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ABSTRACT: A parametrization scheme for the electronic part of the density-
functional based tight-binding (DFTB) method that covers the periodic table is
presented. A semiautomatic parametrization scheme has been developed that uses
Kohn−Sham energies and band structure curvatures of real and fictitious homoatomic
crystal structures as reference data. A confinement potential is used to tighten the
Kohn−Sham orbitals, which includes two free parameters that are used to optimize
the performance of the method. The method is tested on more than 100 systems and
shows excellent overall performance.

1. INTRODUCTION

Density-functional based tight binding (DFTB) is an
approximation to density-functional theory (DFT).1,2 It has
been proposed in the 1980s by Seifert and co-workers3 for the
Xα method and was transferred later to DFT.4,5 The method
made use of an optimized atomic orbital minimal basis set and
approximated the effective Kohn−Sham (KS) potential in a
rigorous two-center approximation. Thus, terms of three or
more centers are not present in the KS matrix, allowing the a
priori calculation and tabulation of all matrix elements,
employing the so-called Slater−Koster technique.6 Because of
the algorithmic simplicity of the method, it has been
straightforward to implement it early on massively parallel
high-performance computers;7,8 all computationally intensive
operations of DFTB are available in standard linear algebra
packages and thus highly optimized for virtually all computer
architectures.
DFTB has been successfully employed in studying a series of

applications, most notably carbon-based systems,5,9−20 but also
boron nitrides,21,22 silicon and silicon carbide,23−25 and other
systems.26,27 Properties arising as expectation values of the
DFTB-approximated KS orbitals are available in a straightfor-
ward way, including NMR,13,15,28 STM images,29,30 and
vibrational spectroscopy and related thermal properties.31,32

DFTB showed an excellent overall performance and was a
significant contribution to computational materials science as it
made electronic structure calculations possible for nanoscale
systems at a very early time. However, its accuracy concerning
structures and energies was not always competitive to highly
parametrized force fields and self-consistent semiempirical
models, in particular for bioorganic systems. Hence, Elstner and
co-workers have extended DFTB in order to include a self-

consistent charge (SCC) correction, accounting for valence
electron density redistribution due to interatomic interactions.
This reformulated theory is based on the superposition of
atom-centered electron densities, applying the two-particle
approximation to densities rather than to potential terms. The
total energy is derived as second-order expansion of the KS
energy with respect to the electron density, which is
constructed as a sum of pseudoatomic electron densities.33

This method, commonly referred to as SCC-DFTB, has been
very successful, most notably in the field of computational
biology, where quantitative accuracy of structural and energetic
parameters has been achieved.8,34,35

The better description of charge fluctuations in the system
allowed for the time-dependent SCC-DFTB formulation,36−38

as well as a more accurate description, of the vibrational
properties (IR and Raman spectra).39−41

In the same way as DFT, (SCC-)DFTB lacks London
dispersion interactions (LDI). These can be treated in a similar
fashion as in DFT by adding an empirical two-body force-field-
like term with r−6 long-range asymptotic and appropriate short-
range behaviors.42,43

Other major refinements of DFTB are spin-polarized
DFTB,44 LDA+U-like Hamiltonians for strongly correlated
systems,45,46 and third-order DFTB (DFTB3), where the third-
order contributions of the electronic fluctuations, in the form of
induced atomic Mulliken charges, are taken into account.47,48

The combination of SCC and LDI made the results of DFTB
much more realistic, and applications in the field of inorganic
nanomaterials,49−55 metal−organic frameworks (MOFs),56−58
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covalent organic frameworks (COFs),59−63 carbon-based
systems,64−66 and biomolecules67−71 have been reported.
There have been several recent reviews on DFTB to which

we refer the interested reader.72−74 Despite all the progress
achieved with the help of the DFTB method in all its variations
and the availability of the method in most of today’s computer
codes, it is important to note that a straightforward general-
ization of the method, offering parameters throughout the
periodic table, has not been successful to date. There have been
various attempts to automatically generate parts of the DFTB
parameters,75−77 but we note that the parameters that are
actually used in computer simulations are typically hand-tuned
and, unfortunately, in many cases, limited to a small set of
elements.
In this and a forthcoming work, we will present a scheme that

