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Abstract—We propose the i-Traffic system that utilizes crowd-
sourced data from smartphones for the traffic flow mining by
shockwave techniques. Shockwave is the propagation phenomenon
of vehicle accumulation or relief on roads between two traffic
flows with different speeds. The movement data of vehicles in
front of an intersection are collected via smartphones for the
shockwave identification. To conquer the low penetration problem
when the number of the movement data is low, a folding heuristic
is proposed by using traffic light cycle information to virtually
increase the penetration of movement data. We implement our
system on a client-server architecture and perform a small
scale field trial experiment to demonstrate the system capability.
Our results showed that our system is able to compute traffic
information, including red/green light transition information
and vehicle arrival rate with mean absolute errors of 5.0/0.6
seconds and 2.43 vehicles per minute, respectively under a low
penetration rate of 1.2%.

Index Terms—Crowdsourcing, green computing, intelligent
transportation, location-based service.

I. INTRODUCTION

With the advent of telematics technology, many ITS (Intelli-

gent Transportation System) applications have been proposed

in helps of traffic management such as dynamic traffic light

sequence assignments in intelligent infrastructures and naviga-

tion or route guidance in driver assistances. One of the most

important information required to enable these useful applica-

tions is traffic flow information. For example, in the dynamic

traffic light sequence assignment, the schedule of traffic light

sequence can be optimized dynamically according to the real-

time traffic flow information so that the traffic throughput can

be improved significantly; in the route guidance, navigation

system can suggest drivers an optimal route based on the

congestion information to safe traveling time.

In the past, many infrastructure-based approaches are pro-

posed to obtain the traffic flow data, e.g., loop detectors and

CCTV; however, the high cost on deployment and maintenance

makes pervasive data collection difficult. Recently, a new data

sourcing approach called crowdsourcing is proposed. Crowd-

sourcing approaches have lower cost both in deployment and

maintenance as compared with traditional infrastructure-based

approaches and thus become a new trend for pervasively

data collection. In addition to crowdsourcing, mobile sensing

is another new trend that makes use of communication and

sensing technologies. The popularity of smartphones makes

both crowdsourcing and mobile sensing possible in pervasively

data collection and sensing. In this paper, we adopt mobile

sensing technology in crowdsourcing data to discover traffic

flow information.

Shockwave theory is a common base used in traffic flow

mining. Shockwave is the propagation phenomenon of vehicle

accumulation or relief on roads between two traffic flows

with different speeds [1]. For example, the propagation of

shockwaves in a signalized intersection can be illustrated

by a time-position diagram as shown in Fig. 1. Each dash

arrow represents vehicles’ time-position relation with respect

to the road segment. When vehicles encounter a red light,

they gradually stop, forming a stop shockwave. On the light

changing to green, these vehicles start to move, forming

a go shockwave. From the stop/go shockwaves, important

traffic flow related parameters can be discovered. Therefore,

it is possible to discover traffic flow information from the

movement of vehicles in front of the traffic light.
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Fig. 1. Propagation of two shockwaves in a signalized road segment.

Both the infrastructure-based approach and the

crowdsourcing-based approach are able to be used for

shockwave detection. For the infrastructured-based approach,

a pair of loop detectors is deployed under road surface to

measure the speed and number of incoming and outgoing

vehicles [2] [3]. Nevertheless, this approach can not be

deployed pervasively due to the need of high cost on

installation and maintenance. Besides, the shockwave is
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estimated by the position where the traffic flow changes,

which is not accurate. On the other hand, the crowdsourcing-

based approach makes use of GPS tracking data reported

to measure the flow variation [4] [5]; however, the high

requirement on percentage of reported GPS-tracking data

(3%) to obtain accurate mining results makes this approach

not practical in pervasive traffic flow mining [4].

In this paper, we propose a system that utilizes crowd-

sourced data from smartphones for the traffic flow mining

by shockwave techniques. The movement data of vehicles

in front of an intersection are collected via smartphones for

the shockwave identification. To conquer the low penetration

problem when the number of the movement data is low, using

traffic light cycle information to virtually increase the penetra-

tion of movement data used in the shockwave identification, a

folding heuristic is proposed. We implement our system on a

client-server architecture and perform a small scale field trial

experiment to demonstrate the system capability. Our results

showed that our system is able to compute traffic information,

including red/green light transition information and vehicle

arrival rate with mean absolute errors of 5.0/0.6 seconds and

2.43 vehicles per minute, respectively under a low penetration

rate of 1.2%.

