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Identification of a Class of Nonlinear Deterministic 
Systems with Application to Manipulators 

Shir-Kuan Lin 

Abstract- This note presents a recursive identification method to 
estimate the minimal parameters of a class of nonlinear deterministic 
system. The result can be applied to a manipulator with unknown torque 
constants. A procedure to identify the torque constants, the friction, 
and the gravity parameters at the same time is then proposed. This is 
worthwhile since the PD feedback control with the gravity and friction 
compensation ensures a zero steady-state response for the set-point 
control. A theory addresses the minimal parameters composed of the 
three groups of parameters. The identification procedure for the minimal 
parameters is conducted by moving one joint with a constant velocity at 
a time. The persistently exciting trajectories for the identification are also 
suggested. The experiment on the PUMA 560 illustrates the identification 
method. 

I. INTRODUCTION 
This note deals with the parameter identification of the following 

deterministic system 

i = diag(ql, . . . ,??,)A(q)w ( 1 )  

where diag (q2,. . . , 7%) is a diagonal matrix with the diagonal entries 
of q., . . . ,qn and A(q), as shown by (2), found at the bottom of 
the next page, p E R", and subscripts L( i )  and U ( ; )  are the 
integer variables to label the columns of A. Note that L(1) = 1 
and L(i  + 1) = U ( i )  + 1. Suppose that the number of columns of 
A is p ,  i.e., p = Z7(n). The entries of A (i.e., a,,, i = 1,. . . , I ? ,  

j = l , . . .  , p )  are all functions of q. In system (I ) ,  i is the input 
vector, q is the vector of state variables, and and ' U J ~  (elements of 
w) are constant parameters. Assume that u 7 ,  ~ ( ~ ) ( q ) ,  . . . ,a , ,  c i ( , )  ( q )  
and one of a z j ( q ) ,  j > U ( i ) ,  are linearly independent over R"' and 
the elements of w are independent parameters. If all 17, are known 
a priori, the parameter identification of system ( I )  is a simple least 
squares problem since the columns of A are linearly independent. 
The elements of w form a set of minimal parameters for determining 
the system dynamics since they are identifiable and are linearly 
independent [17] and [18]. The problem will not be so easy, however, 
when qi are unknown. 

We often encounter this problem in mechanical systems such as 
robotic manipulators. It has been shown [2] that the actuator forces 
of a manipulator are linear with respect to the inertia parameters and 
in the form of 7 = A(q)w, where 7, q and w are, respectively, the 
actuator forces, the joint displacements, and the inertia parameters. 
Many works PI ,  [81, [IO], U31, U81, V O I ,  [241-[281, and [321 
proposed various methods to identify the minimal combinations of the 
manipulator inertia parameters. Most of manipulator control systems, 
however, send the current commands to the servo amplifiers, which 
are linearly proportional to the actuator forces (or torques). In this 
sense, the manipulator dynamic should be modeled by (1) with 1/17, 
as the torque constants. The motor torque constants provided by the 
manufacturer are usually of low precision, their values will even 
vary with the use time [28]. 
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Fig. 1. 
single joint Cjoint 2 of PUMA 560) in motion. 

Repeated experiments for the minimal current required to start a 

There are two approaches to this problem in the robotic literature. 
Atkeson et al. [2] used a six-axis force-torque sensor on a lever arm 
to statically measure the force at the end of the lever arm acted by the 
manipulator and then to calibrate the torque constants. Raucent et a/. 
[27], [28], and West et al. [31] avoided the torque constant problem by 
measuring the reaction forces and moments on a sensing platform on 
which the manipulator stands. Although both require extra equipment, 
the latter does not provides the torque constants that are necessary in 
the implementation of the computed torque control scheme. 

In this note, we first solve the parameter identification problem 
of system (1) and then apply the result to the manipulator. It is 
found that (1) can be converted to a recursive form which turns 
out to be a standard least squares problem again. Although some 
works [7], [9], [lo], [17], 1181, [21]-[23] have tried to formulate A 
and/or w of a manipulator for parameter identification, the results 
are very complicated. For the sake of simplicity, only the inertia 
parameters required for the gravity load are considered in the context. 
There is no doubt that the minimal parameters for the gravity 
load can be extracted from those [7], [9], [18], [21], [22] and 
[23] for the full dynamics; however, no one really exploited the 
result for the gravity case. Furthermore, we find that including the 
friction does not destroy the original theory. The gravity parameters 
(i.e., the inertia parameters for gravity load), torque constants, and 
the friction coefficients, in combined forms, can then be identified 
simultaneously. The identification process is to move only one joint 
with a constant velocity at a time. 