produces optimized parameters throughout the periodic table.
This work concentrates on the generation of electronic
parameters, that is, those that are needed to generate the KS
and overlap matrix elements and thus to generate band
structures and all related properties. In a forthcoming
contribution, we will provide the remaining terms that are
needed for the total energy (also known as repulsive
potentials), thus completing a DFTB parameter set for the
periodic table.
This article is organized as follows: First, we review the

relevant part of the DFTB theory. Then, we motivate and
rationalize our computational approach and present the
automated parametrization scheme. After reporting our
construction recipe for the calculation of the electronic
parameters throughout the periodic table, we discuss the
transferability of the approach and finally compare selected
band structures with DFT reference calculations. This article is
accompanied with a comprehensive Supporting Information,
including the band structures of all materials selected for
training and validation calculations.

2. REVIEW OF DFTB

The Kohn−Sham equations can be formulated as

ψ ψ ε ψ̂ = ̂ + =F T V( )i i i ieff (1)

with the effective potential Veff=Veff[n] being a functional of the
electronic density n(r). In DFTB, Veff is expressed by a series
including only atom-centered terms. Two philosophies are
found in the literature. In the potential superposition, introduced
by Seifert and co-workers,3−5 Veff is written as series of atom-
centered potential contributions VA of the atoms A at positions
RA: Veff = ∑AV

A(r − RA). In the density superposition,
introduced by Elstner et al.,33 the electronic density is expanded
in a similar way, superposing atom-centered densities nA:
Veff[n] = Veff [∑AnA(r − RA)]. Both expansions are formally
exact when pursued to the infinite order, and one could write
the atomic contributions, for example, in a series of spherical
harmonics centered at the respective positions of the nuclei of
the atoms.
In the DFTB approximation, the individual elements of these

series are replaced by atomic trial potentials or trial densities,
respectively. Those contributions are constructed by calcu-
lations of spherical pseudoatoms that are subject to a
confinement potential Vconf· Vconf is acting in two roles. It
reduces the spatial extension of the atomic orbitals and,
consequently, atomic densities and potentials, and it acts as a
tunable parameter. The trial potentials V0

A or densities n0
A are

obtained by self-consistently solving the KS equations of a
closed-shell pseudoatom of type A, with the electron density
constrained to spherical symmetry

These atomic calculations also yield the confined atomic
orbitals ϕv

A. The linear combination of atomic orbitals (LCAO)
approach is now used to expand the KS orbitals

∑ψ ϕ= −
ν

ν ν νcr r R( ) ( )i i
A

A( )
(3)

where A(ν) denotes center A to which atomic orbital ϕv
A

belongs. DFTB approximates this series by restricting it to
include only the atomic valence orbitals plus, in some cases, the
first unoccupied shell. As basis functions, the method uses the
solutions of the pseudoatomic calculations ϕv

A of eq 2. Thus,
the overlap matrix S is defined as Sμν = ⟨ϕμ|ϕν⟩. For the zero-
order KS matrix F0, two further approximations are necessary.
First, we apply the two-center approximation, that is, only those
potential (or density) contributions that are centered at the
same positions as the basis functions are considered

ϕ ϕ ϕ ϕ ϕ ϕ= ⟨ | |̂ ⟩ = ⟨ | ̂ + | ⟩ ≈ ⟨ | ̂ + | ⟩μν μ ν μ ν μ
ν μ

νF F T V T V A B0
eff eff

( ) ( )

(4)

with

= − + −V V Vr R r R( ) ( )AB A
A

B
Beff 0 0 (5)

for the potential superposition, and

= − + −V V n nr R r R[ ( ) ( )]AB A
A

B
Beff eff 0 0 (6)

for the density superposition. Second, for the diagonal elements
we use Fμμ

0 = <ϕμ|F̂|ϕμ> = εμ
free, with εμ

free referring to the KS
energy of orbital ϕμ of the free spherical atom, that is, with Vconf
= 0. This latter choice ensures correct dissociation energies.5

