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Abstract The use of effect sizes and associated confidence
intervals in all empirical research has been strongly empha-
sized by journal publication guidelines. To help advance the-
ory and practice in the social sciences, this article describes an
improved procedure for constructing confidence intervals of
the standardized mean difference effect size between two
independent normal populations with unknown and possibly
unequal variances. The presented approach has advantages
over the existing formula in both theoretical justification and
computational simplicity. In addition, simulation results show
that the suggested one- and two-sided confidence intervals are
more accurate in achieving the nominal coverage probability.
The proposed estimation method provides a feasible alterna-
tive to the most commonly used measure of Cohen’s d and the
corresponding interval procedure when the assumption of
homogeneous variances is not tenable. To further improve
the potential applicability of the suggested methodology, the
sample size procedures for precise interval estimation of the
standardized mean difference are also delineated. The desired
precision of a confidence interval is assessed with respect to
the control of expected width and to the assurance probability
of interval width within a designated value. Supplementary
computer programs are developed to aid in the usefulness and
implementation of the introduced techniques.
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The reporting of effect sizes and associated confidence in-
tervals for primary results in all empirical social science
research has been recommended in Wilkinson and the
American Psychological Association Task Force on Statis-
tical Inference (1999), the American Educational Research
Association Task Force on Reporting of Research Methods
(2006), and the Publication Manual of the American Psy-
chological Association (2010). Correspondingly, numerous
practical guidelines and suggestions for selecting, calculat-
ing, and interpreting effect size indices for various types of
statistical analyses have been provided in the literature, such
as Alhija and Levy (2009), Breaugh (2003), Durlak (2009),
Ferguson (2009), Fern and Monroe (1996), Grissom and
Kim (2012), Huberty (2002), Kirk (1996), Kline (2004),
Olejnik and Algina (2000), Richardson (1996), Rosenthal,
Rosnow, and Rubin (2000), Rosnow and Rosenthal (2003),
and Vacha-Haase and Thompson (2004). It has steadily
become a general consensus in the methodological literature
of behavior, education, management, and related disciplines
that effect sizes accompanied by their corresponding confi-
dence intervals are perhaps the best approach for conveying
quantitative information in applied research.

According to the general review of Ferguson (2009),
effect sizes can be categorized into four general classes:
(1) group difference, (2) strength of association, (3)
corrected estimates, and (4) risk estimates. The group dif-
ference indices estimate the magnitude of difference be-
tween two or more groups, and Cohen’s d (Cohen, 1969)
is the most commonly used measure across virtually all
disciplines of the social sciences. Specifically, Cohen’s d is
an estimate of the standardized mean difference that reflects
the difference between two sample means divided by their
pooled sample standard deviation under homoscedasticity.
For the purpose of measuring the size of effect between two
treatment groups with unequal variances, Cohen’s d is no
longer a proper estimator, because its standardizer, the
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pooled sample standard deviation, obscures whatever inher-
ent differences in variance might have existed. Thus, the
standardizer of the mean difference should be prudently
modified to adequately scale actual characteristics of group
discrepancies (Grissom & Kim, 2001). But there appears to
be a lack of consensus in the literature on which standardizer
is most appropriate under which circumstances for comput-
ing standardized mean difference. The adoption of different
standardizers naturally leads to distinct effect size measures
and ultimately results in varied target population counter-
parts. Therefore, the choice of a suitable effect size param-
eter and statistic is a difficult and substantive decision. In
this regard, three primitive procedures are described in
Glass, McGraw, and Smith (1981, p. 106) and Keselman,
Algina, Lix, Wilcox, and Deering (2008, Equations 14, 16,
and 17). First, a simple method is to apply the Glass (1976)
formula with either one of the two sample standard devia-
tions as the standardizer. This approach yields two concep-
tually different versions of the underlying target effect size,
corresponding to the two heterogeneous variances. It is
intuitive to perform the standardization of mean difference
by the control group standard deviation. Then the experi-
mental group standard deviation, supposedly with dissimilar
magnitude, will have no influence on the resulting effect
size (Grissom & Kim, 2001). To prevent this situation, one
may attempt to report both standardized mean differences
simultaneously. Unfortunately, the two choices of control
group and experimental group standardizer can give sub-
stantial differences in effect size, and indiscriminate use of
this strategy could result in some interpretive ambiguity.

Second, another popular alternative uses the square root
of the average of the two sample variances as the
standardizer. The synthesis of two variances with equal
weights is intuitively straightforward. However, the group
effect, no doubt, is estimated by the difference between two
sample means, and the variance of the sample mean differ-
ence cannot be expressed in terms of the average variance.
The only exception is when the group sizes are equal.
Therefore, the simple average of two variances does not
generally conform to the exact variance of the sample mean
difference. In absence of a theoretical justification, this
procedure is also vulnerable to the criticism against using
the average standard deviation addressed in Glass et al.
(1981, p. 106), in that it seems to reflect merely a statistical
reaction to a perplexing choice. A similar concern is also
provided in Grissom and Kim (2001, p. 136).

The third approach considers Welch’s (1938) statistic for
the well-known Behrens–Fisher problem of comparing the
difference between two normal means that may have un-
equal population variances (Kim & Cohen, 1998). Due to
the complexity in distributional properties, a variance stabi-
lizing transformation of the Welch statistic is presented in
Kulinskaya and Staudte (2007) for the estimation of a

standardized effect size. In this case, the target parameter
of the standardized mean difference is the mean difference
divided by a modification of the exact standard deviation of
the sample mean difference. Unlike the two previous pro-
cedures, the standardizer depends not only on the population
variances, but also on the group size allocation ratios. It is
noted in Keselman et al. (2008) that the particular formula-
tion of Kulinskaya and Staudte (2007) raises a practical
problem about its general use as an effect size measure.
Specifically, the concern of Keselman et al. is about its
dependence upon sample sizes. However, the standardizer
in Keselman et al. (Equation 15) is not the same as those in
Kulinskaya and Staudte (2006, Equation 8; 2007, Equation
1). Also, the resulting standardized mean difference actually
depends not on the group sizes but, rather, on the allocation
ratio between two groups.