Mayeda et al. [20] and Yoshida et al. [32] also proposed a static 
test to estimate the gravity parameters. The torque command of 
a joint is gradually changed until the joint starts to move. The 
average of the torque commands for both directions of a joint is 
taken as the gravity load, the bias is seen as friction. After knowing 
the gravity parameters, they then estimated the symmetric Coulomb 
and viscous friction. The static test has two drawbacks: tedious 
operation procedure and large error bounds. Fig. 1 shows the repeated 
measurement data for the static test on the joint 2 of the PUMA 560 
arm. The repeatability of the static friction is not well. This is one of 
the reasons why we propose an alternative method to identify these 
parameters at the same time. Besides, we adopt the experience of 
Armstrong [I] and Canudas et al. [4] to model the friction with a 
nonsymmetric Coulomb friction and viscous friction. 
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Wen and Bayard [30] have rigorously shown that a PD feedback 
controller with the gravity compensation can asymptotically stabilize 
the manipulator with zero steady-state error for set-point commands. 
The identified values of this note are suitable to the set-point control 
(i.e., regulation), which will be verified by an experiment. Since most 
practical tasks of an industrial robot are composed of the set-point 
commands, the present identification method is very valuable. 

This note is organized as follows. Section I1 discusses the identifi- 
cation theory for the deterministic system (1). The application of the 
theory to a manipulator with unknown torque constants is addressed 
in Section III. The identification experiment on the PUMA 560 arm 
is presented in Section IV. 

Dejinition: A set of columns a%(@): R" --$ Rn is said to be 

not all zero such that CyEl atat(@) = 0, V@ E R". If a, are all 
0 

linearly dependent over Rm if there exist constants a,, i = 1, ... 7 n, 

zero, the set is said to be linearly independent over R". 

n. MAIN RESULT 

System (1) can be reformed to 

i = A*w* (3) 

where the entries of A* and the elements of w* are, respectively 

for j < L( i )  

* ( "  $a2, for L ( k )  5 j 5 U ( k ) ,  k > i 
at, = at, for L(i)  5 j 5 U ( i )  (4) 

w,* = wjqk for L ( k )  5 j 5 U ( k ) ,  k = 1,. ... n. (5 )  

The nonlinear deterministic system (3) can be decoupled to the 
recursive linear deterministic forms of 

i n  = [an, L ( n )  ... (6) 

where b,, = U & W i  for j > i and uz = b,,,+l + 
Cy=z+2 b1,(qz+1/q3). It can be shown that if one of a z J ,  L( i+l )  5 
j 5 U(n) ,  is linearly independent of uz ,  L ( ~ ) ,  .... ut,  U ( % ) ,  so is ut 
by the definition. Equations (6) and (7) then imply the following 
theorem. 

Theorem I :  For the class of nonlinear deterministic system (l), if 
az, q Z ) ( a ) ,  ... , az ,  u(z)(q)  and, at least, one of az,(q), j > U ( ; )  are 
linearly independent over R", and the elements of w are independent 
parameters, the elements of w* and 7 1 / q 2 , .  ... qn- l /qn  form a set 

0 
Proof: Because these parameters are independent and can be 

identified recursively from n to one by using (6), (7), and the least 
squares method, the claim is true. Q.E.D. 

If u,+1 = U,+Z = ... = U k - 1  = 0 for k - 1 > i (i.e., 

then q z + l / % + z ,  r l z + l / % + 3 , .  ... %+l/Vk cannot be identified by the 
above recursive procedure, so that uz cannot be calculated out. This 
renders (7) useless. Alternatively (7) can be reformed as 

of minimal parameters for the system. 

a , , ~ ( , + ~ )  = ... = a,, ~ ( ~ 1  = 0 for j = i + l , . . . ,  k - 1) 

it = [a,, L ( z )  ... ~ , , u ( ~ )  &,,+I h, t+z ... b z , k - i  U:] 

where uf = b z ,  k + E,"=,+, b,,qk/q3. Therefore, we can still get 
the same result that is stated as follows. 

Corollary 2: For the same system described in Theorem 1, if 
u,+1 = V,+Z = ... = V k - 1  = 0 (but U, # 0, uk # o), and 
additionally there are some elements among u z ,  L ( ~ ) ,  .... ut ,  U(,)  for 
every j ,  i < j < k ,  that are linearly independent of, at least, one 
element of every other group of ut ,  L("), ... ,u t ,  u ( ~ ) ,  i < m < k 
and m # j ,  then the minimal parameters in Theorem 1 are still the 
minimal parameters. 

