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A Hardware Implementable Receding Horizon 
Controller for Constrained Nonlinear Systems 

Shin-Yeu Lin 

Abslruct- We present a two-phase parallel computing method for 
obtaining an implementable receding horizon control solution for con- 
strained nonlinear systems. The phase 1 method solves a feasibility 
problem to find an approximate open-loop admissible control and horizon 
pair. The phase 2 method successively improves the admissible control 
to obtain an implementable open-loop receding horizon control solution. 
We briefly sketch an approach to realizing this two-phase method using 
VLSI array processors. Solution times for simulation examples estimated 
on the basis of current VLSI technology confirm that our controller is 
well suited to the stabilization of real-time processing, fast, constrained 
nonlinear systems. 

I. INTRODUCTION 
For a nonlinear system with control constraints described by 

i ( t )  = f o ( z ( t ) ,  ~ ( t ) ) ,  ~ ( t )  E 0, where f o :  W x %?’ + Tin 
is twice continuously differentiable and satisfies fo (0, 0) = 0 and C2 
is the set of admissible controls, Mayne and Michalska showed in [ 11 
that feedback stabilization can be achieved by a conceptual receding 
horizon control. Subsequently, in [2] they proposed an implementable 
receding horizon controller which employed a hybrid system, i ( t )  = 
f O ( x ( t ) ,  ~ ( t ) ) ,  when z ( t )  6 W ;  otherwise k ( t )  = Az(t) ,  where 
A = f,“(O, 0) + fi(0, O)K is formed by applying a linear feedback 
control U = K z  to the linearized system in a neighborhood W 
with small enough radius and centered at origin. Their algorithm 
for this implementable receding horizon controller first calculates an 
admissible control and horizon pair 

[UO, tf, 01 E Zw(z0) (1) 

where the initial state 20 @ W is assumed, the set ZW(.): Zw(z) = 
{ U  E S, t f  E (0, ca)(z:”(t + t f ;  z, t )  E SW}, where S denotes 
the set of all piecewise continuous functions, and SW denotes the 
boundary of W .  The algorithm then sets h = 0, t h  = 0 and 
performs the following process repeatedly to yield the receding 
horizon feedback control: It applies the obtained control uh for 
.T 6 W or the linear feedback control K z  for z E W to the real 
system over [ t h ,  t h  + At], where At E (0, CO). Let x h + l  be the 
resulting state at th+l(= t h  + At) ,  then if z h + l  E W ,  the algorithm 
switches the control to U = K x  over ( t h + l ,  00); otherwise, it 
calculates an improved control and horizon [ u h + l ,  t f ,  h+1] in the 
sense that 

[ u h + l ,  t f , h + l ]  E Z W ( ~ ~ + I ) ,  and V ( z h + l ,  t h + l ,  u + l ,  t f , h + l )  

5 v ( z h + l ,  t h + ~ ,  U h ,  tf ,  h - At) (2) 

where V ( z ,  t ,  U ,  tf) = J;+tf (1/2)(llz’(T; 2, till; + lb(r)Il&) 
dr  + Stytf (1/2)( IJz~(s;  z”(t + t f ;  z, t))ll;) ds, in which R and 
Q are positive definite matrices, lly11; denotes yT Ay, and ZL denotes 
the state trajectory in region W with feedback control U = K z .  

Mayne and Michalska showed in [2] and [3] that the above 
implementable receding horizon controller is globally asymptotically 
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stable in the absence of disturbance, and there exists a finite time 2 
such that x(2) E W provided the following three assumptions are 
satisfied: 

1) For every z E W, there exists a control function U E S and 
a tf E (0, m) such that u( t )  E R, Vt ,  x U ( t  + t f ;  x ,  t )  E W. 

2) The linearized system (at the origin) k ( t )  = Az( t )  is stabiliz- 
able in the region W. 