The rest of this paper is organized as follows. In Section II,

related works in the literature are reviewed. Section III presents

the system architecture and designs. In Section IV, the system

implementation is presented. In Section V, preliminary results

of simulation experiments are introduced to demonstrate our

system. Conclusions are given in Section VI.

II. RELATED WORKS

The shockwave theory was first proposed by Lighthill,

Whitham [1] and Richards [6] for modeling highway traffic

and later expanded by Stephanopolos [7] and Michalopoulos

[8] for modeling signalized traffic.

The shockwave theory was applied by many works for

the analyses on the dynamics of traffic flows. Based on data

collection methods, researches studying in the shockwave

model can be classified into two categories: infrastructure-

based approaches [9][10][3][2][11] and crowdsourcing-based

approaches [12][5][13][4].

Researches using infrastructure-based approaches have de-

voted in the development of analytical models for traffic

estimation and the improvement of data collection methods.

Skabardonis and Geroliminis [10] developed an analytical

model for traveling time estimation in signalized arterials. Liu

et al. [9] discovered a Queue-Over-Detector (QOD) problem

in the traditional input-output approach for queue length esti-

mation in signalized road segments, and used high resolution

traffic signal data with data collected by loop detectors to

estimate time-dependant queue length. Followed by Wu et
al. [2], Oversaturated Severity Index (OSI ) is defined for

quantifying the effects of spillovers, and further separated to

temporal OSI and spatial OSI where the temporal OSI de-

scribes the detrimental effects created by a residual queue, i.e.,
the detrimental effects in temporal dimension, and the spatial

OSI describes the detrimental effects created by spillovers,

i.e., the detrimental effects in spatial dimension. After that,

the QOD problem in signalized arterials was further discussed

in [11], Wu et al. found that the QOD can significantly affects

the accuracy of Arterial Fundamental Diagram (AFD) and

concluded that after removing the QOD effects, one can use

AFD to interpret the traffic flow in signalized arterials. In

[3], Geroliminis and Skabardonis proposed a method to detect

spilliovers in signalized intersections.

On the other hand, researches using crowdsourcing-based

approaches tried to utilize the new mobile sensing technologies

to find other means for traffic data collection. In [12], Herrera

et al. proposed to incorporate GPS tracking logs with data col-

lected from loop detector for traffic reconstruction. However,

they did not discuss the penetration rate of GPS in vehicles,

which directly affects the accuracy of the estimated traffic

flow. In [13], Izadpanah et al. proposed a clustering algo-

rithm to automatically identify the trajectories of shockwaves.

However, the penetration rate would still be a performance

issue in their method. After that, the penetration issue was

brought back by Herrera et al. [4], they performed a field

trial to show that a 3% penetration of GPS in vehicles is

enough to provide accurate measurement data. In [5], Ban et
al. proposed to use traveling time between intersections from

GPS tracking logs, and developed an analytical model from

the concept Queue Rear No-delay Arrival Time (QRNAT) to

estimate queue length.

III. SYSTEM ARCHITECTURE AND DESIGNS

The proposed system is composed of crowd side and

server side as shown in Fig. 2. The crowd side is a vehicle

that installs smartphones, GPS, IMU (inertial measurement

unit) and OBD (OnBoard Diagnostics). Among these devices,

smartphones provide general computation capability, display

interface to show traffic flow information and communication

interfaces such as 3G and WiFi; GPS provides vehicle position

information; both IMU and OBD provide vehicle movement

information such as acceleration and speed. The crowd side

uses these devices to sense vehicle movement state, i.e., halt

and move states, by mobile sensing technology and provides

these crowdsourced data to the server side. The server side

is a collection of servers including database (DB) servers,

data analysing (DA) servers and traffic information provision

(TIP) servers. The DB server provides a storage interface that

collects crowdsourced data from the crowd side and store

estimated traffic flow information; the DA server has the

capability to mine traffic flow information from the crowd

side, and the TIP server provides an interface for road users

to obtain traffic flow information in the DB server.

A. System Designs

Fig. 3 illustrates the system work flow. The system work

flow is separated into the crowd side and the server side. In

the beginning, the crowd side detects its movement state (halt

or move) and reports the stop/go events including movement

state, location and time to the server side. These stop/go

events are stored in the DB server; later on, the DA server

mines traffic flow information from the stop/go events by
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Fig. 2. The proposed system architecture.

the shockwave technique and event folding mechanism, and

stores the information in the DB server. Finally, the TIP server

provides a query interface to share the traffic flow information

in the DB server among the crowd side. In the following, we

present the key tasks in the work flow. The halt/move detection

in the crowd side, and the traffic flow mining technique and

folding heuristic in the server side.
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Fig. 3. The system work flow.