If U1 = vz = ... = U k - 1  = 0, but l / k  # 0, then 
ql /qz ,  q z / q 3 ,  .... qk--l/qk are redundant parameters. 0 

111. APPLICATION TO MANIPULATORS 
In this section, we illustrate the application of the above theory to a 

manipulator. For the sake of simplicity, only the gravity load is taken 
into account in the modeling of the manipulator, i.e., the Coriolis and 
centrifugal dynamics are ignored. 

A. Dynamic Model 

We consider a manipulator with n low-pair joints, which are 
labeled as joint 1 to n outward from the base. Assign a body-fixed 
frame on each joint (i.e., frame E, is fixed on joint i) in accord 
with the normal driving-axis coordinate system [16] (known also as 
modified Denavit-Hartenberg notation [6]).  The distance from the 
origin of E, to that of EJ is designated as i s  and that to the center 
of mass of link i as e,. 

In the normal driving-axis coordinate system (see Fig. 2), the z- 
axis of a body-fixed frame is the driving axis of the corresponding 
link, i.e., the unit vector along joint i is U:') = [0, 0, 1IT, where 
superscript "(i)" denotes the representation of a vector with respect 
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U 

Fig. 2. Normal driving-axis coordinate system. 

to frame E, .  The distance from the origin of frame E,-1 to frame 
E, is shown to be 

(9) 

where b, ,  d, ,  pz and 8, are the geometrical parameters of the 
coordinate system and shown in Fig. 2. The coordinate transformation 
matrix from E,-1 to E, is then 

O 1  

cos 8, -sinB, 

sin Pz sin 8, sin PL cos 8, COS pL 
cosp,sin8, C O S ~ ~ C O S ~ ~  -sinp, . (10) 

The composite body i is defined as the union of link i to link 
n. Let the mass of the composite body i and the first moment of 
the composite body about the origin of E, be denoted as 7 j7  and k , ,  
respectively (i.e., riZ, = cy=z m3 and E!') = cy=, m, ( ~ S ( ~ ) + C ~ ' ) ) ,  

where m3 is the mass of link j ) .  
When the manipulator remains stationary, the actuator forces 

sustain the gravity only, and are then named stationary actuator forces. 
Applying statics, we get the required stationary actuator force and 
then the armature current of joint i as 

where (.)z denotes the x-component of a representation, T ,  is the 
gear ratio, i, and C, are, respectively, the armature current and the 
torque constant of the actuator motor driving joint i ,  TI, = T</C ,  is 
the ratio of the gear ratio to the torque constant, g is the gravitational 
acceleration, and 

* (12) 
~ - li = 1, for rotational joint i ,  

2 - { 0, for translational joint i. 

In the present problem, the kinematic parameters are known a 
priori. There are four unknown gravity parameters m, and n1,c6~) 
for each link. Not all of them are identifiable, however, since the 
actuator forces are determined only by some combinations of these 

parameters. It is shown by the principle of induction [17] and [ 181 that 

Note that k, = m,c?), 1, = 0, and ( z + t ~ ( 2 + 1 ) ) z  = &+I .  

All constant terms of 6;') are concatenated to be k,, while 1,  
collects the variant terms. As the x- and y-components of ICyk, and 
ii-3m,, U = i + 1,. . . , n are given, I ,  can be calculated using the 
recursive form (14) and (15) from link n to link 1 for any stationary 
configuration of the manipulator. For the detailed description of k ,  
and I , ,  the reader is referred to [17] and [18]. 

Let joint T be the first rotational joint counted from the base, joint 
s be the nearest rotational joint not parallel to joint T .  It was shown in 
[I71 and [19] that when the manipulator stays stationary, the armature 
currents of the actuator motors can be described in a form of 

where A is defined in (2), and w consists of all nonzero elements 
in the same order as 

w =  

Note that 5, and u6 are either one or zero to denote the redundancy 
of the gravity parameters, which are defined as follows: 6, = 0 for 
T 5 i < s and uT//g, otherwise 6; = 1. On the other hand, u, = 0 
for U, I g, Vq E R" (if T < i < s for translational joint i ,  U ,  is 
always perpendicular to g only when ur/g or when U, I g and 
u;//u,; while this can happen for i > s only if ur//g. us I U? and 
ut//uJ//us for any rotational joint j ,  s 5 j < i ) ,  otherwise u, = 1. 