3) K x  E R, vx E W. 
We see that stabilization of this implementable receding horizon 

controller is achieved at the cost of the high on-line computational 
complexity of solving the admissible control and horizon pair either 
from (1) or from (2). The purpose of this note is to develop a strategy 
for coping with this computational complexity for fast nonlinear 
systems. Our idea is to develop methods that can be implemented 
by very large scale integration (VLSI) array processors to obtain the 
receding horizon feedback control solution. The motivation for this 
idea is the many recent successes in the area of image processing 
[12]. To achieve our goal, we will first rewrite (1) and (2). Let 
WI be a subset of W that contains the origin z = 0, then the 
stabilization property will still hold for the implementable receding 
horizon controller if we replace W by W1 in Zw(zh)  and the hybrid 
system. In particular, we let WI = {x I  11z112 I: E } ,  where E > 0 is 
a small enough real number, and, for the sake of clarity, we use 
2, = {U E S, t f  E (0, ca)I Ilz"(t + t f ;  x ,  t ) l l z  < E }  instead of 
ZW for W replaced by W1. Thus, if E = low3, Q = I ,  and (suppose) 
the magnitude of the assigned eigenvalues of Ci: = Ax is around 
10, then the value of stytf (1/2)( l lx~(s;  x" ( t  + t f ;  x ,  t ) ) l l t ) d s  
is approximately on the order of lo-', which is negligible. Hence, 
to evaluate the value of V ( t ,  x ,  U ,  t f ) ,  we may consider the term 
J:+tf (1/2)(llzu(~, x ,  t)llt + ~ ~ u ( T ) ~ ~ & )  d r  only. Accordingly, we 
can rephrase (1) and (2) as follows. 

Calculate a control and horizon pair 

then solve the following optimal control problem approximately 

by applying a descent method for a finite number of iterations to 
obtain a control solution U h  that is better than U ;  in the sense of 
reducing the performance index (4a-h). For h > 0 we will use 

and t f , h  as initial guesses in our method to seek the control and 
horizon pair [Uh+l, t f ,  h+l] E Z t ( Z h + l ) .  The above procedure may 
seem redundant, because [Gh,  t f ,  h ]  E z t ( x h + l )  already holds. In 
fact it is not, however, because this procedure ensures that the global 
stabilization of the receding horizon controller will not be affected 
by possible perturbations in state that might cause [Uh+l, t f ,  h+l] to 
become inadmissible. 

11. PROBLEM STATEMENT 
To circumvent some complications in presenting our method, we 

add one additional minor assumption, which holds for most physical 
systems to the control constraint set. 

Assumption AO: Let R' be the actual physical control constraint 
set. We assume that there exists a nonempty convex polytope R R' 
such that this R meets the requirements in assumptions Al)-A3). 

We see that if an optimization method aims to solve a nonlinear 
optimal control problem with exact terminal constraint z(th +tf, h )  = 
0 but arbitrarily stops after a finite number of iterations, then the re- 
sulting terminal state z( th+tf ,  h )  will only lie within a neighborhood 
of 0. However, x ( t h  + t f ,  h )  can be set to be arbitrarily close to zero 
after an arbitrarily large number of iterations. Thus, keeping in mind 
that we will stop our methods after an arbitrarily large number of 
iterations, we may replace the relaxed terminal constraint in (3-h) 
and (4a-h)-(4b-h) by the exact terminal constraint without violating 
the theoretical validity of the implementable receding horizon control. 
That is, we replace z e ( x h )  in (3-h) and l lx(th + t f ,h)112 < 
E in (4b-h) by Zo(xh) = { U  E s, t f , h  E (0, m)Iz"(th + 
t f ,  h ;  xh, t h )  = 0 }  and x(th + t f , h )  = 0, respectively. We will 
refer to (3-h) and (4a-ht(4b-h) after these replacements as (3-h) 
and (4a-h)-(4b-h) with exact terminal constraints. Then (3-h) with 
exact terminal constraints is a feasibility problem. Using the slack 
variable s, we can reformulate (3-h) with exact terminal constraints 
as 

where the control constraint set R has been replaced by { u ( t )  E 
CJlp(av(t) + b 5 0, a E ( ;qqXp,  b E sq} based on assumption AO), 
H' is an arbitrary and positive penalty coefficient, and we neglect the 
subscript h for notational convenience. In the sequel, we will refer 
to ( 5 )  as the phase 1 problem. 

Once (5)  is solved approximately, then, letting if be the ob- 
tained horizon, we may rewrite (4a-h)-(4b-h) with exact terminal 
constraints as 

In the sequel, we will refer to (6) as the phase 2 problem. 

III. THE TWO-PHASE METHOD 

A. Method for Solving the Phase I Problem 

1 )  The Two-Level Method: Our method will be developed using 
nonlinear programming techniques. Therefore, we need to discretize 
(5)  first. Let tf be divided into N time intervals and let s,: = 
gsz, i = 0,.  . . , N-1, and SN be a new set of slack variables. Then, 
by the fact that multiplying the objective function of (5) by a positive 
constant results in an equivalent problem, ( 5 )  can be discretized as 
shown below 

20 = x ( t ) ,  

XN + S N  = 0 

au;  + b 5 0, i = 1, 2 , .  . . , N - 1, 

(7) 
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where f is the function resulting from using the Runge-Kutta method 
to discretize the state equation and H = % H r .  Without loss of 
generality, we may set H = 1 in (7). 