In view of the practical importance of effect sizes and
confidence intervals, this article proposes an alternative
approach for interval estimation of the standardized mean
difference between two normal populations under the as-
sumption of possibly unequal variances. On the basis of the
approximate noncentral t distribution for Welch’s statistic,
the inversion confidence interval principle (Steiger &
Fouladi, 1997) is utilized to construct accurate confidence
intervals for the standardized mean difference effect size.
The accuracy of the suggested procedure is evaluated by the
computed confidence interval corresponding to the nominal
coverage probability and the actual probability of coverage
it achieves. Extensive empirical investigations were
conducted to demonstrate the advantages of the proposed
approach over the variance stabilizing transformation meth-
od of Kulinskaya and Staudte (2007) under a variety of
effect size configurations, variance patterns, and sample size
structures. Moreover, sample size methodologies for precise
interval estimation of standardized effect sizes are delineat-
ed in two distinct aspects. One method gives the minimum
sample size, such that the expected confidence interval
width is within the designated bound. The other method
provides the sample size needed to guarantee, with a given
assurance probability, that the width of a confidence interval
will not exceed the planned range. Essentially, the suggested
sample size procedures are direct and heteroscedastic exten-
sions of those considered in Kelley and Rausch (2006)
under a homogeneous variance setting. This investigation
updates and expands the current work in such a way that the
findings not only improve the fundamental limitations of the
existing method, but also reinforce the practice of measuring
effect size in the context of heteroscedastic situations. In
addition, the SAS computer codes are available as supple-
mental materials to facilitate the recommended procedures
for computing the confidence intervals of standardized mean
difference and the necessary sample size in planning re-
search designs.
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Confidence interval procedures

The well-known Behrens–Fisher problem is to compare the
difference between two normal means when the variances
are different. Accordingly, Welch’s (1938) approximate t
procedure has been considered as a satisfactory and robust
solution over the two-sample t under the heterogeneous
variances assumption of the Behrens–Fisher problem. To
facilitate exposition, consider independent random samples
from two normal populations with the following formulation:

V ¼ X 1 � X 2

S21=N1 þ S22=N2

� �1=2 ; ð1Þ

where μ1, μ2, σ2
1, σ

2
2 are unknown parameters, j = 1, . . . , Ni,

and i = 1 and 2. The widely recognized Welch t statistic is of
the form

Xij ~Nðμi;σ
2
i Þ;

wh e r e X 1 ¼
PN1

j¼1
X1j=N1 , X 2 ¼

PN2

j¼1
X2j=N2 , S21 ¼ PN1

J¼1

X1j � X 1

� �2
= N1 � 1ð Þ, and S22 ¼ PN2

j¼1
X2j � X 2

� �2
= N2 � 1ð Þ.

Although the underlying normality assumption in the above-
mentioned two-sample location problem is a convenient and
useful setup, the exact distribution of Welch’s statistic V is
comparatively complicated. The practical importance and
methodological complexity of the problem has led to numer-
ous attempts to develop various procedures and algorithms for
resolving the issue (Kim & Cohen, 1998, and references
therein). To extend the notion of effect size within the
heteroscedastic framework, Kulinskaya and Staudte (2007)
suggested considering the following measure of standardized
mean difference:

d� ¼ μ1 � μ2

σ2
1=q1 þ σ2

2=q2
� �1=2 ; ð2Þ

where qi = Ni/N, i = 1 and 2 is the group size allocation ratio,
and N = (N1 + N2). It is important to note that the effect size δ*
is a function of mean difference, variance components, and
allocation ratios. Then, if σ2

1 ¼ σ2
2 ¼ σ2, it can be easily seen

that d� ¼ d=ð1=q1 þ 1=q2Þ1=2; where δ = (μ1 − μ2)/σ is the
prevailing Cohen’s (1969) population effect size index. The
particular relation between two effect sizes δ* and δ
reveals that the heteroscedastic adaptation of δ* relative
to the homoscedastic counterpart of δ relies on the
design factor through the sample size distributional pro-
portions q1 and q2 (q1 + q2 = 1). For ease of reference,
the effect sizes suggested by Glass et al. (1981) with
either one of the standard deviations as the standardizer
are δ1 = (μ1 − μ2)/σ1 and δ2 = (μ1 − μ2)/σ2,

respectively. On the other hand, the above-mentioned simple

alternative involving average variance is expressed as dA ¼
μ1 � μ2ð Þ= σ2

1 þ σ2
2

� �
=2

� �1=2
. All these distinct standardized

mean difference effect sizes are unique and have their merits
in appropriate situations. However, the expected value and

variance of the mean difference are E X 1 � X 2

� � ¼ μ1 � μ2

and Var X 1 � X 2

� � ¼ σ2
1=N1 þ σ2

2=N2 ¼ σ2
1=q1 þ σ2

2=q2
� �

=

N, respectively. Therefore, to eliminate the potential influence
of sample size on the net group effect μ1 − μ2 through sample

mean difference X 1 � X 2, one may use σ2
1=q1 þ σ2

2=q2
� �

as
the standardizer by factoring out the magnitude of total sample

size from Var X 1 � X 2

� �
. Unlike the homogeneous variance

cases, the group variances intertwine with the sample size
allocation ratios in the standardizer σ2

1=q1 þ σ2
2=q2

� �
. It sug-

gests that the standardized mean difference needs to accom-
modate the design characteristic of group allocation scheme
under the more sophisticated situation of heteroscedasticity.
Note that the squared multiple correlation coefficient is the
prevailing strength of association effect size in linear regres-
sion. Despite its usefulness, applied researchers may not no-
tice that it is a function of both the model (coefficient and
variance) parameters and the distribution properties (variance
and covariance matrix) of the designated covariates (for fur-
ther details, see Gatsonis & Sampson, 1989; Shieh, 2006). In
this two-sample case, the group assignment is the covariate
variable and represents the extent to which knowledge of
group membership improves prediction of outcomes for the
criterion variable in the sample. In addition, it is demonstrated
in Kulinskaya and Staudte (2006, pp. 99–101) that the
strength of association effect size or weighted coefficient of
determination is directly related to the standardized mean dif-
ference δ* under the heteroscedastic ANOVA models when
there are two populations. According to the statistical properties
of Welch’s statistic under heteroscedasticity, it does not appear
possible to define a proper standardized effect size without
accounting for the relative group size of subpopulations in a
sampling scheme. Since Welch’s approach to the Behrens–
Fisher problem is so entrenched, we restrict our attention to
the estimation procedures of δ* defined in Equation 2.