It should be remarked that the elements (other than the ones 
associated with IC;riZ1 [see (16) and (17)]) of the rows of A 
corresponding to i z / q i  for all translational joints i are all zero [19]. 
Applying Theorem 1 and Corollary 2 to (16), we get the following. 

Theorem 3: When the manipulator stays stationary, a set of the 
minimal parameters for determining the armature currents i for 
5,. # 0 is {6iIC;qz(ktL, 6ZA-:q,(k,)y3 U ~ I C ~ T I ~ ~ ~ ,  qJ/qJ+, .  i = 
1 ; . . , 7 f , j  = ~ ; . . , n  - l} - (0). If 5, = 0, then 
~ ) ~ / q . + ~ ,  . . . , q3-1 / q s  are redundant parameters. U 
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B. Friction 

The above derivation is based on the assumption that the friction 
is negligible or can be extracted from the manipulator dynamics. 
To perform an identification on a manipulator with high gear ratios, 
the friction should be taken into account. It is of evidence in the 
robotics literature [ l ]  and [15] that the friction in a manipulator can 
be approximated by the Coulomb friction and the viscous friction. 
The former is constant while the latter is proportional to the joint 
shaft velocity. The strategy for the identification experiment is to 
implement a stiff PID controller [ l ]  to get the manipulator motion 
with a constant joint velocity. Specially, our identification procedure 
for the minimal parameters described in Theorem 3 will be conducted 
by only one joint moving (rotating or translating) at a time. Under 
such circumstances, the inertia effect and the coupling Coriolis and 
centrifugal effects do not appear in the dynamics. Therefore, the 
dynamical equations (1 1) for the stationary manipulator are still valid 
for the present case by adding a friction term, i.e., 

where TJ, is the friction force of joint i. Note that the friction forces 
at a joint are internal forces and will not be propagated to the other 
joints. According to Theorem 3, (18) leads to 

It is evident that the minimal parameters in Theorem 3 are still the 
minimal parameters of the system (19) if r fZ /C, ,  i = 1,. . . , n, are 
known a priori .  In fact, the friction terms and the minimal parameters 
in Theorem 3 can be identified at the same time. In this note, we 
adopted the nonsymmetric friction model [I] and [4] 

C. Identijication Algorithm 

Theorem 3 motivates us to introduce the new notations 

f i z :  v,m, (21) 

Equation (15) leads to 

Note that 1; = 0. The next step is to get the recursive linear deter- 
ministic forms like (7) for the manipulator system (19). Substituting 
(13) and (21)-(23) into (18) yields 

where 

r o i  

v: = [ - ( g q Y  (g 'qZ  01 k-:Rl ; - l .  (28) 

Equation (25) is equivalent to either (7) or (8). However, vt or v: 
can be calculated recursively without knowing a z 3 .  

For convenience, we introduce superscript "0" to denote 
the data measured from the ith sampling point. Suppose that 
joint k is the next rotational joint behind joint 2 .  Let wr 
[St(k:)x, Sz(k:)y, 52(~2/172+i),...,SL(rlL/~k)) A L ,  A,, &I' 
and w z  [az&:, A;, A$, A,, A,]'. In an identification process 
with data of m sampling points, (25) is then written, according to 
Theorem 3, as [?I = Ii:P:w: + 1itP,2uz (29) 

Z@% 

where the Lth rows of P: and P, (denoted by p: , ,  and P ~ , ~ ,  
respectively) are (30) (at the bottom of the page) and 

P ,  1 = [-(s'"')@, e@ a i d . @  1 - e@ (1 - e@)48;1 
(31) 

and tZ is either 1 (when 4% > 0) or 0 (when 4% < 0). The minimal 
parameters can then be estimated recursively from link n to link 1 by 
the least squares method if P:'Pf or PTPz, i = 1,. . . , n, are all 
of full rank. The trajectory from which the data are measured so that 
this condition is satisfied is named persistently exciting trajectory. 

Using (30) and (31), it can be shown (see [19]) that a set of test 
trajectories of only rotational joint i rotating with constant velocity 
is persistently exciting for rotational joint i if 

1) the trajectories are conducted for some configurations where 
joints except joint i are held stationary and joint z is not parallel 
to the gravitational direction; 

2) the displacements of q3 for j = i + 1,. . . , k - 1 and one of 
j 2 k are different for different configurations (to vary b Z , ?  
and vz* or vt); 
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3) for each configuration, there are some trajectories with different 
angular velocities of joint i covering the clockwise and the 
counterclockwise directions; and 

4) the data are taken from some sampling points of each trajectory 
at which the vectors of [(g('))Q, (g(z ) )Q, ]T are linearly 
independent. 