The solution set of (7) has a wider range than the minimum-time 
control solution, because the latter is one of the solutions of (7). Thus, 
a simpler version of the two-level, master-slave approach presented 
in [6] can be employed here. We use a very simple decision process 
for the master problem rather than a gradient iteration, as used in [6]. 

Master Problem: 

t f ( Z  + 1) = t f ( Z )  + ht ,  if C~o~T(tf(l))s^,(tf(Z)) > €1 
otherwise, 

(8) 
where S t  > 0 is a small increment on the horizon, €1 is a very 
small positive real number, and &(tf(Z)), i = 0,.  . . , N ,  denotes the 
optimal s of the following slave problem, under a t f ( l )  given from 
the master problem. 

Slave Problem: 

{Stop, 

Remark I: We use €1 instead of 0 in (8) because we need only a 
good approximate solution for (7). 

2)  Combining the Scaled Gradient Projection Method with a Dual 
Jacobi Method for the Slave Problem: The slave problem has been 
solved in [6] using a combination of recursive quadratic programming 
and a dual gradient method that can be implemented by VLSI 
array processors. In the updating steps of that iterative method, 
the variable step sizes are determined based on one-dimensional 
minimization. The step sizes, however, were set as constants in [6] 
for the purpose of hardware implementation. In fact, the recursive 
quadratic programming method and the dual gradient method can 
be viewed as special versions of the scaled gradient projection 
method and the scaled gradient method, respectively, which uses 
a restrictive constant step size and converges under certain easily 
satisfied conditions [5]. Like the dual gradient method, the dual 
Jacobi method with constant step size is also a type of scaled gradient 
method. Thus, to solve the slave problem we will replace the variable 
step size in the recursive quadratic programming method by a constant 
step size and the dual gradient method by the dual Jacobi method with 
constant step size. Therefore, the iterative method (a combination of 
the scaled gradient projection method and the dual Jacobi method) 
we will use to solve the slave problem is almost the same as the 
method used in [6], and we will describe this method only briefly 
here because of the limitation on the length of this note. Following 
the notation in [6], the slave problem can be rewritten as follows 

+ sZ = O,ZO = x ( t ) ,  

- y z s Y z < z ,  i = O , l , . . . , N - l ,  X N + S N = O  

U'U,  + b' + zZ = 0, 

(10) 

where yz (zt, U,, 2%) E F?n+p+r, - yt = (-00, 5, O), % E 
(+CO, K ,  +CO), U N  E 0,  Z N  E 0, - ut = -00 if uz is unbounded 
from below, = +CO if ut is unbounded from above, zz (>  0) 
are variables to convert the T ,  ( 5  q )  nonsimple inequality constraints 
n'ir,+b' 5 0 into equality constraints, f (y , ,  t f )  E f(z,, U , ,  t f ) ,  and 
t f ( 1 )  has been replaced by t f  for the sake of notational convenience. 

Let d x ,  d u ,  and d z  denote ( d z o , . . . , d z N ) ,  ( d u o , . . . , d u N ) ,  and 
( d z o , . . . , d z N )  , respectively, where d z o  = 0, dUN E 0, and 
d z N  E 0. The scaled gradient projection method uses the following 
iterations 

y(k + 1) = y(k) + dy' (11)  

to solve (lo), where dy' E ( d x * ,  du* ,  d z ' )  associated with s* is 
the solution of the quadratic approximation of (10) at y(k) described 
in the following 

where 71 is a positive scalar, E , ( y ( k ) )  = x2+1(k) - x,(k) - 

(fzt(k), f iLz(k) ,  01, in which fz$(k) = (8f(yz(k))/8xZ) and 
fuz(k) = (8 f (y t (k ) ) /8uz ) ,  and dy,  = (dx,, du , ,  dz,). Because 
of the slack variables s,, i = O , . . .  , N ,  and the fact that R is a 
convex polytope [assumption AO], the constraint qualification for 
(12) is easily satisfied. Furthermore, the Hessian matrix of (12) is 
positive definite, so based on the strong duality theorem [8], we 

z f ( y t ( k ) ,  tf),  i = O , " ' , N  - 1, E N ( y ( k ) )  = x N ( k ) ,  f y , ( k )  = 

may obtain the solution of (12) by solving 
problem shown below 

max #(A) 

where the dual function $(A) is defined as 

N 

the corresponding dual 

(13) 