Using a chi-square approximation to the distribution of a
positive linear combination of two chi-square variables,
Welch (1938) proposed the approximate distribution for V
when μ1 = μ2:

V �~ tðnÞ;
where t(ν) is the t distribution with degrees of freedom ν
and n ¼ n N1;N2;σ2

1;σ
2
2

� �
with

n ¼ σ2
1=N1 þ σ2

2=N2

� �2

σ2
1=N1

� �2
= N1 � 1ð Þ þ σ2

2=N2

� �2
= N2 � 1ð Þ

:
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For making statistical inferences, Kulinskaya and Staudte
(2007) derived an approximate confidence interval proce-
dure for δ* by stabilizing the variance of the Welch statistic.
However, three potential limitations to their method should
be pointed out. First, their theoretical presentations and
algebraic expressions are complicated. The determination
of confidence limits entails lengthy and tedious calculations.
Therefore, their result is of limited usage in application.
Second, the numerical examinations in Kulinskaya and
Staudte (2007) show that although their method seems to
provide useful results for small values of standardized mean
difference, accuracy of the confidence intervals deteriorates
substantially as the true standardized mean difference de-
viates from zero. Third, the distribution of V is generally
skewed, and this essential feature gives rise to asymmetric
confidence intervals for δ* as in the corresponding interval
estimation of δ. Even though it is not obvious at first sight,
the transformed equidistant confidence interval of
Kulinskaya and Staudte (2007) is therefore presumably in-
appropriate and is not likely to be accurate when one-sided
confidence intervals are considered. In an effort to improve
the quality of research analysis and design, an alternative
approach is presented next to construct confidence intervals
of the standardized mean difference.

It can be shown with the same theoretical arguments and
analytic derivations as those in Welch (1938) that the statis-
tic V has the general approximate distribution

V �~ tðn;Δ�Þ; ð3Þ

where t(ν, Δ*) is a noncentral t distribution with degrees of
freedom ν and noncentrality parameterΔ* = N1/2δ*. Noting
that degrees of freedom ν depends on the unknown vari-
ances, an approximate version can be obtained by substitut-
ing the respective sample estimates for the variances. For
inferential purposes, the term of degrees of freedom ν in
Equation 3 is replaced by its counterpart bn with direct
substitution of S21 ; S

2
2

� �
for σ2

1;σ
2
2

� �
in ν:

bn ¼ S21=N1 þ S22=N2

� �2

S21=N1

� �2
= N1 � 1ð Þ þ S22=N2

� �2
= N2 � 1ð Þ

:

Hence, the adjustment gives the following modified dis-
tribution:

V �~¼ t bn;Δ�ð Þ: ð4Þ

The noncentral t distribution provides a feasible approx-
imation to the underlying distribution of V in terms of de-
grees of freedom bn and noncentrality parameter Δ*. It is
noteworthy that Welch’s V statistic and suggested approxi-
mate noncentral t distribution given in Equation 4 closely
resemble the two-sample t and corresponding exact

noncentral t distribution under a homogeneous variance
setup. This can be readily obtained from the first moment

of the approximate noncentral t distribution that E V½ � �¼
bn=2ð Þ1=2 � Γ bn� 1ð Þ=2f gΔ � =Γfbn=2g; where Γ{⋅} is the
gamma function. Hence, a nearly unbiased point estimator
of the standardized mean difference δ* is

bd *
NU ¼ Γ bn=2f g

N bn=2ð Þ1=2Γ bn� 1ð Þ=2f g
V :

In addition, the noncentrality inversion procedure of
Steiger and Fouladi (1997) can immediately be applied to
find the confidence intervals of δ* with the noncentral

distribution tðbn;N1=2d�Þ. Explicitly, the upper 100(1 − α1)

% confidence interval of δ* is of the form bd *
L;1

� �
, in which

bd *
L satisfies

P t n̂;N 1=2bd *
L

� �
< VO

n o
¼ 1� a1; ð5Þ

where VO is the observed value of Welch’s statistic V defined
in Equation 1. Likewise, the lower 100(1 − α2)% confidence

interval of δ* is of the form �1;bd *
U

� �
, in which bd *

U satisfies

P t bn;N 1=2bd *
U

� �
> VO

n o
¼ 1� a2: ð6Þ

Furthermore, a 100(1 − α)% two-sided confidence interval

(bd *
L,bd *

U) of δ* can be obtained by jointly applying Equations 5
and 6 with α = α1 + α2. The most common practice is to
assume α1 = α2 = α/2, and this leads to the 100(1 – α)% two-
sided confidence interval for δ* with equal tail confidence
probability. In short, with the desired confidence level, ob-
served value VO, and estimated degrees of freedom , the

numerical computation of confidence limitsbd *
L andbd *

U requires
the evaluation of the noncentrality distribution function of a
noncentral t variable, such as the SAS noncentrality function
TNONCT. The SAS/IML (SAS Institute, 2011) program
employed to perform the suggested confidence interval calcu-
lations is available as electronic supplementary material.

Numerical comparison of confidence interval procedures

To clarify the issues surrounding the adequacy of statistical
analysis and quality of research findings, we next perform
numerical investigations to evaluate and compare the accuracy
of the suggested procedure and Kulinskaya and Staudte’s
(2007, Equation 8) formula for computing confidence intervals
of standardized mean difference under various model config-
urations likely to occur in practice.
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For the purposes of assessing the behavior of interval
estimation procedures with potentially diverse situations, we
consider the model characteristics with variances σ2

1;σ
2
2

� �
=

(1, 1) and (1, 4) and sample sizes (N1, N2) = (15, 15), (10,
20), and (20, 10). These settings not only include both
homoscedastic/heteroscedastic and balanced/unbalanced de-
signs, but also create direct and inverse pairing between
variance and sample size structures. To prevent repetition
in the homogeneous variance case of σ2

1;σ
2
2

� �
= (1, 1), the

sample sizes setting (N1, N2) = (20, 10) is omitted from the
investigation. Thus, only the two combinations of (N1, N2) =
(15, 15) and (10, 20) are examined. Overall, these consid-
erations result in a total of five different joined configura-
tions. Although these sample sizes are smaller than would
be likely in many two-sample location and effect size stud-
ies, it is plausible that if problems or deficiencies were to be
seen with confidence interval calculations, they would be
most apparent with small group sizes. Without loss of gen-
erality, the second group mean is fixed as μ2 = 0, and the
first group mean μ1 is chosen such that the standardized
mean difference δ* = 0, 1, 2, and 3 for each combined
structure of σ2

1;σ
2
2

� �
and (N1, N2).