For translational joint i, a set of trajectories of only joint i moving 
with constant velocity is persistently exciting if there are at least 
five sampling points at which 1) joint i is at two or more different 
configurations and not perpendicular to the gravitational direction 
(so that at least two of ( g ( ' ) ) a Z  are not equal), and 2) the joint 
velocities are different and cover the forward and the backward 
directions. Essentially, it is very easy to find a set of persistently 
exciting trajectories . 

There is an extreme case for a translational joint. If the intersection 
angle of uz and g for translational joint i is invariant, the gravity load 
(i.e., fh : (g (z ) ) z )  is embodied in the friction and cannot be extracted 
since the first, second, and fourth columns of P, [see (31)] are 
linearly dependent in this case. This case occurs when i < r or 
when r < i < s and u r / / g .  For the latter condition, 6, is zero, so 
that fh:, i < s, are unnecessary since Z: and k: are not required for 
computing i,. Note that if ut I g, then et = 0, so that there is no 
embodying problem of the gravity load in the friction. 

To make (29) still valid for the embodying case, it is just required to 
modify w z  in (29) to be w z  = [BzoLrjZzf, I:, A i t ,  i;, where 
Bt = 0 for i < r or for r < i < s and uv/ /g ,  otherwise eZ = 1 and 

Corollary 4: For the same manipulator and the same notation 
in Theorem 3, if only one joint of the manipulator moves with a 
constant joint velocity at a time, a set of the minimal parameters 
for determining the armature currents i for 6, # 0 is the union of 
{6zK:(k:)z, S;K: (k : ) , ,  i = 1,. . . ,n, e31(3m;, O j / V j + l ,  j = 
T , .  . . , n - 1, cnKnm:) - ( 0 )  and {A t j ,  A i , ,  AT,, AyJ, j = 
T , . . .  , n )  + {iL, AL, i,, A,, i < r>. 

If 6, = 0, then vr /vr+l , .  . . , vs- l /vs  are redundant parameters, 
and e;&:, At2 and A3 for translational joint i, r < i < s, are 
replaced with ATz and A,. 0 

Algorithm: Identify the minimal parameters from joint n to joint 1. 
Step 1 )  Let i = n. 
Step 2) If joint i is a rotational joint, hold the manipulator at 

some configurations where joint i is not parallel to the 
gravitational direction and q3 for all i < j < k and 
one of j 2 k are different for different configurations, 
where k is the next rotational joint behind joint i .  For 
each configuration, rotate joint i with some constant 
joint velocities in both clockwise and counterclockwise 
directions to take the data of the armature current i; with 
respect to the joint displacements and velocities. 
If joint i is a translational joint, hold joint i at two or 
more configurations (if possible) and not perpendicular to 
the gravitational direction, then move joint i alone with 
some constant velocities in both forward and backward 
directions to take the data of the armature current i ;  with 
respect to the joint displacements and velocities. 

Step 3)  If i < n, go to Step 4). Compute g(n) for each sampling 
point. Use (29) to estimate (ki)z, (ki), and the friction 
parameters (if joint n is a rotational joint) or 7%; and the 
friction parameters (if joint 71 is a translational joint) by 
a standard least squares method. 
Set i = n - 1, go to Step 2). 

Link Frame 0 p b d 
(Type) (4 (4 

Eo 

3 (R) 2 43 0' 

1 (RI El 41 0' 0. 0. 
2 (RI 42 -90' 0. 0.2435 

0.4318 -0.0934 
4 (R) E4 44 90' -0.0203 0.4331 
5 (R) E5 45 -90' 0. 0. 
6 (R) E6 46 90' 0. 0. 

EE 0" 0' 0. h7 

h7 = 0.14 

Fig. 3. PUMA 560 arm and its normal driving-axis coordinate system. 

Step 4) Compute g(') for each sampling points. If joints i and 
i + 1 are rotational joints, compute I: recursively by 
using (24) and then vz by (26); then use (29) to estimate 
( l ~ r ) ~ ,  (k:),, v2/vZ+1 and the friction parameters by a 
standard least squares method. If joint i is a rotational 
joint and joint k ,  k > i + 1, is the next rotational 
joint behind joint i, compute b t ,  2+1,. . . , b z ,  k-1 and 
v: by (27) and (28) and then use (29) to estimate 
(kt),, (Ha*),, vz/vz+1,...,vr/m and the friction pa- 
rameters by a standard least squares method. Finally, 
calculate out vZ+1/vz+z , .  . . , v k - l / v k .  

