focus on
moving objects that are changed frame by frame and make
a stencil buffer to mask pixels that are not reusable by
rasterising these objects. The proposed adaptive sampling
technique for volumetric shadows in dynamic scenes can be
combined into exist rendering systems with similar visual
quality and yields a definite speedup.
The contributions of the proposed approach are as follows:

(a) We present an adaptive sampling algorithm for volumetric
shadows in dynamic scenes; (b) The proposed method can be
easily integrated to other rendering techniques since two
rendering passes are only needed; (c) The proposed method
gains 10–40% speedup with similar visual quality compared
to the previous method.
The rest of this paper is organised as follows: First, in Section

2, we review some related works. Section 3 describes the
proposed adaptive sampling algorithm for volumetric
shadows in dynamic scenes. Section 4 describes the results.
Finally, Section 5 gives conclusions and future works.
2 Related works

Several approaches have been proposed for rendering
participating media. Ray marching [1] is a traditional method
for computing volumetric shadows with single scattering. For
each pixel on the screen, a ray is cast from the viewpoint and
the approximated radiance is computed by sampling along the
ray. If the point is occluded from the light, it is discounted from
the integral. The ray terminates once it hits an object’s surface.
Several approaches work on solving single-scattering integral

semi-analytically [4, 5], but these studies ignore shadowing.
Other methods like volumetric photon mapping [6, 7] and line
space gathering [8] dedicate to more difficult scattering issues,
such as volumetric caustics or multiple scattering. These
problems are far from real time on complex scenes. Max [9]
computed the single-scattering integral by searching the lit
parts on every ray using shadow volumes intersected with
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epipolar slices and then analytically determined the integral on
each lit part. Dobashi et al. [10] presented a method to
compute the scattering integral by constructing slices at
different depths, rendering the scattering at these slices, and
incorporating them. Imagire et al. [11] proposed an approach
that combines both slices and ray marching.
Since previous approaches for volumetric shadows [12, 13]

have to consider about shadow boundaries, it takes additional
work. Wyman and Ramsey [2] used shadow volumes [14, 15]
to distinguish the shadow regions of each ray. This ray
marching technique can reach a definite speedup compared
to the traditional ray marching. However, ray marching with
participating media still consumes a lot of performance,
especially in dynamic scenes. Hu et al. [16] applied
Wyman and Ramsey’s method [2] in their algorithm for
interactive volumetric caustics. It works for simple
occlusion, but it is slow when visibility boundaries become
complex. The algorithm of Billeter et al. [17] generates the
shadow volume extruded from a shadow map and computes
the lit segments with a graphical processing units (GPU)
rasteriser. It performs well for low-resolution shadow maps,
and the performance is dependent on shadow map resolution.
Volumetric shadow problems can be simplified using

epipolar geometry [3, 9]. Max [9] updated the hidden
segments of view rays along epipolar planes and then
computed scattering integrals of lit segments analytically.
The complexity of the visibility function is proportional to
integration cost. This shadow volume algorithm is
dependent on scene complexity. Recently, Engelhardt and
Dachsbacher [3] noticed that the values of the scattering
integral vary smoothly along epipolar plane lines in most
cases except at depth discontinuities. They sampled more at
discontinuities which occurred due to occlusion in image
space. A Z-buffer is used for detecting, and the visibility is
queried from the shadow map. Compared to ray marching,
this sampling strategy can speed up for most cases.
The incremental integrationmethod is proposed byBaran et al.

[18]. They used epipolar rectification to reduce computation of
scattering integral and accelerate this computation with a partial
sum tree. This method is fast on the CPU, but hard to
implement on GPU due to incremental traversal of camera rays
in specified order. For utilising GPU parallelism, Chen et al.
[19] used a 1D min–max data structure to avoid dependence
between camera rays. They do not have to do camera
rectification and avoid processing twice as many as camera
rays. Their results show that their approach can speed up and
slightly obtain better quality. Wyman [20] also utilised epipolar
space with voxelisation. They reduced visibility query cost by
voxelising the scene into a binary, epipolar space grid. A fast
parallel scan is then used to identify shadowed voxels. Once
identified, a texture can be built according to this voxelised
shadow volumes. Then, 128 visibility samples along the eye
ray can be done with a single texture fetch. Engelhardt and
Dachsbacher [3] reached a definite speedup. However, there
are some improvements by reusing temporal information.

3 Proposed approach

The proposed approach for computing light L at the viewpoint
is based on the model [2, 21]

L = Lsl + Lse

= Lpe
−(ka+ks)dp +

∫dp
0
ksr(a)

I0
d2

e−(ka+ks)(d+x)dx
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where two terms Lsl and Lse represent surface lighting directly
reflected from a point p on an object and scattering effects
in-scattered along the viewing ray, respectively. The light
reflected from point p to the viewpoint is denoted as Lp; I0
is emitted radiance of light; the distance from the viewpoint
to p is dp; and d is the distance from the light to a point on
the viewing ray at distance x from the viewpoint. ka and ks
are absorption and scattering coefficients, respectively, and
ρ(α) is the phase function.
We first create a shadow map from the light as follows: We

first render the scene from the light and save the depths as
shadow map. Then, we render the scene from the viewpoint
and compare the depths for a given point sp as follows

If R = D, point sp is not in shadow
If R . D, point sp is in shadow

{

where R is the distance from the point to the light and D is the
depth value in the shadow map.
Then, we render a shadow volume from the viewpoint and

store the distances to the front-most and back-most polygons.
For surface lighting, it is a general rendering process and can
be computed quickly based on the Phong lighting model and
the shadow map. For scattering effects, they can be computed
by the proposed temporally adaptive sampling algorithm
based the shadow map and the shadow volume which will
be described in more detail in the following sections.

