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Efficient Time Domain Synthesis 
of Pipelined Recursive Filters 
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ment of [l].  
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pipelined recursive filters directly from the time domain specifications. 
Based on the modified least-squares approximation, the ipelinable de- 
nominator form that contains only the powers of *-$ is designed 
inherently by expressing the design criterion in terms of only the nonzero 
denominator coefficients and a final design is derived. Due to the lack 
of the conventional transformation overheads, the multiplications needed 
are fewer in the resulted filters. Moreover, we introduce a new kind of 
companion matrix that characterizes the stable properties of pipelined 
recursive filters. Using thii result, we prove that the proposed direct 
synthesis method can always guarantee the stability. 

I. INTRODUCTION 

The data dependence between successive outputs of recursive filters 
restricts the use of pipelining techniques to derive high throughput 
rate [l]. A new scattered look-ahead method to pipeline recursive 
filters has been proposed by Parhi [2]. It releases the dependence of 
y(n) on y(n - 1) to y(n)  on y(n  - R). The new recursive loop can 
then be pipelined by R stages and achieve R times throughput rate. 
Conventionally, the design of these pipelined recursive filters is em- 
ploying a pole-zero cancellation technique [2]. A simple nonpipelined 
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is first designed to satisfy some specifications. For each pole of this 
filter, we add (R - 1) new canceling pole and zero pairs uniformly 
located with the same radius of that pole, the resulted transfer function 
H z ( z )  will only contain z -R terms in the denominator as 

/ o  \ 

~. 
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B. D. 0. Anderson, “On the computation ofthe Cauchy index,” Qua, This the Output dependence. However, ( R  - l)p new 

coefficients are added in numerator. They are usually too large and 
unnecessary for specification demands. 

A frequency-sampling technique was first explored by Soderstrand 
[3] to reduce the above overheads. It takes the high sampling form 
of the denominator of Hl(z) only, and then designs the canceling 
FIR filter. The final numerator could have fewer coefficients. This 
is a two-step design style. However, more freedom of the numerator 
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order will be gained if we synthesize a pipelined recursive filter 

~ j ( ~ )  - N ( z )  bo + b i z - '  + b 2 z C 2  + ... + b m z - m  
(1) 

directly. We can adopt either the frequency domain approach or 
the time domain approach. For the frequency domain approach, 
the methods of designing recursive decimators [4], [5] can all be 
employed as in Chung-Parhi's work [6]. Recently, Lan has also 
explored a constrained iterative technique [7] to synthesize pipelined 
recursive filters directly. For the design problems with nonstandard 
frequency responses [8]-[ 111 or the specifications are only known 
from the time domain such as the voice modeling filter in the speech 
synthesizer [12], we may prefer the time domain approach. However, 
little literature concerned with the synthesis of pipelined recursive 
filters from the time domain approach. In this paper, we want to 
formulate the direct synthesis problem of (1) based on the time 
domain approach. We expect to develop an efficient design method 
to save the pole-zero cancellation overheads. 

- 
D ( 2 )  1 + a1z-R + a211-2R + . . . + f I n Z - n K  

11. SYNTHESIS OF PIPELINED RECURSIVE RLTERS 

Let a desired infinite impulse response h k  and the corresponding 
transfer function be specified as 

H ( z ) = h o + h l z - ' + . . . + h k ~ - ~ +  

h k  = 0 for I: < 0. 

The problem is to find the coefficients { o t  1 i = 1.2,. . . , n }  and 
{b, I j = 1,2 , .  . . , m }  of the pipelined recursive filter (1) so that 
the error measure 

to minimize the error (2). If we substitute the new denominator 
coefficients { ql I j = 1,2, . . . , n R }  into (2) and apply the Parseval's 
theorem, we find 

where QO = no = 1, and r z  = hkhk+z is the autocorrelation 
sequence about h k .  Minimizing this error with respect to b k  yields 
the coefficients bk to be 

n R  

J=O 

1=0 

Equation (3) with these b k  (4) becomes 

(4) 

n R  nR m / n R  

Some coefficients qj  can be constrained to be zero inherently if we 
rewrite (6) as 

(7) 

where K is a symmetrical matrix whose elements are given by 

m- n R+min( z R.J R)  

ICtJ = T I , R - ~ R I  - hkhk+llR-,R1 i , j = O , l , . . . , n .  
k=--00 

(8) 
There are not restrictions about the coefficients a,. The minimization 
of (7) does not need any constrained programming methods. 