Because of the orthogonality of the atomic orbitals, all other
one-center off-diagonal elements are zero, and we can
summarize the zero-order DFTB KS matrix as

ε μ ν

ϕ ϕ μ ν=

=

⟨ | ̂ + | ⟩ ∈ ∈ ≠μν

μ

μ ν

⎧
⎨
⎪⎪

⎩
⎪⎪

F T V A B A B

,

, { }, { },

0, otherwise

AB0

free

eff

(7)

The orbital term of the total energy of the system is
conveniently written as tr(P·F0), where the elements of the
density matrix P are defined as

∑=μν μ νP f c c
i

i i i
(8)

with orbital occupations f i. The SCC correction33 accounts for
the second order terms with respect to the charge fluctuations
in the system. Those modify the KS matrix to

∑ γ γ= + +μν μν μν
ξ

ξμ ξν ξF F S q
1
2

( )0

(9)

where γ is an effective matrix including the Coulomb and
exchange correlation interactions (for details see ref 33), and qξ
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denote charges, typically Mulliken charges, of the atoms. If
applied to atoms with charges qξ, the SCC correction shifts the
KS matrix elements up (for electron gain) or down (for
electron loss) at the respective centers; hence, it balances the
charge flow through the system depending on the atomic
hardnesses. The SCC correction can be formulated for shells,
being advantageous, e.g., for transition metals with notably
different hardnesses for s, p shells on one hand, and the d shell
on the other hand. In this case, the index ξ denotes the shell
index, and qξ = nξ

0 − nξ is the electric charge of the shell,
computed as the shell population difference with respect to the
free atom.
The DFTB total energy results from the orbital term

corrected by the second-order term and a so-called repulsive
energy Erep, which accounts for the internuclear repulsion and
the double counting terms, and includes ad hoc corrections for
the approximations made

The parametrization of the repulsive energy will be subject of
a forthcoming work. Here, we concentrate on a high-quality
parametrization of the electronic parameters, yielding the KS
orbitals, and hence orbital energies and all other quantities that
can be expressed as expectation values of the KS orbitals.
As commonly done in the DFTB community, we will employ

the confinement potential as parameter to tune the DFTB
electronic structure. There are various ways to describe the
confinement potential. Traditionally, it has been defined as
harmonic potential Vconf = (r/r0)

2, with r0 being an empirical
parameter, typically having a value of about twice the covalent
radius of the atom.78,79 In this work, we generalize this potential
to

=
σ⎛

⎝⎜
⎞
⎠⎟V

r
rconf

0 (11)

with r0 and σ being free, positive, real parameters that are used
to optimize the DFTB performance to yield high-quality KS
orbitals ψi. A DFTB performance comparable to the one
presented in this work has been achieved, with a similar
parametrization strategy using a Woods−Saxon confinement
potential together with a fully relativistic atomic program, by
Nishimura in the Irle and Witek groups.80,81

3. PARAMETRIZATION DETAILS
3.1. General Concept. The format of present-day DFTB

parameters and the corresponding literature generate the
impression that DFTB involves a diatomic parametrization,
thus requiring the optimization of N(N + 1)/2 parameter sets
to cover a number N of chemical elements. To put it into
perspective, 5050 parameter sets would then be required to
cover 100 elements. It is rather obvious that this amount of
parameter sets is difficult to generate and to maintain, and this
is certainly the principal reason why a DFTB for the periodic
table has not been available so far. In principle, DFTB requires
only a set of atomic parameters, that is, each parameter set
depends on one atom type only. This is particularly true for the
electronic part of DFTB, given in the so-called Slater−Koster
tables,6 and this may even be transferred to the so-called
repulsive potential, as discussed by Mirtschink and Seifert.82 The
adoption of a single atom-type strategy reduces the number of

parameter sets to be optimized to N, that is, one parameter set
per chemical element, a number that is much easier to control.
We will employ this strategy and describe it in detail in this
section.
First, we discuss our selection of reference structures and

methods and define the computational details for the
generation of reference data. Then, we give the numerical
details of the quantum-mechanical calculations leading to the
DFTB pseudoatoms and consequently DFTB parameters and
motivate their choice. We report the semiautomatic para-
metrization procedure and the scoring functions that are used
to optimize the DFTB parameters before we discuss the
transferability to heteroatomic systems and measures to
overcome shortcomings.