3.1 Temporally adaptive sampling algorithm

The main steps of the proposed adaptive sampling algorithm
for volumetric shadows in dynamic scenes are described as
follows:

1. Check whether the previous frame exists or not.
2. If the previous frame does not exist, compute scattering
effects with the hybrid ray marching technique [2].
3. If the previous frame exists, first generate a stencil mask
and determine the changed part of the previous frame, and
then combine the previous frame with the changed part of
the previous frame to compute scattering effects.

The stencil mask is used to classify pixels. This stencil
mask is made by considering shadow volumes [14, 15] of
moving objects and moving objects. Also, the current
positions and the previous positions of moving objects are
used to generate such a mask. Fig. 1 depicts the flowchart
of the proposed temporally adaptive sampling algorithm for
computing scattering effects.

3.2 Shadow volumes of moving objects

The shadow volume of moving objects is an important part to
determine changed pixels of the screen since visibility of
particles within the shadow volume will be changed in
dynamic scenes. Therefore, the proposed algorithm generates
a shadow volume of moving objects from the viewpoint.
Because of participating media, samples in the scene
influence the results of ray marching. It is important for
deciding pixels whether they are changed or not. If visibility
of samples in the scene along a viewing ray is changed, the
radiance of this ray should be computed. Otherwise, the ray
marching result of the previous frame is directly used.
Without loss of generality, assume that which moved

objects are known. The procedure for generating a shadow
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Fig. 1 Flowchart of the proposed temporally adaptive sampling
approach for scattering effects

Fig. 2 Generate shadow volumes of moving objects of both the
previous frame and the current frame, and obtain a stencil mask
from the generated shadow volumes
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volume within a shader is as follows: First, silhouettes of the
moving objects are generated. Then, two more vertices for
each silhouette are added to produce shadow polygons.
Hence, the shadow volume is constructed.
3.3 Dynamic stencil mask

The stencil mask of current moving objects is not enough for
specifying all changed pixels since it only includes samples
that are changed from visible to invisible. It is also needed
to consider visibility of samples that are changed from
invisible to visible. This usually happens in the shadow
volume of moving objects of the previous frame. Therefore,
both the previous and current shadow volumes of moving
objects are considered. Actually, all shadow volumes of
moving objects from the previous frame to the current
frame are considered.
The procedure for generating a stencil mask, shown in

Fig. 2, is as follows:

1. Back trace positions of moving objects of both the
previous frame and the current frame.
2. Generate shadow volumes of the moving objects of both
the previous frame and the current frame.
3. Compute two stencil masks from the generated shadow
volumes of both the previous frame and the current frame.
4. Combine the two stencil masks into the combined mask to
determine the regions that are needed to do actually ray
marching.

For calculating the stencil mask, based on the function
glStencilFunc, the mask is calculated by specifying a mask
mask(i, j) that is ANDed with both the reference value ref
(i, j) and the stored stencil value stencil_nuffer(i, j). The
formula for calculating the mask is defined as

mask(i, j) = ref (i, j) AND stencil buffer(i, j)
764
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The stencil mask includes not only rasterisation of moving
objects and the shadow volume, but also the parts in the
previous frame. This is done with stencil operations and
stencil function sets. Stencil operations specify actions
when stencil or depth tests pass or not. When building this
mask, the proposed approach does not need to consider
about depth information, and depth test is disabled. Stencil
functions specify stencil tests that decide whether pixels
pass the mask or not. During the rendering pass, all the
changed parts of the screen are set to non-zero in the stencil
mask. After setting stencil operations and stencil functions,
a shader is performed to generate a shadow volume of
moving objects. This shader is performed twice separately
for the current positions of moving objects and the same
moving objects but with positions of the previous frame.
Pixels with different ray marching results due to moving
objects are then marked as non-zeroes in the stencil mask.
We store different rendering passes as different textures
using off-screen rendering techniques. The frame buffer
object of OpenGL is convenient to do this, but it is only a
manager of memory to help us control off-screen render.
Each render buffer is created before it is used.
Notice that there is no need to compute all pixels in the

current frame. This combined mask helps to indicate which
pixels are needed for ray marching because of movements
of objects. This combined mask is used to compute pixels
that are marked changed. Fig. 3 indicates that the results
from the previous frame and the current frame are
combined by updating red regions from the previous frame.
Moreover, the types of motion of moving objects can affect

the dynamic stencil mask. A linear motion will not lose pixels
in general, but a rotate motion may leave some pixels out of
the mask. This situation can be handled by updating whole
IET Image Process., 2013, Vol. 7, Iss. 8, pp. 762–767
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Table 1 Results of scenes

Scene Our approach,
fps

Hybrid ray marching,
fps

Speedup

dragon 46.08 35.24 1.31
bunny 59.93 44.73 1.34
buddha 58.76 41.63 1.41
yeahRight 29.34 26.75 1.10

Fig. 3 Combine results from both the previous frame and the
current frame
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scene with a definite number of frames. We call this number
as the reused frame number, which will be described in the
following section.