With the given sample sizes and parameter configura-
tions, estimates of the true coverage probability are comput-
ed through Monte Carlo simulation of 10,000 independent
data sets. For each replicate, the confidence limits associated
with one-sided upper and lower 100(1 – α)% confidence
intervals are computed for both (1 – α) = 0.95 and 0.975.
These confidence limits are also employed to construct the
two-sided 90% and 95% confidence intervals. Accordingly,
a total of six different sets of confidence intervals are
obtained. Thus, our simulations cover a much broader range
of situations than those considered in the previous study of

Kulinskaya and Staudte (2007), where they examined only
the performance of two-sided 95% confidence intervals. In
each case, the simulated coverage probability is the propor-
tion of the 10,000 replicates whose intervals contain the
population effect size δ*. The accuracy of the examined
procedure is determined by the difference between the sim-
ulated coverage probability and designated coverage proba-
bility as error = simulated coverage probability − nominal
coverage probability. The actual coverage probabilities and

errors corresponding to the cross settings of σ2
1;σ

2
2

� �
and

(N1, N2) are presented in Tables 1, 2, 3, 4 and 5.

An examination of the numerical results of both
approaches reveals the general pattern that when all
other factors remain constant, the discrepancy between
simulated and nominal coverage probabilities of two-
sided confidence intervals tends to increase for larger
effect size δ*, smaller confidence level (1 − α),
heteroscedastic structure, and unbalanced design. The
differences are substantially prominent for the cases
with inverse pairing of variances and sample sizes in
Table 5. In addition, the prescribed overall phenomenon
is much more noticeable for Kulinskaya and Staudte’s
(2007) method than for the proposed approach. As
demonstrated in Kulinskaya and Staudte (2007), their
two-sided confidence interval procedure appears to have
reasonably good coverage probabilities for small δ* (≤1).
However, the behavior of two-sided confidence intervals can
be distorted to a remarkable degree when δ* > 1, as is shown
here. For illustration, the simulated coverage probabilities of
one-sided upper and lower 95% confidence intervals and two-
sided 90% confidence intervals in Table 5 are plotted for the
proposed approach and Kulinskaya and Staudte’s (2007)
method in Fig. 1, respectively.

Table 1 Simulated coverage probability and error of the approximate confidence intervals for standardized mean difference effect size when σ2
1 ¼ 1,

σ2
2 ¼ 1, N1 = 15, and N2 = 15

δ* The proposed approach Kulinskaya and Staudte (2007)

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
95% CI 95% CI 90% CI 95% CI 95% CI 90% CI

0 0.9478 −0.0022 0.9508 0.0008 0.8986 −0.0014 0.9500 0.0000 0.9520 0.0020 0.9020 0.0020

1 0.9515 0.0015 0.9516 0.0016 0.9031 0.0031 0.9602 0.0102 0.9466 −0.0034 0.9068 0.0068

2 0.9539 0.0039 0.9509 0.0009 0.9048 0.0048 0.9737 0.0237 0.9201 −0.0299 0.8938 −0.0062

3 0.9556 0.0056 0.9544 0.0044 0.9100 0.0100 0.9814 0.0314 0.8953 −0.0547 0.8767 −0.0233

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
97.5% CI 97.5% CI 95% CI 97.5% CI 97.5% CI 95% CI

0 0.9752 0.0002 0.9741 −0.0009 0.9493 −0.0007 0.9752 0.0002 0.9745 −0.0005 0.9497 −0.0003

1 0.9795 0.0045 0.9759 0.0009 0.9554 0.0054 0.9821 0.0071 0.9759 0.0009 0.9580 0.0080

2 0.9785 0.0035 0.9748 −0.0002 0.9533 0.0033 0.9869 0.0119 0.9635 −0.0115 0.9504 0.0004

3 0.9791 0.0041 0.9784 0.0034 0.9575 0.0075 0.9911 0.0161 0.9499 −0.0251 0.9410 −0.0090
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In addition, the coverage probability of their two-sided
100(1 − α)% confidence interval may be acceptable, but the
one-sided upper and lower 100(1 − α/2)% confidence in-
tervals constructed with the two confidence limits do not
necessarily maintain the selected level. As is shown in
Tables 1, 2, 3, 4 and 5, when δ* ≥ 1, the coverage proba-
bilities of their 95% upper and lower confidence intervals
are typically higher and lower, respectively, than the nomi-
nal level. Specifically, it can be found in Table 2 that the
coverage probability of the two-sided 90% confidence in-
terval is 0.8977 with error −0.0023 when δ* = 1. However,
the excellent coverage performance of the two-sided 90%
confidence interval may be misleading because the corre-
sponding upper and lower confidence limits are problemat-
ic. The corresponding coverage probabilities for the upper
and lower 95% confidence intervals are 0.9667 and 0.9310,
respectively. The associated errors of 0.0167 and −0.0190

present a sizable amount of discrepancy, and they suggest
that the two finite confidence limits are both smaller than the
respective exact value. Thus, a mere coverage probability
evaluation of two-sided confidence intervals may obscure
systematic underestimation in confidence limits that might
have existed in Kulinskaya and Staudte’s (2007) variance
stabilizing transformation.

In contrast, the performances of the suggested one- and
two-sided interval procedures appear to be fairly effective
for the range of model specifications considered in the
present article. The only exceptions are associated with the
extreme settings for inverse pairing of variances and sample
sizes in Table 5. Although one of the errors is as much as
−0.0215, the results are still comparable to or outperform
those of Kulinskaya and Staudte (2007). Nonetheless, addi-
tional numerical investigations showed that the coverage
properties are substantially improved with errors −0.0082

Table 2 Simulated coverage probability and error of the approximate confidence intervals for standardized mean difference effect size when σ2
1 ¼ 1,

σ2
2 ¼ 1, N1 = 10, and N2 = 20

δ* The proposed approach Kulinskaya and Staudte (2007)

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
95% CI 95% CI 90% CI 95% CI 95% CI 90% CI

0 0.9478 −0.0022 0.9502 0.0002 0.8980 −0.0020 0.9506 0.0006 0.9524 0.0024 0.9030 0.0030

1 0.9409 −0.0091 0.9510 0.0010 0.8919 −0.0081 0.9667 0.0167 0.9310 −0.0190 0.8977 −0.0023

2 0.9381 −0.0119 0.9562 0.0062 0.8943 −0.0057 0.9845 0.0345 0.8134 −0.1366 0.7979 −0.1021

3 0.9364 −0.0136 0.9564 0.0064 0.8928 −0.0072 0.9922 0.0422 0.6548 −0.3042 0.6380 −0.2620