3.2. Reference Structures and Methods. DFTB
parameters are supposed to be transferable between different
systems. Therefore, it is important to include interactions
between atoms in different bonding situations during the
parametrization. As we want to have a simplified para-
metrization strategy, we prefer homoatomic systems. A
straightforward way to achieve this is to concentrate on solids
and to include crystals of different coordination numbers, thus
probing different bonding environments. An attractive para-
metrization target will be the band structure, as it
simultaneously samples the effect of a large number of bond
distances on elements of the overlap and KS matrices. The
bands are associated with the individual KS energies and thus
the KS orbitals. The curvature of the bands gives important
data for applications such as effective masses, and thus electron
and hole mobilities, and is the first term needed for the
calculation of vibrational frequencies (phonons).
We have employed an extensive database of crystal structures

extracted from the work of Nishimura.80 This database
comprises experimental lattices as well as lattices optimized
with a PBE-PAW method. For the sake of better transferability
of our parameters, we wanted to use as many reference systems
as possible. We use three or more crystal systems for most of
the atom types. The crystal systems used as reference in the
parametrization of each element are discriminated in the
Supporting Information (SI).
The DFT reference is always the all electron calculation with

a numerical TZP basis set (available in ADF/BAND83,84), the
generalized gradient approximation (GGA) functional sug-
gested by Perdew, Burke, and Ernzerhof in 1996 (PBE),85 and
the scalar-relativistic correction (ZORA).86 The quadratic
scheme proposed by Wiesenekker and Baerends87 with high
precision settings has been used for numerical integration over
the Brillouin zone.
The DFTB calculations of band structures have been carried

out using the ADF/DFTB88 program.
3.3. Generation of DFTB Pseudoatoms and DFTB

Parameters. All necessary information for defining the DFTB
parameters is obtained by solving the KS equations for the
pseudoatoms of spherical symmetry as given in eq 7. For
consistency, we employ the same density-functional as for the
reference calculations (PBE) and also include the scalar-
relativistic corrections (ZORA) for all elements.
The choice of basis functions was less straightforward.

Intensive tests have shown that it is practically impossible to
describe the pseudoatoms being subjected to different confine-
ment potentials Vconf using standard analytical Slater-type or
Gaussian-type basis sets, even if they have excellent quality
within DFT, and especially for confinement potentials with
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Table 1. Electronic Configurations and Confinement Potentials for the Elements Considered in the Present Worka