If joint i is a translational joint, directly use (29) to 
estimate h r  and the friction parameters. 
If i = 1, stop. Otherwise set i = i - 1 and go to Step 2). 

It should be remarked that if some parameters in (29) are zero, the 
corresponding columns in P: or P, are removed in the identifica- 
tion procedure. The identification algorithm has been verified by a 
computer simulation on the Stanford arm, in which the measurement 
errors are ignored. To see the influence of the measurement errors, 
we present an experiment in the following section. 

IV. EXPERIMENT 
The experiment is conducted on a PUMA 560 arm whose normal 

coordinate system is shown in Fig. 3. The six joints are all rotational 
and the first one is parallel to the gravitational direction, i.e., T = 
1, s = 2 and 61 = 0. According to Corollary 4, the minimal 
parameters are (k&, (k;),, (k:)2, (kt),, v t / v , + ~ ,  i = 2 , . . . , 5  

The identification algorithm requires two configurations for 
joints 2, 3, 4, and 5, and one configuration for joints 1 and 6 
since there are no translational joints. At the home configuration, 
q = [O", -go", go", O", 0", O o I T ,  only joint 4 and joint 6 
are parallel to the gravitational direction. We then select the 
first configurations for the tests of joints 4, 5, and 6 all to be 

and At,, A l , A , ,  Ay3, j = 1 , . . . , 6  . 
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Fig. 4. 
measured values, and (b) computed values with the identified parameters. 

Armature currents with respect to the joint positions for joint 3: (a) 

q = [O", -go", 0", 0", O", O o I T .  The second one for joint 5 
is only to change q6  to 90" and that for joint 4 is to change 
q 5  to 90". The first configurations for joints 1, 2, and 3 are 
the home configuration, while the second ones for joints 2 
and 3 are, respectively, q = [0", -go", 150", 0", 0", OoIT  and 
q = [O", -go", go", 0", go", O o I T .  This makes a set of persistently 
exciting trajectories. 

To achieve a stiff controller for the identification process (holding 
a constant speed over a large motion range), we implement the 
following discrete-time control law on each joint [5] 

TABLE I 
IDENTIFIED VALUES OF THE MINIMAL PARAMETERS OF THE PUMA 560 A m  

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 
fk:L x 9.8 (amp) - 2.191535 0.02212 -0.03060 -0.01424 -0.00053 
(kiji x 9.8 (amij - 0.00371 0.80144 0.01287 0.13828 0.00043 
%/%ii - -0.57450 0.10676 0.14463 0.000002 - 
1: (amp) 0.71678 0.54814 -0.45359 -0.16843 -0.18605 -0.16082 

(amp-s/m) 0.00222 0.00677 -0.00573 -0.00133 -0.00290 -0.00181 
A, (amp) -0.28355 -0.98279 0.36250 0.22914 0.27428 0.23237 
A; (amp-s/m) 0.00332 0.00291 -0.00475 -0.00121 -0.00195 -0.00238 

Standard Deviation (amp) 0.0225 0.0293 0.0149 0.0187 0.0167 0.00636 

control law (34)-(35) for the joint (the other joints are held stationary) 
while setting V,,, to some values from *30"/s to +7O"/s. The 
armature current history is recorded during the motion. In any case, 
the current fluctuates. The gain J ,  and the sampling time A t  are 
adjusted by a trial and error method to make the amplitude of the 
current fluctuation small while the joint velocity is still kept at the 
maximal velocity. Some current and velocity histories with respect to 
the displacements for joint 3 are shown in Fig. 4(a). The experiment 
results also demonstrate that the nonsymmetric friction model is quite 
well for the robot. 