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
97.5% CI 97.5% CI 95% CI 97.5% CI 97.5% CI 95% CI

0 0.9727 −0.0023 0.9745 −0.0005 0.9472 −0.0028 0.9740 −0.0010 0.9750 0.0000 0.9490 −0.0010

1 0.9686 −0.0064 0.9774 0.0024 0.9460 −0.0040 0.9831 0.0081 0.9712 −0.0038 0.9543 0.0043

2 0.9667 −0.0083 0.9795 0.0045 0.9462 −0.0038 0.9922 0.0172 0.9035 −0.0715 0.8957 −0.0543

3 0.9679 −0.0071 0.9801 0.0051 0.9480 −0.0020 0.9957 0.0207 0.7733 −0.2017 0.7690 −0.1810

Table 3 Simulated coverage probability and error of the approximate confidence intervals for standardized mean difference effect size when σ2
1¼ 1, σ2

2 ¼ 4, N1 = 15, and N2 = 15

δ* The proposed approach Kulinskaya and Staudte (2007)

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
95% CI 95% CI 90% CI 95% CI 95% CI 90% CI

0 0.9445 −0.0055 0.9494 −0.0006 0.8939 −0.0061 0.9472 −0.0028 0.9515 0.0015 0.8987 −0.0013

1 0.9461 −0.0039 0.9516 0.0016 0.8977 −0.0023 0.9564 0.0064 0.9446 −0.0054 0.9010 0.0010

2 0.9456 −0.0044 0.9510 0.0010 0.8966 −0.0034 0.9664 0.0164 0.9129 −0.0371 0.8793 −0.0207

3 0.9420 −0.0080 0.9526 0.0026 0.8946 −0.0054 0.9742 0.0242 0.8775 −0.0725 0.8517 −0.0483

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
97.5% CI 97.5% CI 95% CI 97.5% CI 97.5% CI 95% CI

0 0.9721 −0.0029 0.9757 0.0007 0.9478 −0.0022 0.9724 −0.0026 0.9761 0.0011 0.9485 −0.0015

1 0.9739 −0.0011 0.9764 0.0014 0.9503 0.0003 0.9780 0.0030 0.9758 0.0008 0.9538 0.0038

2 0.9704 −0.0046 0.9736 −0.0014 0.9440 −0.0060 0.9818 0.0068 0.9577 −0.0173 0.9395 −0.0105

3 0.9691 −0.0059 0.9780 0.0030 0.9471 −0.0029 0.9850 0.0100 0.9383 −0.0367 0.9233 −0.0267
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for larger sample sizes (N1, N2) = (40, 20). In short, the
variance stabilizing transformation of Kulinskaya and
Staudte (2007) may be useful for small effect size δ* < 1.
In view of the unknown nature of the effect sizes, technical
complexity, and computational requirements, it is worthwhile
to consider an alternative procedure that yields reliable results
with fewer limitations and difficulties. Therefore, the pro-
posed approach is recommended over the current method of
Kulinskaya and Staudte (2007) for its overall performance,
methodological transparency, and computational ease.

Sample size calculations

From an advance study design viewpoint, researchers
may wish to credibly address specific research questions

and confirm meaningful effect sizes, so that the
resulting confidence interval will meet the designated
precision requirements. Hence, it is of both practical
and theoretical importance to develop sample size pro-
cedures for precise interval estimation of the standard-
ized mean difference.

It follows from the suggested approach that an approximate

100(1 − α)% two-sided confidence interval (bd *
L,bd *

U) of δ* can
be obtained from Equations 5 and 6 with equal tail confidence
probability, α1 = α2 = α/2. Unlike the common confidence
intervals constructed with the standard pivotal method, the

interval (bd *
L, bd *

U) does not have an explicit analytic form, and

the width of a confidence interval (bd *
L , bd *

U), denoted by W

¼ bd *
U � bd *

L, cannot be expressed as a multiple of the estimated

standard deviation. Instead, the confidence limits bd *
L and bd *

U

Table 4 Simulated coverage probability and error of the approximate confidence intervals for standardized mean difference effect size
when σ2

1 ¼ 1, σ2
2 ¼ 4, N1 = 10, and N2 = 20

δ* The proposed approach Kulinskaya and Staudte (2007)

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
95% CI 95% CI 90% CI 95% CI 95% CI 90% CI

0 0.9493 −0.0007 0.9498 −0.0002 0.8991 −0.0009 0.9507 0.0007 0.9517 0.0017 0.9024 0.0024

1 0.9505 0.0005 0.9509 0.0009 0.9014 0.0014 0.9713 0.0213 0.9420 −0.0080 0.9133 0.0133

2 0.9537 0.0037 0.9518 0.0018 0.9055 0.0055 0.9899 0.0399 0.8863 −0.0637 0.8762 −0.0238

3 0.9579 0.0079 0.9542 0.0042 0.9121 0.0121 0.9963 0.0463 0.7844 −0.1656 0.7807 −0.1193

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
97.5% CI 97.5% CI 95% CI 97.5% CI 97.5% CI 95% CI

0 0.9738 −0.0012 0.9763 0.0013 0.9501 0.0001 0.9744 −0.0006 0.9769 0.0019 0.9513 0.0013

1 0.9764 0.0014 0.9781 0.0031 0.9545 0.0045 0.9862 0.0112 0.9765 0.0015 0.9627 0.0127

2 0.9779 0.0029 0.9756 0.0006 0.9535 0.0035 0.9953 0.0203 0.9450 −0.0300 0.9403 −0.0097

3 0.9807 0.0057 0.9772 0.0022 0.9579 0.0079 0.9986 0.0236 0.8823 −0.0927 0.8809 −0.0691

Table 5 Simulated coverage probability and error of the approximate confidence intervals for standardized mean difference effect size when σ2
1 ¼ 1,

σ2
2 ¼ 4, N1 = 20, and N2 = 10

δ* The proposed approach Kulinskaya and Staudte (2007)

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
95% CI 95% CI 90% CI 95% CI 95% CI 90% CI

0 0.9469 −0.0031 0.9539 0.0039 0.9008 0.0008 0.9517 0.0017 0.9579 0.0079 0.9096 0.0096

1 0.9408 −0.0092 0.9511 0.0011 0.8919 −0.0081 0.9753 0.0253 0.9172 −0.0328 0.8925 −0.0075