3.4 Combining temporal frame

The proposed approach works on the screen space. We shot a
ray for each pixel and then compute the radiance for each
pixel. After building the stencil mask, a texture with results
of the changed parts can be generated. Assume that the
camera is fixed and it is only needed to compute the
background texture once. The whole scene is first computed
as the background. Then a shader is applied to combine this
background texture and the current changed part of the
texture. Actually, it is not necessary to process every pixel.
The background texture is just taken as render targets and
process only pixels that are within the stencil mask. We
compute the whole scene as per the reused frame number,
as shown in Fig. 4.
If the reused frame number is set to more than a definite

number, some unwanted colours would be accumulated and
Fig. 4 Reused frame number = n− 1

IET Image Process., 2013, Vol. 7, Iss. 8, pp. 762–767
doi: 10.1049/iet-ipr.2013.0067
it produces obvious artefacts. In the experiments, the reused
frame number is set as 3 because the stencil mask
sometimes cannot fully cover the regions.
4 Results

The proposed algorithm is run on a PC with 3.33 GHz Core™
i7 CPU and 8 GB of memory. The used graphics card is an
NVDIA GeForce GTX 295. The proposed algorithm is
implemented based on OpenGL and GLSL. All results are
rendered at 1024 × 1024 pixels. The testing scenes are
dragon, bunny, buddha and yeahRight with between 50 k
and 755 k polygons. All scenes are defined in a box with
one light source.
Most jobs are stored as textures for different rendering

passes and are combined to obtain the rendering effects.
The proposed adaptive sampling technique for volumetric
shadows in dynamic scenes dedicates to reducing samples
by reusing ray marching results from the precious frame.
Therefore, at least two rendering passes are added to the
rendering system. One is for building a stencil mask and
another is for combining the reusable parts and the actually
recomputed parts.
Table 1 shows the frame rates of the proposed temporally

adaptive sampling approach and that of the hybrid ray
marching [2]. In most scenes, such as dragon, bunny and
buddha, the proposed approach can reach a definite speedup
with the similar visual quality. However, the speedup is
coming from reusing ray marching results from the previous
frame. Therefore, the performance is directly proportional to
moving objects and the shadow volume of the moving
objects covering pixels.
Figs. 5–7 gain more speedups because of fewer pixels are

changed, since we reuse most parts of the previous frame.
Fig. 8 shows less speedup for scene yeahRight because of
sophisticated model and the overhead for building shadow
volumes.
Fig. 5 Scene ‘dragon’
a Generated by the proposed algorithm
b Generated by hybrid ray marching
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Fig. 7 Scene ‘buddha’
a Generated by the proposed algorithm
b Generated by hybrid ray marching

Fig. 8 Scene ‘yeahRight’
a Generated by the proposed algorithm
b Generated by hybrid ray marching

Fig. 6 Scene ‘bunny’
a Generated by the proposed algorithm
b Generated by hybrid ray marching
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There are three factors for affecting speedups: (a) the
number of moving objects, (b) the stencil mask with
occupied pixels and (c) the complexity of moving objects.
All these factors exist when the performance of the
proposed algorithm becomes slow. As shown in Table 1,
the performance of scene yeahRight is influenced by the
complexity of moving objects. Moreover, we capture the
frames produced by the proposed algorithm and the hybrid
ray marching. The difference images of these two frames
show zeroes for all pixels if the frame rate is high.
Assume that we generate a background texture taking

Tbackground where the whole pixels are computed and a
texture taking Treused for only pixels covered by the stencil
mask. Moreover, we update the whole scene by reusing a
766
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definite number of frames Nreused. Therefore, the average
time complexity T(n) of the proposed method for each
frame is about

T (n) = Tbackground + Treused(n− 1)/Nreused

n

where n is the number of frames.
There are some limitations for the proposed approach.

If the moving objects and their shadow volumes cover too
many pixels of the screen, then speedup will be limited.
Also, if the camera is keeping moving, there will be no
pixels reusable. Therefore, there will be a little speedup or
no speedup in these cases.

5 Conclusions and future works

In this paper, we propose an adaptive sampling approach for
volumetric shadows in dynamic scenes. We achieve a definite
speedup and maintain the similar visual quality. Besides, this
method can be easily integrated to other rendering techniques
since two rendering passes are only needed. In the future, we
will generate the stencil mask more efficiently. Save the
stencil mask of the objects of the previous frame and adopt
it in the current frame when they are detected moving.
Besides, a dynamic detection of changed parts of the stencil
mask can be applied to decide whether using this sampling
method or not. If moving objects and their shadow volumes
cover over a definite percentage of the screen, we do not
use this method.
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