B. Halt and Move Detection

To provide crowdsourced data that are useful in traffic flow

mining, the crowd side needs to sense the movement state

associated to the traffic light ahead. In a journey of a vehicle,

the journey is composed of a sequence of alternative halt

periods and move periods divided by stop events and go events.

A stop event indicates a vehicle transits from move to halt

which can be described by the time and position pair that a

vehicle stops. Similarly, a go event indicates a vehicle transits

from halt to move which can also be described by the time and

position pair that a vehicle starts to go. Practically, it is not so

definitely that the stop and go events can be detected. In this

work, a Finite State Machine (FSM) is used to model the status

of a vehicle and also to sketch an algorithm detecting the stop

and go events. See Fig. 4. The GO state means the vehicle

is moving, and the STOP state means the vehicle is stopped.

As mentioned before, the moving speed reported by GPS is

more or less inaccurate and somewhat with delay. Even more,

vehicles may move slowly before stopped. So, there exists a

grey area between the GO and STOP states. To reflect these
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Fig. 4. The finite state machine that is used to recognize SG events from
GPS tracking logs.

facts, we add one more state called STOPPING to quarantine

the entrance to the STOP state as the speed is low. To sum up,

in the FSM, there are three states, GO, STOP and STOPPING,

and two parameters, toStop and QuarDur. Let v denote the

current speed of the vehicle and tick denote the duration after

entering the STOPPING state. The vehicle is in the GO state

whenever v ≥ toStop. In the GO state, if v goes below the

threshold toStop, i.e., v < toStop, the FSM transits to the

STOPPING state, and at the same time, tick is reset. In the

STOPPING state, as v stays below toStop for QuarDur unit

time, i.e., tick = QuarDur, the FSM transits to the STOP

state. Remind that no matter when, as soon as v ≥ toStop,

the FSM goes to the GO state. As the FSM transits from the

STOP state to the GO state, a go event with the location and

the time of the transition is reported. As the FSM transits from

the STOPPING state to the STOP state, a stop event with the

location and the time of the previous transition from the GO

state to the STOPPING state is reported. After the stop/go

events are detected, the crowd side reports the stop/go events

to the DB server.

C. Traffic Information Mining Technique

After collecting the crowdsourced stop/go events, the DA

server will mine traffic flow information from the stop/go

events in the DB server. Let {si = (tsi , p
s
i ) |i = 1, 2, ..., n}

be a collection of stop events, where tsi and psi are the

time and position of the stop event si, respectively, and

{gi = (tgi , p
g
i ) |i = 1, 2, ..., n} be a collection of go events,

where tgi and pgi are the time and position of the go event gi,
respectively. If these stop events are put together, a linear trend

called the stop shockwave may exist. Similarly, a linear trend

called the go shockwave may exist among these go events

gi = (tgi , p
g
i ).

The stop and go shockwaves can thus be expressed by

equations

Ls : ps � αsts + βs (1)

Lg : pg � αgtg + βg , (2)

respectively.

We take stop events as an example to show how to determine

the stop shockwave equation. Assume {s1, s2, · · · , sn} are

927919919



stop events due to a red light period. For any 1 ≤ i ≤ n,

si = (tsi , p
s
i ) fits to a stop shockwave

Ls : psi � αstsi + βs. (3)

Let

T
s =

⎡
⎢⎢⎢⎣

ts1 1
ts2 1
...

...

tsn 1

⎤
⎥⎥⎥⎦ , ps =

⎡
⎢⎢⎢⎣

ps1
ps2
...

psn

⎤
⎥⎥⎥⎦ , and xs =

[
αs

βs

]
. (4)

The linear system can be written as T
sxs � ps. Since this is

an approximately system, we apply the Least Square Method
(LSM) to find the linear regression equation for Ls. It follows

that

(Ts)
T
T
sxs = (Ts)

T
ps, (5)

and we have

xs =
(
(Ts)

T
T
s
)−1 (

(Ts)
T
ps

)
. (6)

Similarly, the go shockwave equation can be determined by

the similar way from the go events {g1, g2, · · · , gn}.
From these shockwave equations, many useful traffic related

information parameters can be found. For example, if we

regard the position of the traffic light as the origin, the moment

of ps = 0 indicates the start time of a red light period. So, from

0 = αsts + βs, ts = −βs/αs is the start time of a red light

period. Similarly, tg = −βg/αg is the start time of a green

light period. In addition, the arrival and departure rates of

vehicles can be discovered from αs and αg in the shockwave

equations, respectively. Let H be the average space headway

between vehicles and L be the number of lanes in a direction.