2 0.9347 −0.0153 0.9535 0.0035 0.8882 −0.0118 0.9884 0.0384 0.7176 −0.2324 0.7060 −0.1940

3 0.9285 −0.0215 0.9522 0.0022 0.8807 −0.0193 0.9894 0.0394 0.4999 −0.4501 0.4893 −0.4107

Upper Error Lower Error Two-sided Error Upper Error Lower Error Two-sided Error
97.5% CI 97.5% CI 95% CI 97.5% CI 97.5% CI 95% CI

0 0.9727 −0.0023 0.9750 0.0000 0.9477 −0.0023 0.9739 −0.0011 0.9767 0.0017 0.9506 0.0006

1 0.9663 −0.0087 0.9760 0.0010 0.9423 −0.0077 0.9859 0.0109 0.9649 −0.0101 0.9508 0.0008

2 0.9611 −0.0139 0.9780 0.0030 0.9391 −0.0109 0.9929 0.0179 0.8393 −0.1357 0.8322 −0.1178

3 0.9543 −0.0207 0.9775 0.0025 0.9318 −0.0182 0.9923 0.0173 0.6406 −0.3344 0.6329 −0.3171
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are derived by the inversion confidence interval principle with
the observed value of Welch’s statistic V and estimated degrees
of freedom bn . Although there is no convenient closed-form

expression for the interval (bd *
L, bd *

U, ), the confidence limits bd *
L

and bd *
U and the width W still depend on the statistic V,

variance estimates S21 and S22 , and sample sizes N1 and
N2, as well as the confidence coefficient 1 – α. To
ensure that the confidence interval is narrow enough to pro-
duce meaningful findings, when planning a study, researchers
must consider the stochastic nature of confidence intervals.
Consequently, the inherent randomness in Welch’s statistic V
and degrees of freedombn should be considered in determining
the sample sizes required to achieve the specified precision
properties of a confidence interval.

Two useful principles concerning the control of the
expected width and the assurance probability of the width
within a preassigned value are considered here. First, it is
necessary to determine the required sample size such that
the expected width E[W] of a 100(1 – α)% confidence

interval (bd *
L, bd *

U) is within the given bound

E½W � � b; ð7Þ
where b (>0) is a constant. Second, one may compute the
sample size needed to guarantee, with a given assurance
probability, that the width W of a 100(1 – α)% confidence

interval (bd *
L, bd *

U) will not exceed the planned value

P W � wf g � 1� g; ð8Þ

where (1 − γ) is the specified assurance level and ω
(>0) is a constant. Although the two notions of
expected width and assurance probability have been
considered for sample size determination, the exact
computations of E[W] and P {W ≤ ω} are more in-
volved than those in Kelley and Rausch (2006) under a
homogeneous variance framework. Naturally, the under-
lying exact distributional property of Welch’s statistic V
and estimated degrees of freedom bn should be incorpo-
rated into the sample size calculations as much as
possible. The exact distribution of Welch’s test statistic V is
comparatively complicated and may be expressed in different
forms (see Wang, 1971; Lee and Gurland, 1975; Nel, van der
Merwe, & Moser 1990 for technical derivation and related
details). In order to facilitate the implementation of sample
size procedures, we consider the following alternative expres-
sion of V described in Jan and Shieh (2011) for its ease of
numerical computation:

V ¼ T=H1=2;

where T~t N1 þ N2 � 2;Δ�ð Þ;H ¼ σ2
1=N1

� �
B=pf g� þ σ2

2=N2

� �
1� Bð Þ= 1� pð Þf g�=σ2;B~ Beta N1 � 1ð ÞÞ=2;f N2 � 1ð Þ=2g;

σ2 ¼ σ2
1=N1 þ σ2

1=N2 , and p ¼ N1 � 1ð Þ= N1 þ N2 � 2ð Þ. It
is important to note that T and B are independent. Also,

bn ¼ 1= B2
1= N1 � 1ð Þ þ B2

2= N2 � 1ð Þ� �
;

w h e r e B2 ¼ 1� B1 a n d B1 ¼ σ2
1=N1

� �
B=pf g� 	

=

ðσ2
1=N1Þ B=pf g þ ðσ2

2=N2Þ 1� Bð Þ= 1� pð Þf g� 	
. Essentially,

the exact distribution of V involves a Beta mixture of
noncentral t distributions, and both H and bn are functions of
the Beta random variable B. It is easily seen that the confi-

dence limits bd *
L, bd *

U and are functions of V and bn, as is
the interval width W. With the prescribed alternative
distributional formulations for V and bn through T and
B, the interval width W is denoted by W = W(T, B) to
emphasize its dependence on the two random variables
of T and B. Hence, the exact evaluation of E[W] de-
scribed in Equation 7 is performed with

E W½ � ¼ ET EB W ðT ;BÞ½ �f g; ð9Þ
where the expectations ET and EB are taken with respect to the
distribution of T and B, respectively. Likewise, the calculation
of P {W ≤ ω} presented in Equation 8 is conducted by

P W � wf g ¼ ET EB g T ;Bð Þ½ �f g; ð10Þ
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Fig. 1 Simulated coverage probability of the proposed and Kulinskaya
and Staudte’s (2007) confidence intervals
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where g {⋅} is an indicator function such that g(T, B) = 1 if W
(T, B) ≤ ω and g(T, B) = 0 if W(T, B) > ω. It is interesting to
note that the approximate noncentral t distribution for V given



in Equation 3 may be considered to avoid theoretical
and computational complications, while maintaining
methodological simplicity in the assessment of expected
width and assurance probability. Our numerical compu-
tations show that this approach generally gives identical
or very similar sample sizes as the exact approach.
However, the corresponding simulation results show that
the small difference in sample sizes can cause signifi-
cant inferior performance in assurance probability.
Therefore, this simplified method is not considered fur-
ther in this article.