The measured data are given to the identification algorithm to get 
the values of the minimal parameters, which are listed in Table I. The 
HFTI algorithm (a QR-method) in [14] i s  used to obtain the least 
squares solutions for the present identification procedure. The minus 
signs of the friction parameters for links 3-6 are due to the facts that 
the directions of our joint coordinates for joints 3-6 are opposite to 
those of the corresponding motors set by the manufacturer. The value 
of 75/76 in Table I seems incredibly small. The values of kg are so 
small that v5 in matrix P;  [see (30)] is negligible in comparison 
with other terms. This results in that the linear equations (29) are 
nearly rank-deficient. In fact, 75 / q 6  can be any finite value (less than 
lo4) without significantly affecting the residuals. In comparison with 
the values of k;, the x- and y-components of k,* can be seen as 
redundant in the least squares sense, as can 75/76.  The numerical 
technique in the HFTI algorithm will set nearly rank-deficient matrix 
to be rank-deficient by a tolerance setting. For a rank-deficient matrix, 
the HFTI algorithm finds the minimum length solution (i.e., pseudo- 
inverse solution) of the least squares problem [14]. Thus, the resulting 

l ip  value of 75/76 is zero (or close to zero due to roundoff errors 
-42(t) -k ~ v ( p d z ( t )  - (34) after transformation to the original coordinates). When v5 is small, 

but not less than the tolerance, the result may be very large if the 

where 

i , ( t )  = { q z ( t )  - q2( t  - At)}/At,  q d z  is the desired displacement 
of joint i ,  A t  is the sampling time, I i D  and I<P are control gains 
and are usually set to h-0 = 2 G ,  and J ,  is a gain adjustable 
to balance the motor inertia. The controller (35) is called load 
compensator with acceleration feedback [29] and is equivalent to the 
robust independent joint controller of Hsia et al. [ l l ] .  The analyses 
in [ 1 11 and [29] showed that this control law is very suitable for the 
present experiment. On the other hand, (34) is a PD controller with a 
velocity constraint [12]. Due to (34), the joint motion can be kept at 
a constant velocity (i.e., V,,,) in a wide range for a large step input. 

For each of the above mentioned configurations, we let the corre- 
sponding joint rotate in a wide range of 250" (from -125" to $125" 
and from $125" to -125") by inputting a step command in the 

measurement errors are large (because the equation is inherently ill- 
conditioned). In the present experiment, the measurement errors are 
kept very small, so that the resulting value of 75/76 is nearly zero 
(i.e., the equation is nearly consistent). That means the present method 
is robust to the case that the inertia constants of the outermost links 
are negligible small when the measurement errors are kept small such 
as was done in the present experiment. 

The verification for the identified values of the inertia constants 
is not easy since the true values are not available. In the literature 
[2] and [32], the identified values were always used to compute the 
required actuator torques for some prescribed trajectories, and the 
results were compared with the measured torques to ensure that the 
identified values are acceptably accurate. When we let only one joint 
rotate with a constant joint speed, we also find that the measured 
armature currents match the computed ones with the identified values 
very well [e.g., see Fig. 4(b)]. 

As was mentioned above, the identified inertia constants are to 
be used in the feedback control law. To verify this validity, we 
implement the following PD feedback control with the gravity and 
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Fig. 5. Step responses of the PD feedback control for the initial position at 
the home configuration: (a) without compensation, and (b) with the gravity 
and friction compensation. 

friction compensation for a step command 

Tz = -ICD(iz + I[iP(qdz - q ~ )  + i t  (37) 

where r, is the input command to the servo amplifier of motor i, and 
i, is computed by using (25) with the identified values of the minimal 
parameters. It should be remarked that the last three actuators of the 
PUMA 560 are coupled as [5] 

1 
r4 

45.4 = -44 

(40) 
1 

T 6  
4.5’6 = -45 + ~ 6 4 4 . ~ 4  + ~654s~ 

where i s z  is the shaft velocity of the actuator motor i and r54 ,  

r64,  and r 6 5  are coupling gear ratios. To compute the friction 
compensation, in (20) should be replaced with rLqsL for joints 
5 and 6 since the friction arises from the motion of the gear 
train. The step responses of the control scheme (37) with and 
without the compensation (i.e., i,) are shown in Fig. 5. The gains 
are ICD = 20 and Iip = 100, and the target position is q = 
[50°, 40°, 30°, -30°, -40°, -5O0IT. The compensation computed 
by the identified parameters improves the steady-state errors. Because 
our model does not consider the stiction and low-velocity friction, 
there are some small steady-state errors in the step responses for the 
control with the compensation. The settling times for different joints 
are remarkably different. This can be explained by the fact that the 
coupling dynamics vary during the motion and only the gravity and 
friction (i.e., not all dynamics) are compensated for. 