Since the arrival rate of vehicles is defined as the number

of incoming vehicles per unit time, and |αs| is the vehicle

accumulating distance per unit time per lane, |αs| × L/H is

therefore the average arrival rate of vehicles. After the traffic

related information parameters are estimated, these parameters

are stored in the DB server and the crowd side can access these

parameters from the interface provided by the TIP server.

D. Folding Heuristic

Note that the above discussion is based on the stop/go

events caused in the same traffic light period; however, in

practice, only a small portion of vehicles will participate in the

crowdsourcing activity, so there may not be enough events for

determining the shockwave equations. Observing that similar

stop/go shockwaves will repeat every cycle if the vehicle

arrival and departure patterns are stable and the traffic light

cycle length is not change, we are possible to reduce the

required penetration rate by utilizing the traffic light cycle

information. We propose a folding heuristic to reduce the

required penetration rate of stop/go events.

Fig. 5 illustrates an example of collected stop/go events in

a signalized road segment. It appears that the linear trend can

be easily observed in Fig. 5 (a) if all the stop and go events

are known. However, in practice, there may only be a portion

of events reported as the events marked in black in Fig. 5

(b), resulting in the difficulty of finding the linear trend of the
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Fig. 5. An example of collected stop/go events in a signalized road segment.
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Fig. 6. An example to illustrate the folding technique.

stop/go shockwaves from these stop and go events. We call

this the penetration rate issue.

Fortunately, since the traffic flow pattern (arrival rates for

stop shockwaves and departure rates for go shockwaves) has

similarity in a short period and the phase plan of a traffic light

system has a fixed schedule in the same time period during

a day, the shockwaves of the same type in different traffic

light cycles should have similar slopes. In other words, we

can assume these shockwaves are parallel to each other. Given

a shockwave L1 : p = αt + β with the traffic light cycle of

length T , the shockwave that occurs after k cycles will be L2 :
p = α (t− kT ) + β since the x-axis intercept is kT behind.

Let si = (ti, pi) be an event on the shockwave L2, and we

have pi = α (ti − kT )+ β. A virtual event s′i = (ti − kT, pi)
will be a solution to the shockwave equation L1. This idea is

called the folding technique and illustrated in Fig. 6. In the

figure, L2 is the shockwave k cycles behind L1 and s1 =
(t1, p1) is an event in L2. By applying the folding technique,

s′1 = (t1 − kT, p1) will fall in the shockwave equation L1.

Fig. 5 (c) shows the folding result of Fig. 5 (b). After folding,

stop events s2 and s3 are folded to s′2 and s′3 by adding T and

2T , respectively. Similarly, go events g2 and g3 are folded to

g′2 and g′3, respectively. The folding technique can effectively

reduce the requirement on the penetration rate.
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IV. SYSTEM IMPLEMENTATION

In this section, we present the preliminary results of the

implementation of our system. We implement our prototype

system on 3G networks that contains a server on the Internet

and several crowd ends on smartphones.

The crowd side is implemented on an Android platform

based smartphone embedded with a GPS receiver. The android

platform provides several APIs for user interface, map, loca-

tion and connectivity services which are useful to implement

the FSM for the halt and move detection, and access and

display traffic information from the server. Fig. 7 illustrates

our system snapshot.

5)
�)
��6 ������ �	
���
������

�������
�����

�����	�����

�������
����

�����	�����

����

�����	�����

�)��
��

��������

%��

�����	�����

Fig. 7. The iTraffci service screenshot.

The server side is implemented in an IBM x3550 system

and comprises a WWW server and a PostgreSQL server. The

DA server and TIP server are implemented as web services

in the WWW server, and the DB server is implemented in

the PostgreSQL server. The WWW server uses PHP for the

communication between the server end and the crowd end,

e.g., reporting stop/go events to the DB server and querying

traffic information from the DB server via the TIP server.

PostgreSQL is used for data storages. In our system, the

traffic information parameters estimated by our system are

stored in the PostgreSQL server. PostgreSQL also provides

several geographic related APIs that are useful in geographic

computing.