With the exact computational formulas of expected
width and assurance probability given in Equations 9
and 10, the sample sizes (N1, N2) needed to attain the
specified precision can be found by a simple iterative
search for the chosen confidence level (1 – α), param-
eter values (μ1, μ2, σ2

1, σ
2
2), and sample size allocation

ratio q1. Actually, the task is simplified to deciding the
optimal sample size N1 required to achieve the desired
precision level, because the other sample size N2 = N1

(1 − q1)/q1 is a function of N1 and q1. Accordingly, the
sample sizes (NEW1, NEW2) needed for the expected width of a

100(1 – α)% confidence interval (bd *
L, bd *

U) to fall within the
designated bound b are the minimum integers (N1, N2) such
that E[W] ≤ b. On the other hand, the sample sizes (NTP1,
NTP2) required to guarantee with a given assurance
probability (1 − γ) that the width of a 100(1 – α)% confidence

interval (bd *
L, bd *

U) will not exceed the planned range ω are the
smallest integers (N1, N2) such that P {W ≤ ω} ≥ 1 − γ. The
numerical computation of expected width and assurance prob-
ability requires the evaluation of the noncentrality inversion
function of a noncentral t distribution and the two-
dimensional integration with respect to a Beta and a
noncentral t probability distribution function. To en-
hance the applicability of these sample size methodolo-
gies, supplementary SAS/IML (SAS Institute, 2011)
computer programs have been written to aid users of
the suggested techniques.

Numerical illustration of sample size calculations

In order to demonstrate the features and evaluate the
performance of the proposed sample size procedures,
numerical investigations are performed for precise in-
terval estimation of the standardized mean difference.
The empirical study was carried out in two stages. The
first stage involved extensive sample size calculations
for the two precision measures of expected width and
assurance probability across a wide range of model
configurations. In the second stage, a Monte Carlo
simulation study was conducted to gain understanding
of the precision outcome for the suggested sample size
formulas under the design characteristics described in
the first stage.

The determination of sample sizes needed for the chosen
precision of the confidence interval procedures requires
detailed specifications of the confidence level, sample size
allocation structure, and the magnitudes of mean effects and
variance components. It is evident that the influence of each
of these components on the precision behavior not only
differs, but also depends on the concurrent impact of other
factors. To provide a systematic explication, the numerical
trials are specified by fixing all but one of the following
factors and varying that single factor in the assessment: (1)
error variances, (2) sample size allocation ratio, and (3)
effect size. Specifically, the appraisals include three different
settings for each of the two factors of error variances and
sample size allocation ratio with (σ2

1, σ
2
2) = (1, 1) and (1, 4)

and q1 = 1/2, 1/3, and 2/3, respectively. For brevity, the
setup of (σ2

1, σ
2
2) = (1, 1) and q1 = 2/3 is omitted from the six

crossed combinations of error variances and sample size
ratios as in the previous numerical study. Moreover, the
population standardized mean difference effect size δ*
is set to have four different values, δ* = 0, 1, 2, 3. The
remaining key features corresponding to interval assur-
ance and precision criteria are chosen as confidence
level (1 – α) = 0.95, interval bound b = ω = 0.5,

Table 6 Computed sample size, expected width, and assurance prob-
ability performance for 95% two-sided confidence interval of standard-
ized mean difference effect size δ* when interval bound b = ω = 0.5,

assurance probability 1 − γ = 0.9, variances σ2
1;σ

2
2

� �
= (1, 1), and

sample size allocation ratio q1 = 1/2 (N2/N1 = 1)

δ* Expected width Assurance probability

N1 N2 Simulated Actual Error N1 N2 Simulated Actual Error
E[W] E[W] P {W ≤ ω} P {W ≤ ω}

0 32 32 0.4921 0.4921 0.0000 32 32 0.9723 0.9704 0.0019

1 48 48 0.4952 0.4954 −0.0002 53 53 0.9207 0.9214 −0.0007

2 95 95 0.4976 0.4973 0.0003 105 105 0.9210 0.9186 0.0024

3 172 172 0.4990 0.4988 0.0002 187 187 0.9084 0.9079 0.0005
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and assurance probability (1 – γ) = 0.90. Accordingly,
the computed sample sizes (NEW1, NEW2) and (NTP1,
NTP2) with respect to the selected precision requirements
of expected width and assurance probability, respectively, are
listed in Tables 6, 7, 8, 9 and 10 for five combined error
variances and sample size allocation patterns. As expected,
the sample sizes vary with the error variance and sample size
allocation configurations in these tables. But it is evident from
the reported results in these tables that the sample sizes in-
crease with an increasing value of δ* when all other factors are
fixed. This particular phenomenon differs from the common
sample size procedures for precise interval estimation of mean
differences, in which the required sample sizes do not vary
with the magnitude of population mean difference, as shown
in Kupper and Hafner (1989) and Wang and Kupper (1997).
Although the results are not completely comparable, it typi-
cally requires a larger sample size to meet the necessary
precision of assurance probability than the control of a desig-
nated expected width. Hence, the sample sizes computed by
the expected width approach tend to be inadequate to guaran-
tee the desired assurance level of interval width. Consequent-
ly, Kupper and Hafner (1989) recommended the assurance
probability approach over the expected width criterion for
sample size determination, although the notion of expected
width is widely covered in standard texts for sample size
determination of precise interval estimation. It is noteworthy

that the expected width and assurance probability principles
are closely related to the two distinct principles of unbiased-
ness and consistency in statistical point estimation. Therefore,
the two measures impose unique and distinct precision char-
acteristics on the resulting confidence intervals. Each arguably
has theoretical grounds and implications in its own right.
More important, researchers need to justify the appropriate
precision consideration for sample size determination on the
basis of their knowledge of a research area and the specific
circumstances they face, rather than assume a convenient
value offered by a simple guideline or rule of thumb without
reference to all of the critical factors in a study design.

The results here enable researchers to better understand
the essential relationship that exists between the planned
sample size and interval precision conditional on the critical
information of model configurations. The associated accu-
racy issue of the sample size methodology with respect to
the precision considerations of expected width and assur-
ance probability is considered in the following simulation
study. In this case, under the computed sample sizes, pa-
rameter configurations and precision settings described in
Tables 6, 7, 8, 9 and 10, estimates of the true expected width
or assurance probability are computed through Monte Carlo
simulation of 10,000 independent data sets. For each rep-
licate, the confidence limits and corresponding interval
width of the two-sided 95% confidence intervals are
calculated. Then the simulated expected width is the

Table 7 Computed sample size, expected width, and assurance prob-
ability performance for 95% two-sided confidence interval of standard-
ized mean difference effect size δ* when interval bound b = ω = 0.5,

assurance probability 1 − γ = 0.9, variances σ2
1;σ

2
2

� �
= (1, 1), and

sample size allocation ratio q1 = 1/3 (N2/N1 = 2)

δ* Expected width Assurance probability

N1 N2 Simulated Actual Error N1 N2 Simulated Actual Error
E[W] E[W] P {W ≤ ω} P {W ≤ ω}