N - l  

in which X = (Xf, 1 ,  X a / ,  l , .  . . , Xf ,  N )  is the vector of the Lagrange 
multiplier and each Xf,  E W ,  

Let A* be the optimal solution of the dual problem. Then the 
solution of the right-hand side of problem (14) with X = A* 
is the solution of (12), ( d y e ,  ds').  Furthermore CEO s : ~ s :  + 
$dy:'dy: = #(A*) .  We use the dual Jacobi method with the 
following iteration to solve (13) 

E !Xn, i = 0, 1,. . .  , N ,  X a 1 ,  

i = 0, l , . ' . , N  - 1. 

where 4" (A) denotes the unconstrained dual function, that is, the min- 
imization problem on the right-hand side of (14) with the constraint 
d y  E Y - y ( k )  neglected; diag[VZ4"(X(j)] is a negative definite 
diagonal matrix formed from the diagonal terms of VZdu (X ( j ) ) ;  
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V$(X(j)), which is a function of dy and 5, is the gradient of $ 
with respect to X at X( j ) ;  and dy and 5 represent the solution of 
the constrained minimization problem on the right-hand side of (14) 
with X = X ( j ) .  

The, formulas for calculating the values of each component of dxt, 
du,, dz,, and it, i = 1,. . . , N ,  and the values of each component of 
VX,, ,+(X(j)) and VX,', ,$(X(j)) are given in [6] and also appear 
in [7]. The formulas for the diagonal terms of Vz+u(X(j)) are given 
in [7]. 

3)  Convergence of the Phase I Method: The convergence of the 
phase 1 method is stated in the following proposition (the proof of 
the proposition is given in the Appendix). 

Proposition I :  Let the point (if,  2,  i, i) be an optimal solution 
of (7) with zero objective value and let t f ( 1 )  satisfy t f( t)  - bt < 
t^f 5 t f ( t ) ,  where t is a positive integer. Suppose bt, 71. and 72 ,  in 
(8), ( l l ) ,  and (15), respectively, are small enough. Then i) the two- 
level method will not diverge in any iteration, and ii) if the initial 
point y(0) in (11) is close enough to 3 = ( 2 ,  i, 2) ,  when tf(Z) in 
(9) equals t f(z) ,  then the two-level method will terminate in at most 
I iterations. 

To speed up this two-level method, the Newton method- 
based initial value processing used in [6] can also be used 
here to obtain a y(0) that is close enough to 3 under a 
feasible horizon tf(1). This initial-value processing starts 
from a small t f  and uses the iterations tf(Z + l):= tf(Z) - 

master problem, where the value of (&){CEO i?( t f (Z))&(t f ( l ) )}  
can be obtained from the solution of slave problem (9) with 
t f  = tf(Z) [6]. We will stop the initial-value processing when 

i?(tf(Z))i,(tf(Z)) < E Z ( E ~  > E I ) ,  and the corresponding 
solution y of the slave problem will be taken as y (0). 

As pointed out in Section 11, we do not require the iterative 
method to iterate forever to meet the exact terminal constraint, 
so finite accuracy can be used to check for the convergence of 
the iterative method. Thus, we can use lV$(X(j))lm < €3 and 
ly(k + 1) - y(k)lm < €4 as the convergence criteria for (15) and 
(1 l), respectively. The details of the algorithm steps of the phase 1 
method can be found in [7]. We will not restate the algorithm here 
because of the limitation on the length of this note. 

[EZO 5T(tf(WZ ( t f ( ~ ) ) I / [ ( &  {E, 5?( t s (Wz  ( t f 0 ) ) I l  for the 

B. Method for  Solving the Phase 2 Problem 

Once the control and horizon pair [U ,  i f ]  is obtained from the 
phase 1 method, the phase 2 problem (6) is well defined. To solve (6) 
approximately, we start from the U ( i ) ,  Z ( i ) ,  and Z ( i ) ,  i = 0,. . . , N ,  
obtained from the solution of the phase 1 problem, and then use the 
scaled gradient projection method to improve the solution gradually 
in the sense of reducing the performance index of (6). We need to 
discretize (6) first. If we scale the objective function by ( N / i f ) ,  the 
discretized problem is as shown in (16) 