V. EXPERIMENTAL RESULTS

To evaluate the accuracy of the traffic information estimated

by our framework, we perform a small scale field trial experi-

ment. In the experiment, two vehicles go around on a two-lanes

road segment of length 650 m to collect stop and go events

happening before a signalized intersection as illustrated in Fig.

8. The road segment is part of BaoShan Road near NCTU in

Hsinchu City from A to B. The experiment is performed in

a rush hour from 7:37 am to 8:20 am. The traffic light is

located at B and two vehicles go along the black line from

A to B to collect the stop and go events. The vehicles then

TABLE I
TRFFIC INFORMATION ESTIMATION FOR SHOCKWAVE EQUATIONS

Parameters arrival rate (vel/min) Red transition Green transition
h = 6.10 h = 9.14 time (second) time (second)

Measured 18.63 0 49
Estimated 19.51 12.83 5 49.6

take U turns at B and go back to A to start another round

of data collection. Totally, ten rounds were performed in the

experiment. Meanwhile, the traffic light cycle is 48 seconds

for a red light period, including a 3-seconds-long yellow light

period, and 102 seconds for a green light period. The total

average vehicle arrival rate is 24 vehicles per minute in which

the average vehicle arrival rate of the left lane is 18.6 vehicles

per minute. The average vehicle arrival rate is counted from

recorded video. Note that, the experiment is performed in the

left lane since the traffic flow in Taiwan is mixed with heavy

vehicles, passenger vehicles and motorcycles, and motorcycles

usually drive in the right lane. In addition, in the ten-round

experiment, there are total ten samples among the 43-minute-

length experiment and there are about 42.5 × 18.6 = 790.5
vehicles during the experiment. Therefore, the penetration rate

is 10/790.5 ≈ 1.2%.

A. Halt and Move Detection

We first evaluate the performance of the halt and move

detection algorithm. The thresholds toStop and QuarDur
used in the algorithm are set to 3.6 km/hr and 3 seconds

according to our experience. The speed from OnBoard Di-

agnostics (OBD) with sampling rate 10Hz is used to detect

the ground truth from GPS data.

The performance of the algorithm will be evaluated in terms

of hitting rates and false detection rates based on the stop/go

events detected by OBD. The hitting rate is defined as the

ratio of the number of the stop/go events correctly reported

by the algorithms to the number of stop/go events detected

by OBD. The false detection rate, including the positive false

detection rate and the negative false detection rate, is defined

as the ratio of the number of the false stop/go events to the

number of stop/go events detected by OBD. The hitting rate

is 7/9 and the positive false detection rate is 0/9, and the

negative false detection rate is 2/9. The results show that the

proposed stop/go event detection algorithms can detect most

stop/go events with a small false detection rate.

B. Traffic Information Mining

To further verify the traffic information estimated by our

system, Table I lists traffic parameters. The parameters include

the average vehicle arrival rate and the length of the red light

period. The average arrival rate is estimated by |αs| × l/h
where l = 1 in the experiment. As suggested in [14], a

reasonable vehicle head space h is from 6.10 to 9.14 meters.

The average vehicle arrival rate is 19.51 vehicles per minute

if h = 6.10 meters, and 12.83 vehicles per minute if h = 9.14
meters. The mean absolute errors of the vehicle arrival rate

929921921
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Fig. 8. The road segment for field trial experiments.

are therefore 2.43 vehicles per minute. We can see that the

vehicle arrival rates are around the measured one. The red and

green light transition times are estimated by −βs

αs and − βg

αg ,

respectively, and the mean absolute errors of red and green

light transition time are 5 and 0.6 seconds, respectively. The

estimated red light transition time is a little bit higher due to

the driver’s behavior. The results indicate that the framework

proposed in this work can properly estimate traffic information

parameters.

VI. CONCLUSIONS

In this paper, we propose a system that adopts crowdsourced

data from smartphones for traffic information mining by the

shockwave technique. We implemented a prototype system on

3G networks and evaluate the accuracy of the traffic informa-

tion parameters estimated by our system. The contribution of

our works are two folds. First, we have evaluated the accuracy

of traffic information parameters including traffic flow and

traffic light phase transition time estimated by the proposed

system via field trial experiment. Second, our experiments

show that 1.2% penetration rate is enough to discover the

traffic information parameters. However, there are still many

works need to study such as multi-lane traffic scenario, stop-go

events that may not caused by traffic lights.
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