0 21 42 0.4969 0.4970 −0.0001 22 44 0.9847 0.9852 −0.0005

1 37 74 0.4963 0.4966 −0.0003 42 84 0.9278 0.9282 −0.0004

2 83 166 0.4996 0.4997 −0.0001 92 184 0.9079 0.9069 0.0010

3 160 320 0.4999 0.4997 0.0002 173 346 0.9010 0.9030 −0.0020

Table 8 Computed sample size, expected width, and assurance prob-
ability performance for 95% two-sided confidence interval of standard-
ized mean difference effect size δ* when interval bound b = ω = 0.5,

assurance probability 1 − γ = 0.9, variances σ2
1;σ

2
2

� �
= (1, 4), and

sample size allocation ratio q1 = 1/2 (N2/N1 = 1)

δ* Expected width Assurance probability

N1 N2 Simulated Actual Error N1 N2 Simulated Actual Error
E[W] E[W] P {W ≤ ω} P {W ≤ ω}

0 32 32 0.4927 0.4927 0.0000 32 32 0.9466 0.9467 −0.0001

1 53 53 0.4971 0.4974 −0.0003 59 59 0.8964 0.9022 −0.0058

2 116 116 0.4991 0.4990 0.0001 128 128 0.9023 0.9028 −0.0005

3 221 221 0.4993 0.4990 0.0003 239 239 0.9070 0.9089 −0.0019
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mean of the 10,000 replicates of interval widths, where-
as the simulated assurance probability is the proportion
of the 10,000 replicates whose values of interval width
are less than or equal to the specified bound ω = 0.5.
Due to the underlying metric of integer sample sizes, the
achieved precision levels associated with the presented
sample sizes (NEW1, NEW2) and (NTP1, NTP2) should be
less than or greater than the nominal level for width
bound b = 0.5 and assurance probability (1 – γ) = 0.90,
respectively. The differences between the actual precision
performance and the target level are more pronounced for
the cases of δ* = 0 with comparatively small sample
sizes. In order to provide a rigorous assessment, the exact
values of the actual expected width and the actual assur-
ance probability are also calculated on the basis of Equa-
tions 7 and 8, respectively. The adequacy of the sample size
procedure for precise interval estimation is determined by one
of the following formulas: error = simulated expected width −
actual expected width or error = simulated assurance proba-
bility − actual assurance probability. Both the simulated and
actual values of expected width and assurance probability,
along with the associated errors, are summarized in Tables 6,
7, 8, 9 and 10 as well. It can be seen from the results that the
performance of the proposed methods appears to be remark-
ably good for the range of model specifications consid-
ered here. Specifically, the absolute errors of the

expected width are less than 0.001 for the 20 cases
examined here. On the other hand, all the absolute
discrepancies in assurance probability are smaller than
0.01 throughout these tables. In view of these compre-
hensive empirical evaluations, the proposed methods are
accurate enough to compute required sample sizes for
precise interval estimation of standardized mean differ-
ence in practical applications.

Conclusions

The standardized mean difference with heterogeneous
variances is one of the advocated effect size indices
used across a variety of research disciplines. Unfortu-
nately, the diversity of suggested measures indicates
that there is no firm consensus as to the unified defi-
nition of a standardized mean difference effect size. In
this article, we confine ourselves to the normal theory
framework and purport to demonstrate comprehensive
treatment to the effect size measure of standardized
mean difference considered in Kulinskaya and Staudte
(2007). Accordingly, the well-known Welch’s statistic
plays an important role in finding useful estimation
procedures for the particular effect size. The purpose
of this article is twofold. The first goal is to provide an

Table 9 Computed sample size, expected width, and assurance prob-
ability performance for 95% two-sided confidence interval of standard-
ized mean difference effect size δ* when interval bound b = ω = 0.5,

assurance probability 1 − γ = 0.9, variances σ2
1;σ

2
2

� � ¼ 1; 4ð Þ , and
sample size allocation ratio q1 = 1/3 (N2/N1 = 2)

δ* Expected width Assurance probability

N1 N2 Simulated Actual Error N1 N2 Simulated Actual Error
E[W] E[W] P {W ≤ ω} P {W ≤ ω}

0 21 42 0.4960 0.4960 0.0000 21 42 0.9120 0.9041 0.0079

1 32 64 0.4953 0.4955 −0.0002 35 70 0.8983 0.9035 −0.0052

2 63 126 0.4989 0.4987 0.0002 70 140 0.9168 0.9171 −0.0003

3 115 230 0.4983 0.4981 0.0002 125 250 0.9125 0.9185 −0.0060

Table 10 Computed sample size, expected width, and assurance prob-
ability performance for 95% two-sided confidence interval of standard-
ized mean difference effect size δ* when interval bound b = ω = 0.5,

assurance probability 1 − γ = 0.9, variances σ2
1;σ

2
2

� � ¼ 1; 4ð Þ , and
sample size allocation ratio q1 = 2/3 (N2/N1 = 1/2)

δ* Expected width Assurance probability

N1 N2 Simulated Actual Error N1 N2 Simulated Actual Error
E[W] E[W] P {W ≤ ω} P {W ≤ ω}

0 42 21 0.4989 0.4989 0.0000 44 22 0.9463 0.9465 −0.0002

1 92 46 0.4995 0.4995 0.0000 108 54 0.9195 0.9239 −0.0044

2 240 120 0.4994 0.4992 0.0002 266 133 0.9016 0.9016 0.0000

3 486 243 0.4991 0.4990 0.0001 526 263 0.9169 0.9139 0.0030
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interval estimation procedure more efficient than the current
variance stabilizing transformation method of Kulinskaya and
Staudte (2007). The suggested approach utilizes the conve-
nient noncentrality inversion technique for constructing the
confidence limits, and it has the advantages of overall accu-
racy, methodological transparency, and computational ease.
The second objective of this report is to study the correspond-
ing sample size determination problem for precise interval
estimation in advance research planning. Despite the underly-
ing distributional complexity, the exact statistical properties
of Welch’s statistic are analytically described and com-
putationally employed in the developed algorithms for
accurate sample size calculations. The presented proce-
dures provide a feasible solution for determining opti-
mal sample sizes to ensure the desired precision of
expected width and assurance probability when critical
information of the model configurations is available. It
is hoped that the proposed interval estimation and sam-
ple size procedures will increase the practice of
reporting confidence intervals of the standardized mean
difference effect size in future research practice.

Author Note The author thanks the editor, Gregory Francis, and the
two anonymous reviewers for their helpful comments.
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