Let the feasible solution set of nonlinear constraints for (16) be 
i 

defined as X = {y E %("+p+')N 1xz+1 - xz - +f(YZ(k), t f )  = 
0,  C L ' U , ( ~ )  + h' + z , ( k )  = 0,  y L  5 yz 5 g,, i = O , . . . , N  - 
1,  X N  = 0). Then starting from afeasible solution 5% = (&, i,, Zt), 

i = 0, . . . , N ,  obtained from the phase 1 method, we may describe 
the scaled gradient projection method for (16) as 

where X - y(k) s { d y  E % ( n + p + r ) N l y ( k )  + d y  E X } ,  Q and 
R denote the diagonal matrices formed from the diagonal terms of 
Q and R, respectively, and 11 is a small positive real number. The 
constrained minimization problem inside the big brackets in (17), 
however, is not easy to solve because the constraints in X - y(k) 
are nonlinear, making projection onto X very difficult. Yet, Miele et 
al. [4] and Mukai and Polak [lo] have shown that such a nonlinear 
constrained minimization problem can be solved by projection onto 
the tangent plane and restoration back to nonlinear constraints. Their 
methods are not suitable for VLSI implementation. Based on their 
framework of projection and restoration, however, we can develop 
VLSI implementable methods for the problem. 

I )  The Projection Problem: The tangent plane of X at y(k) is 
formed by linearizing the constraints in (16) at point y(k). Thus, in 
the projection stage, we will solve 

/ N .  

Let dy* = (dx*, du*, d z * )  be the optimal solution of (18). Then 
the point 

defines the resulting projection point in the tangent plane of X at 

2)  The Restoration Problem: For the sake of implementing the 
method in VLSI array processors, we have slightly modified the 
restoration method in [lo]. We use the following iterations to restore 

Y(k). 

y'(k) to X 

x ( m  + 1) = z(m) + y&x* (20) 

with x(0)  = x ' (k )  and dx' being the solution of the following 
problem of approximate restoration direction 

N 

+ dxTdz,lE,(x(m)) + dx,+l - dxz 
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where M is a very large positive scalar and s,, i = 0 , .  . . , N ,  are 
slack variables. Note that the control variables resulting from the 
projection stage have satisfied the inequality constraints and can be 
held fixed in the restoration stage; this property is due to Assumption 
AO). 

Remark 2: If all the terms in (21) involving slack variables 
are deleted, problem (2 1) becomes the exact restoration problem 
solved in [IO]. That exact restoration problem, however, is not 
guaranteed to have a solution; if it does not, a descent direction 
d.x* = -V[ET(x(m))E(z(m))] is used [lo]. The solution of (21) 
always exists and this solution is a descent direction for minimizing 
ET(.r)E(x).  Thus, the formulation of (21) is simple and eliminates 
the need to determine whether a solution exists. 

3)  The Dual Jacobi Method for  Solving the Projection and 
Restoration Problems: Since problem (18) is similar to and problem 
(21) is simpler than the slave problem (9), they can be solved using 
a dual Jacobi method that is suitable for VLSI implementation. 
Let $(A) and r ( X f )  denote the dual function of (18) and (21), 
respectively. Note that since (23) involves state equations only, 
I ' (Xf )  is a function of Xf only, in contrast to $(A), which is a 
function of A, which in turn consists of Xf and Xa,. Let (dx, du, d z )  
and (&, S)  denote the terms required for calculating V$(X) and 
VP(X,), respectively, as (dz,  du, dz ,  g) is needed in calculating 
Vd(X). The formulas for (&, du, d z ) ,  (&, S ) ,  V$(X), Vr(Xf),  
V'$"(X), and V2r(Xf) can easily be derived. These formulas are 
not shown here because of space limitations. Then the following 
iterations of the dual Jacobi method can be used to solve (18) and 
(21), respectively 

4 )  The Phase 2 Method and Its Convergence: It was pointed out 
above that if our methods for the projection and restoration problems 
converge, our methods will solve the constrained minimization prob- 
lem inside the big brackets in (17). The convergence of our methods 
for the projection and restoration problems is trivial, as explained 
below. 