element valence shell r0 σ εd εp εs Ud Up Us

H 1s1 1.6 2.2 − − −0.238603 − − 0.419731
He 1s2 1.4 11.4 − − −0.579318 − − 0.742961
Li 2s1 2p0 5.0 8.2 − −0.040054 −0.105624 − 0.131681 0.174131
Be 2s2 2p0 3.4 13.2 − −0.074172 −0.206152 − 0.224651 0.270796
B 2s2 2p1 3.0 10.4 − −0.132547 −0.347026 − 0.296157 0.333879
C 2s2 2p2 3.2 8.2 − −0.194236 −0.505337 − 0.364696 0.399218
N 2s2 2p3 3.4 13.4 − −0.260544 −0.682915 − 0.430903 0.464356
O 2s2 2p4 3.1 12.4 − −0.331865 −0.880592 − 0.495405 0.528922
F 2s2 2p5 2.7 10.6 − −0.408337 −1.098828 − 0.558631 0.592918
Ne 2s2 2p6 3.2 15.4 − −0.490009 −1.337930 − 0.620878 0.656414
Na 3s1 3p0 5.9 12.6 − −0.027320 −0.100836 − 0.087777 0.165505
Mg 3s2 3p0 5.0 6.2 − −0.048877 −0.172918 − 0.150727 0.224983
Al 3s2 3p1 3d0 5.9 12.4 0.116761 −0.099666 −0.284903 0.186573 0.203216 0.261285
Si 3s2 3p2 3d0 4.4 12.8 0.113134 −0.149976 −0.397349 0.196667 0.247841 0.300005
P 3s2 3p3 3d0 4.0 9.6 0.121111 −0.202363 −0.513346 0.206304 0.289262 0.338175
S 3s2 3p4 3d0 3.9 4.6 0.134677 −0.257553 −0.634144 0.212922 0.328724 0.375610
Cl 3s2 3p5 3d0 3.8 9.0 0.150683 −0.315848 −0.760399 0.214242 0.366885 0.412418
Ar 3s2 3p6 3d0 4.5 15.2 0.167583 −0.377389 −0.892514 0.207908 0.404106 0.448703
K 3d0 4s1 4p0 6.5 15.8 0.030121 −0.029573 −0.085219 0.171297 0.081938 0.136368
Ca 3d0 4s2 4p0 4.9 13.6 −0.070887 −0.051543 −0.138404 0.299447 0.128252 0.177196
Sc 3d1 4s2 4p0 5.1 13.6 −0.118911 −0.053913 −0.153708 0.322610 0.137969 0.189558
Ti 3d2 4s2 4p0 4.2 12.0 −0.156603 −0.053877 −0.164133 0.351019 0.144515 0.201341
V 3d3 4s2 4p0 4.3 13.0 −0.189894 −0.053055 −0.172774 0.376535 0.149029 0.211913
Cr 3d5 4s1 4p0 4.7 3.6 −0.107113 −0.036319 −0.147221 0.312190 0.123012 0.200284
Mn 3d5 4s2 4p0 3.6 11.6 −0.248949 −0.050354 −0.187649 0.422038 0.155087 0.230740
Fe 3d6 4s2 4p0 3.7 11.2 −0.275927 −0.048699 −0.194440 0.442914 0.156593 0.239398
Co 3d7 4s2 4p0 3.3 11.0 −0.301635 −0.046909 −0.200975 0.462884 0.157219 0.247710
Ni 3d9 4s1 4p0 3.7 2.2 −0.170792 −0.027659 −0.165046 0.401436 0.106180 0.235429
Cu 3d10 4s1 4p0 5.2 2.2 −0.185263 −0.025621 −0.169347 0.420670 0.097312 0.243169
Zn 3d10 4s2 4p0 4.6 2.2 −0.372826 −0.040997 −0.219658 0.518772 0.153852 0.271212
Ga 4s2 4p1 4d0 5.9 8.8 0.043096 −0.094773 −0.328789 0.051561 0.205025 0.279898
Ge 4s2 4p2 4d0 4.5 13.4 0.062123 −0.143136 −0.431044 0.101337 0.240251 0.304342
As 4s2 4p3 4d0 4.4 5.6 0.078654 −0.190887 −0.532564 0.127856 0.271613 0.330013
Se 4s2 4p4 4d0 4.5 3.8 0.104896 −0.239256 −0.635202 0.165858 0.300507 0.355433
Br 4s2 4p5 4d0 4.3 6.4 0.126121 −0.288792 −0.739820 0.189059 0.327745 0.380376
Kr 4s2 4p6 4d0 4.8 15.6 0.140945 −0.339778 −0.846921 0.200972 0.353804 0.404852
Rb 4d0 5s1 5p0 9.1 16.8 0.030672 −0.027523 −0.081999 0.180808 0.073660 0.130512
Sr 4d0 5s2 5p0 6.9 14.8 −0.041363 −0.047197 −0.129570 0.234583 0.115222 0.164724
Y 4d1 5s2 5p0 5.7 13.6 −0.092562 −0.052925 −0.150723 0.239393 0.127903 0.176814
Zr 4d2 5s2 5p0 5.2 14.0 −0.132380 −0.053976 −0.163093 0.269067 0.136205 0.189428
Nb 4d3 5s2 5p0 5.2 15.0 −0.170468 −0.053629 −0.172061 0.294607 0.141661 0.200280
Mo 4d4 5s2 5p0 4.3 11.6 −0.207857 −0.052675 −0.179215 0.317562 0.145599 0.209759
Tc 4d5 5s2 5p0 4.1 12.0 −0.244973 −0.051408 −0.185260 0.338742 0.148561 0.218221