By the Lagrange multipliers method [13], the minimal value of (7), 
E,,,, and the corresponding coefficient a = [a, a,-l . . . a1 1IT, are 
found to satisfy 

(9) 

Coefficient a can be solved from (9) by computing the last column of 
K-'  and normalizing it so that the last element is unity. Coefficients 
b k  are then calculated from (5). 

Although our design criterion c in (2) is a modification of the 
standard least-squares error [ 101 

the designed result can be reasoned in the sense of least-squares. This 
is because the least-squares error (IO) is bounded by the product of 
the error E and the maximum value of ID(+')/-'. If the designed E 

vanishes, so does the least-squares error for a stable filter. The designs 
by our approach, therefore, have the similar meaning as those by the 
least-squares criterion. Some differences between these two methods 
are discussed in [14] and not mentioned here. We mainly use the 
important fact that the modified least-squares provides a quadratic 
form of the designed variables. Thus the original constrained filter 
design can be easily simplified. 

111. STABILITY CHARACTERIZATION 

For a pipelined recursive filter with transfer function as that in ( l ) ,  
we define a power companion matrixA in terms of the denominator 
coefficients as 

1 0 ... 

This matrix has a very useful property that the Rth power of each 
pole of the filter corresponds to one eigenvalue ofA. Thus, if m a t r i d  
has all eigenvalue magnitudes less than unit, the filter will be stable. 



620 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 9, SEPTEMBER 1994 

- E, , , ,"  ' 

10 20 30 40 50 60 70 60 90 100  
bme ndex 

(b )  

The desired and designed impulte response\ of example 1. Fig. 1. 
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TABLE I 
THE DESIGN RESULTS OF EXAMPLE 1 

- ( W )  

1 (33)  8.7301 
2 (5 ,3)  4.5717 

3 ( 6 3 )  5.7238 

4 (7,3) 4.3886 
5 (7.3) 6.8273 

Pipeline stages Filter order(m,n) €2 

Let us refer to the upper left 1 1  x I I  portion of matrix K ,  denoted 
as K I ,  and the matrixA. Using the solution (9), we find that 

-004' ' " ' b c m 

bme ndex 

Fig. 2. The impulse response of the vowel formant filter of example 2 

The matrix Ka represents the lower right I )  x 11 portion of K .  From 
the matrix element definition (8), we obtain the matrices K I  , K Z  to 
be related as 

where 

Finally, we obtain the result 

The measure defined in (2) is nonnegative and reaches to zero for 
the optimal design. But in real synthesis, we can only design the best 

and D ( I )  to approximate a truncated version of the impulse 
responce 

H ( ; )  = ho + k l z - '  + . . .  + h k : C k  + . . .  + h f - C F .  

rather than the entire infinite one. It follows that (7) can be merely 
minimized to a positive value. The matrix K is positive definite. As 
a result, all the matrices A, b, K I  , L and (1 I )  satisfy the Lyapunov 
stability-theorem [ 151. All the eigenvalues of the power companion 
matrix A therefore have the magnitudes less than unit. The filter 
designed by our method is then proved to be stable. 

IV. ILLUSTRATIVE EXAMPLES 

To show the effectiveness of our method, we design two different 
filters in this section. The quantity 

defined in [16], [I71 for time domain design comparison is used as 
the specification. 
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Fig. 3. The designed responses of example 2. 