The iterations of (20) can be viewed as a scaled gradient method 
for minimizing ~ ~ ( z ) ~ ( z ) .  Since ~ ~ ( z ) ~ ( x )  is at least locally 
convex, with ET(x)E(z) = 0 if x E X, it can easily be shown 
using a procedure similar to that given in [ 5 ] ,  that if 7 4  in (20) is 
small enough and satisfies 0 < 74 < (2I<4/lc(iv)) and y'(IC) is 
close enough to X, then the sequence generated by (22) with dz* 
obtained from solving (23) will converge to a point in X, where 
K(L' ' )  > 0 is a Lipschitz constant such that IIVIET(z')E(x')] - 
V[ET(z")E(z")]112 5 K('")11x' - z"112, Vz', x" E %?n(N+l), and 
IC4 satisfies the condition that [ M V E T ( z ) V E ( z )  + I - is 
nonnegative definite for every z E %i"(N+l). 

Furthermore, if 7 5  in (22) and 7 6  in (23) are small enough, the 
convergence of the dual Jacobi method for solving (18) and (21) can 
be ensured by a proof similar to the proof of Proposition 1 showing 
the convergence of the dual Jacobi method when it is used to solve 

Then, if 7 3  in the scaled gradient projection method (17) is small 
enough, (17) will be a descent method. Consequently, the following 
proposition obviously holds; the proof is omitted. 

Proposition 2: Suppose 7 3 ,  74, 7 5 ,  and 7 6  are small enough. 
Then i) the scaled gradient projection method (17) will not 
diverge in any iteration, and ii) ~z",,(l/2)[x~(p,,,)Qz,(p,,,) + 
~ ~ T ( ~ m a x ) R u t ( ~ m a x ) ]  < CEo(1/2)[2TQ2, + CRZL,], where 
.r, (pmdX), uL2(pnlaY), i = 0, .  . . , N ,  is the solution resulting from 

(12). 

method (17) performing pmax iterations, and 3 , ,  &, i = 0 , .  . . , N ,  
is the solution obtained from the phase 1 method. 

From the above proposition, we see that when we iterate (17) by 
an arbitrarily large number of iterations, p,,,, we have in fact solved 
the discretized phase 2 problem (16) approximately. 

As indicated in 141 and [lo], exact restoration is not necessary in 
the sequential projection and restoration process. Thus, in practice, 
the dual Jacobi method and the scaled gradient method (20) need only 
iterate for a sufficiently large finite number of iterations. We can use 

as the convergence criteria for (22), (23), and (20), respectively. The 
details of the algorithm steps for the phase 2 method can be found 
in [7]. 

Iv$(X(j))lm < € 5 ,  ivr(X(j))ico < € 6 9  Iz(m+ 1) - z(m)lm < €7 

Iv. HARDWARE COMPUTING ARCHITECTURE AND 
TIME COMPLEXITY FOR THE TWO-PHASE METHOD 

A. A Modification of the Method 

For the sake of hardware implementation, we will modify the 
convergence criteria for the iterative methods in the same manner 
as in 161. We will assign arbitrary numbers of iterations j,,, for the 
dual Jacobi method, k,,, for the scaled gradient projection method 
in the phase 1 method, and (IC;,, < IC,,,) for the scaled 
gradient method in the restoration stage of the phase 2 method. Thus, 
we may replace the convergence criteria described in Subsection III- 
A3 and 111-B4 by checking whether the corresponding iteration index 
exceeds the assigned number. 

B. VLSI Array Processor Architecture and Operations 

From Section 111, we see that the phase 1 method is almost the same 
as the two-level algorithm in [6] except for some minor modifications 
in the master problem and the dual method for solving slave problem. 
Therefore, the VLSI array processor architecture presented in [6] can 
be used to realize the phase 1 method with minor modifications in 
the details of some of the processing elements. Furthermore, in the 
phase 2 method, the methods for the projection stage (restoration 
stage) are a combination of the scaled gradient projection (scaled 
gradient) method and the dual Jacobi method. These methods have 
exactly the same iterative process as the method in the phase 1 
method for solving the slave problem. Therefore, we may use the 
same VLSI array processor architecture to carry out the phase 
2 method, with only some minor modifications in the processing 
elements that perform the operations of the scaled gradient projection 
method and dual Jacobi method. The modifications needed can be 
summarized as follows: First of all, we use three modes-0, 1, and 
2-to distinguish the operations of the VLSI array processors in 
the phase 1 method and the projection stage and restoration stage 
of the phase 2 method, respectively. These modes can be used i) 
to control a multiplexer to select, for example, IC,,, or in 
the processing element that checks the convergence of the scaled 
gradient projection method andA sca!ed gradient method, and ii) to 
select a formula, for example, dz, dx, or ax, in the corresponding 
processing element. Since the phase 2 method begins as soon as the 
phase 1 method is completed and the projection stage and restoration 
stage in the phase 2 method alternate until convergence, modes 0, 1, 
and 2 will alternate frequently. To control these mode changes, we 
will use control logic circuitry design based on the satisfaction or 
nonsatisfaction of the convergence criteria. Thus, after making minor 
modifications to some of the processing elements, we may indeed use 
the VLSI array processor architecture presented in [6] to realize our 
two-phase parallel computing method. 
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C. Overall Time Complexity 
To calculate the overall time complexity of the two-phase method 