V. CONCLUSION 
This note presents a parameter identification method for a class of 

nonlinear deterministic system such as a manipulator with unknown 
torque constants. The salient features of the application to a manipu- 
lator are to take into account the coupling of the torque constants and 
to identify the friction parameters at the same time. The experiment 
on the PUMA 560 arm presented in this note has a twofold purpose: 
illustration of the method and alleviation of the complicated error 
analysis. It is known that many factors such as measurement errors, 
quantization, and the selection of the persistently exciting trajectories 
will affect the results of the least squares method. The success of the 
present experiment lies in that the measurement errors are kept very 
small and the test trajectories cover a wide subspace of the workspace. 
In the engineering point of view, this experience is valuable. 

It should be remarked that the main idea described in Section I1 
can also be applied to the minimal parameters of the full dynamics 
of a manipulator, Some further effort is needed, however, to reform 
and simplify the full dynamics. It is also believed that there are other 
systems belonging to the class of nonlinear deterministic system ( l), 
e.g., the following discrete multivariable system 

a 1 z ( k )  + a22(k - 1) + a 3 y ( k )  + a 4 y ( k  - 1) = b l U l ( k )  

a 3 z ( k )  + a 4 4 k  - 1) = b z u z ( k )  

where z and y are state variables, u1 and u g  are input variables. The 
theory is then not restricted to manipulator systems. 
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A Hardware Implementable Receding Horizon 
Controller for Constrained Nonlinear Systems 

Shin-Yeu Lin 

Abslruct- We present a two-phase parallel computing method for 
obtaining an implementable receding horizon control solution for con- 
strained nonlinear systems. The phase 1 method solves a feasibility 
problem to find an approximate open-loop admissible control and horizon 
pair. The phase 2 method successively improves the admissible control 
to obtain an implementable open-loop receding horizon control solution. 
We briefly sketch an approach to realizing this two-phase method using 
VLSI array processors. Solution times for simulation examples estimated 
on the basis of current VLSI technology confirm that our controller is 
well suited to the stabilization of real-time processing, fast, constrained 
nonlinear systems. 

I. INTRODUCTION 
For a nonlinear system with control constraints described by 

i ( t )  = f o ( z ( t ) ,  ~ ( t ) ) ,  ~ ( t )  E 0, where f o :  W x %?’ + Tin 
is twice continuously differentiable and satisfies fo (0, 0) = 0 and C2 
is the set of admissible controls, Mayne and Michalska showed in [ 11 
that feedback stabilization can be achieved by a conceptual receding 
horizon control. Subsequently, in [2] they proposed an implementable 
receding horizon controller which employed a hybrid system, i ( t )  = 
f O ( x ( t ) ,  ~ ( t ) ) ,  when z ( t )  6 W ;  otherwise k ( t )  = Az(t) ,  where 
A = f,“(O, 0) + fi(0, O)K is formed by applying a linear feedback 
control U = K z  to the linearized system in a neighborhood W 
with small enough radius and centered at origin. Their algorithm 
for this implementable receding horizon controller first calculates an 
admissible control and horizon pair 

[UO, tf, 01 E Zw(z0) (1) 

where the initial state 20 @ W is assumed, the set ZW(.): Zw(z) = 
{ U  E S, t f  E (0, ca)(z:”(t + t f ;  z, t )  E SW}, where S denotes 
the set of all piecewise continuous functions, and SW denotes the 
boundary of W .  The algorithm then sets h = 0, t h  = 0 and 
performs the following process repeatedly to yield the receding 
horizon feedback control: It applies the obtained control uh for 
.T 6 W or the linear feedback control K z  for z E W to the real 
system over [ t h ,  t h  + At], where At E (0, CO). Let x h + l  be the 
resulting state at th+l(= t h  + At) ,  then if z h + l  E W ,  the algorithm 
switches the control to U = K x  over ( t h + l ,  00); otherwise, it 
calculates an improved control and horizon [ u h + l ,  t f ,  h+1] in the 
sense that 

[ u h + l ,  t f , h + l ]  E Z W ( ~ ~ + I ) ,  and V ( z h + l ,  t h + l ,  u + l ,  t f , h + l )  

5 v ( z h + l ,  t h + ~ ,  U h ,  tf ,  h - At) (2) 

where V ( z ,  t ,  U ,  tf) = J;+tf (1/2)(llz’(T; 2, till; + lb(r)Il&) 
dr  + Stytf (1/2)( IJz~(s;  z”(t + t f ;  z, t))ll;) ds, in which R and 
Q are positive definite matrices, lly11; denotes yT Ay, and ZL denotes 
the state trajectory in region W with feedback control U = K z .  

Mayne and Michalska showed in [2] and [3] that the above 
implementable receding horizon controller is globally asymptotically 
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