TABLE I1 
THE DESIGN RESULTS OF EXAMPLE 2 

-(499) 

1 (7,7) 7.3884 
2 i 126) 0.0379 

Pipeline stages Filter order(m,n) f 2  

3 ( 18,6) 0.0002 

4 (246) 0.0001 
5 (306) 0.00005 

Example ]-A Causal Gaussian Filter: In this example, the prob- 
lem is to approximate the impulse response of a causal Gaussian 
filter given by 

The finite truncation, F, is selected to be 99. The specification is 
G-(”) 5 9. The designed results for different pipelining stages are 
summarized in Table I. Some coefficients of the designed filter are 

, , mmpatisa;fexamplel , , , 
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Fig. 4. 
signed by different methods. 

The comparison between the multiplication numbers of filters de- 

given as 

The desired and designed impulse responses are shown in 
Fig. 1. 

Example 2-A Vowel Formant Filter: Fig. 2 shows the impulse 
response of a filter corresponding to the formant for the vowel ‘‘3” (as 
in law) in a speech synthesis system [18], [19]. The finite truncation, 
F, is selected to be 499. The specification is F,$499) 5 8. The design 
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results are summarized in Table 11. Some coefficients are given as 

R = I  

lV( z )  = 0.0410 - 0.0930C1 + 0.0158;-’ 

+ 0.1264~-’ - 0 . 1 1 7 7 ~ - ~  - 0 . 0 0 8 5 ~ - ~  

+ 0 . 0 6 0 9 ~ - ~  - 0.0247~-’ 

D ( z )  = 1 - 4 . 2 2 9 0 ~ ~ ’  + 6 . 9 4 7 8 ~ ~ ’  - 4 . 4 9 3 6 ~ ~ ‘  

- 1 . 4 6 9 2 ~ ~ ~  + 3.4596;-’ - 2.8884~? 

+ 0 . 6 7 4 9 ~ ~ ’  

R = 2  

* t 7 ( z )  = 0.0411 + 0.0807~-’ - 0 . 0 6 3 5 ~ ~ ’  

- 0.2l2l;? + 0 . 0 0 3 5 ~ - ~  + 0 . 2 4 7 6 ~ ~ ~  

+ o . o 5 i i ~ - ~  - n.1958:~’ - 0 . 0 5 m - ~  

+ 0.1259--’ + 0.0516~-‘~ 

- 0 . 0 4 3 0 ~ ~ ”  - 0.0237~-” 

D ( z )  = 1 ~ 3 . 2 8 7 6 ~ ~ ’  + 5 . 0 1 9 7 ~ ~ ~  - 5 . 1 3 9 8 ~ ~ ~  

+ 4 . 2 0 0 1 ~ ~ ~  - 2.3845--” + 0.6459z-” 

The designed responses for these two cases are shown in Fig. 3. They 
are plotted in the frequency domain to compare the result apparently. 

Finally, we compare the proposed method with the pole-zero 
cancellation method in terms of the multiplication numbers of the 
designed filter. The numbers for the pole-zero cancellation are 
evaluated assuming R-stage scattered look-ahead is applied to the 
original nonpipelined filter (R = 1 ) .  This comparison is made for 
both example 1 and example 2. Fig. 4 indicates the results. Our 
method can generally reduces the multiplications number by about 
60 to 80%. 

V. CONCLUSIONS 
An efficient technique has been developed in this paper for the 

synthesis of pipelined recursive filters directly from their time domain 
specifications. Based on the modified least-squares approximation, the 
error measure is expressed in the quadratic form of the denominator 
coefficients. Furthermore, the demand that the denominator polyno- 
mial contains only powers of z - ~  is served simply by constructing 
a special matrix K rather than constraining some denominator 
coefficients to be zero. Design result is derived via a matrix inversion 
operation and pipelinability has been satisfied inherently. No any 
complex programming is need. Several examples have been illus- 
trated to show the effective reduction of the pole-zero cancellation 
overheads. Besides, we have proved the designed filters can always 
be ensured to be stable. This offers more attractions to the proposed 
method. 
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