in VLSI array processors, we need only to derive the time complexity 
corresponding to the dual Jacobi method in the complete two-phase 
method, because, as shown in [6], the execution of the dual method 
is the dominant term in the overall time complexity. Furthermore, 
the time complexity of the array processing elements should count 
as only that of one processing element, and the time complexity 
of the communication links is negligible [6]. Thus, the estimated 
time complexity for executing the two-phase method on VLSI array 
processors is 

[mskmaxjmax +pmax(jmax + k L x j m a x ) ] [ T ~  + TZ + T3] (24) 

where m, denotes the actual number of iterations that the phase 
1 method takes and TI + TZ + T3 stands for the maximum serial 
time complexity of the processing elements, corresponding to the 
execution of one iteration of the dual Jacobi method for (15), (22), 
and (23). The individual time complexity formulas for T I ,  Tz, and 
T3 can be derived as follows: TI = 2T@ + log,(2n + 2 ) T e ,  TZ = 
2T@ + log, (n  + p + 3)Te, and T3 = lT8 + 1 Te , where TB and Te 
denote the times for performing one multiplication and one addition, 
respectively, and n and p denote the number of states and controls, 
respectively. 

V. SIMULATIONS 
According to the work of Sharma et al. [ l l ] ,  T8 = 6.75 ns for a 

16 x 16 bit multiplication, and Te 5 0.35 ns for an addition. Then 
(24) becomes 

[mskmaxjmax + pmax(jmax + kLaxjmax)] 
. [40.85 + 0.35 log, ((an + 2 ) ( n  + p + 3))] ns. (25) 

In the examples given in this section and [7] ,  we use a second- 
order Runge-Kutta method to discretize the continuous problem. We 
set w = {.I 1 1 ~ 1 1 ~  5 0.05}, At = d t  = ( t f , h / N ) ,  N = 30, 
S t  = 0.2 seconds, kmax = 40, kLax  = 10, jmax  = 40, pmax = 30, 
€1 = 0.0001, E Z  = 0.001, and M = 100. We select conservative 
values for the step-sizes yz, i = l , . . .  ,6 ,  respectively, as follows: 
20, 0.2, 0.01, 0.1, 0.9, and 0.9. 

Example: Consider the Van der Pol Oscillator described by 5" = 
(1 - (zP)')z" - zB + U, k8 = za ,  where z0 and zp  are state 
variables and U is the scalar control. We intend to find a receding 
horizon feedback control solution such that the control satisfies the 
instantaneous bound lul 5 0.7 and drives the system from the initial 
state (0, 1) at time t = 0 to the origin (0,  0) asymptotically. 

We use the following arbitrary initial values: t f  = 3 seconds, 
ut = 0, 1 5 i 5 N - 1,  and 2; = 2: - ( i /N)zg,  2: = 
zf - ( i / N ) z { ,  i = O , . . . ,  N. We choose Q = [: g ]  and 
R = 1 in the phase 2 problem. Our test results show that the first 
horizon t f , ~  = 5.619 seconds. Because we do not consider any 
disturbance here, the values of t f ,  h ,  h = 1, 2 , .  . . , are all equal 
to t f ,  0, as expected. The receding horizon feedback control process 
stops when h = 36 because max{1(~" ) '~~(36At ;  2 3 5 ( t 3 5 ) ,  & ) I r  
1 ( ~ ~ ) ' ~ ~ ( 3 6 A t ;  z 3 5 ( t 3 5 ) ,  t35)1} < 0.05. Then, we switch the con- 
trol to a predesigned linear feedback control .iL = -62" - 3zP. 
The final two-phase method-based implementable receding horizon 
feedback control solution S ( t )  and the resulting state trajectory z'(t) 
are shown in Fig. 1. This state trajectory is indeed asymptotically 
stable. We find the performance index vh(E v ( z h ,  t h ,  U I ~ ,  t f , h ) )  

for each h = 0, 1,. . . , 36  is monotonic decreasing, so (2) is satisfied. 
In this example, n = 2,  p = 1, and r = 0. When h = 0, we have 
m, = 11. Then the estimated computation time for the two-phase 
method calculated from (25) is 1.28 ms. When h > 0, since the initial 

-0.5' ' ' ' I 
0.6  0.4 0.2 0 0.2 

time(aeconds) (.")I 

Fig. 1. The final feedback control solution and state trajectory of the 
example. 

guess for the discretized phase 1 problem is already an admissible 
control and horizon pair, we have m, = 1 for h = 1,. . . ,36. The 
estimated computation time for the two-phase method calculated from 
(25) is 0.62 ms for each h = 1 ,  2 , .  . . ,36. These execution times 
confirm the real-time applicability of our hardware-implementable 
receding horizon controller. The same conclusion can also be drawn 
from the example in [7]. 

VI. APPENDIX 

Proof of Proposition I :  
Proving i) is equivalent to proving that the combination of 
method (11) with method (15) converges. Since method 
(15) is a special version of the scaled gradient method 
and the dual function is continuously differentiable and 
bounded from above, then from the result in [5] method 
(15) converges if 7, is small enough; in particular, the 
value range of 7 2  is 0 < y, < &/E", where E'' = 
maxk K " ( k ) ,  and = mink Kz(k ) ,  in which k denotes 
the iteration index of method ( l l ) ,  K " ( k )  is the Lipschitz 
constant of the dual function 4(X) such that (IVp(X1) - 
04(X,)112 5 K"(k)IIX1--Xzll,, vx1, x z  E !Rn(lV+l) frN , and 
1i2(k) = min, [fin,, ( f , % ) ,  (a', 2 )  { ( a 2 / a x f , ) 4 u ( ~ ( j ) ) ,  
( a z / l a x u ~ z ~ ) ~ u ( x ( j ) ) } ]  is a positive constant such that 
diagVziZ1(A) + A-z(k)I 5 0 for all iterations j of method 
(15). Because the dual function d(X) is quadratic and strictly 
concave, the limit point of the sequence { X ( j ) }  generated by 
(15) will be A*,  the optimal solution of (13). Consequently, 
the (dy ' ,  ds ' )  corresponding to A' in (14) is the solution 
of (12). Thus, we may proceed to prove that method (11) 
converges. Method (11) is a special version of the scaled 
gradient projection method. Since the objective function of 
(10) is bounded from below and is continuously differentiable, 
then according to the result in [5], (11) will converge if 71 is 
small enough; in particular, 0 < 71 < 4/K', where K ' ( >  0)  
is the Lipschitz constant such that 

5 ~ ' 1 1 ~ '  - ~ " l l ~ ,  vy'. y" E Y n L' 

where Y = { y l ~  5 y. 5 k, i = O , . . . , N }  , U = 
{(U, z)la'u, + b' + zz = 0, z,  2 0, i = 0, 1,. . . , N } .  
BY assumption, xEo j .TiO = 0. Since t f ( t )  - S t  < if 5 t f ( T )  
and S t  is very small, there must exist a point (;cl U, 2) near 
( 2 ,  S, 2 )  such that (z, U, 2) associated with t f ( t )  is optimal 
for (7) and CE,sTs, = 0 because of the property that 
fo(O, 0) = 0. Clearly, the function xzlo E:(y)E?(y) is 
locally convex and has a local minimum at y = g, because 

$%, = 0 and S = E@). Now since 

a) y(0) is close enough to ji = (Z, 11, S), because by 
assumption, y(0) is close enough to 6 = (i, 6, Z); 
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b) (11) with small enough yl is a descent method [5] 
so that C E o E T ( y ( k ) ) E ; ( y ( k ) ) ,  k = 1, 2 , . . .  is a 
decreasing sequence; and 

c) Ego ET(y)E,(y) is locally convex at point and 

then the stopping criteria of (8) should be satisfied at 
c,=o E,T(WZ(8) = 0, 

some iteration k of (11) when t f  = t f ( t ) .  This proves 
ii). 

Characterization and Computation of the Solution 
to the Optimal L ,  Approximation Problem 

Davut Kavranoglu and Maamar Bettayeb 

Abstract- The characterization of the solution to the problem of 
approximating a given stable, proper, rational transfer function, in 
L ,  norm sense, by a rational function with prescribed number of 
stable and unstable modes is developed. A simple state-space suboptimal 
computational algorithm for the solution is presented. 
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