Ru 4d7 5s1 5p0 4.1 3.8 −0.191289 −0.033507 −0.155713 0.329726 0.117901 0.212289
Rh 4d8 5s1 5p0 4.0 3.4 −0.218418 −0.031248 −0.157939 0.350167 0.113146 0.219321
Pd 4d9 5s1 5p0 4.4 2.8 −0.245882 −0.029100 −0.159936 0.369605 0.107666 0.225725
Ag 4d10 5s1 5p0 6.5 2.0 −0.273681 −0.027061 −0.161777 0.388238 0.099994 0.231628
Cd 4d10 5s2 5p0 5.4 2.0 −0.431379 −0.043481 −0.207892 0.430023 0.150506 0.251776
In 5s2 5p1 5d0 4.8 13.2 0.135383 −0.092539 −0.301650 0.156519 0.189913 0.257192
Sn 5s2 5p2 5d0 4.7 13.4 0.125834 −0.135732 −0.387547 0.171708 0.217398 0.275163
Sb 5s2 5p3 5d0 5.2 3.0 0.118556 −0.177383 −0.471377 0.184848 0.241589 0.294185
Te 5s2 5p4 5d0 5.2 3.0 0.114419 −0.218721 −0.555062 0.195946 0.263623 0.313028
I 5s2 5p5 5d0 6.2 2.0 0.112860 −0.260330 −0.639523 0.206534 0.284168 0.331460
Xe 5s2 5p6 5d0 5.2 16.2 0.111715 −0.302522 −0.725297 0.211949 0.303641 0.349484
Cs 5d0 6s1 6p0 10.6 13.6 −0.007997 −0.027142 −0.076658 0.159261 0.069450 0.120590
Ba 5d0 6s2 6p0 7.7 12.0 −0.074037 −0.045680 −0.118676 0.199559 0.105176 0.149382
La 5d1 6s2 6p0 7.4 8.6 −0.113716 −0.049659 −0.135171 0.220941 0.115479 0.160718
Lu 5d1 6s2 6p0 5.9 16.4 −0.064434 −0.049388 −0.171078 0.220882 0.126480 0.187365
Hf 5d2 6s2 6p0 5.2 14.8 −0.098991 −0.051266 −0.187557 0.249246 0.135605 0.200526
Ta 5d3 6s2 6p0 4.8 13.8 −0.132163 −0.051078 −0.199813 0.273105 0.141193 0.212539
W 5d4 6s2 6p0 4.2 8.6 −0.164874 −0.049978 −0.209733 0.294154 0.144425 0.223288
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high exponents σ, which are very steep. This holds for the
orbital basis set and alsoif employedfor the fitting
functions to describe the electron density. To avoid numerical
problems we employ here numerical atomic orbitals (NAOs),
which are exact eigenfunctions of the DFT Hamiltonian for a
spherical atom, obtained with the Herman−Skillman proce-
dure.89

Various strategies have been suggested in the literature to
optimize Vconf, motivated by different reasons,90−92 and
alternative analytical forms of Vconf have been suggested.93,94

We have chosen an analytical expression for the confinement
potential Vconf = (r/r0)

σ, with free parameters r0 and σ. This
choice is numerically simple and can be taken as generalization
of Vconf as it is used by most groups today, who take the same
parameter r0 but integer values (2 or 4) for σ. Thus, this choice
allows the DFTB community to easily adapt existing para-
metrization tools.
With these details, we calculate the pseudoatomic potential

V0, density n0, and atomic orbitals ϕμ, depending on the
parameters r0 and σ. They are used to compute the elements of
overlap and KS matrices using eqs 7 and 9 given in the previous
section. It is convenient and common to precalculate the
overlap and KS matrix elements between two atoms as function
of the interatomic distance and to store them in a parameter
file, the so-called Slater−Koster table.6 For each element, we
carry out a further atomic calculation with Vconf = 0, yielding the
orbital energies εμ of the free atoms. The Hubbard parameters
Ul, required to obtain the SCC matrix γ,33 are calculated for
each atomic shell as the second derivative of the atomic energy
with respect to the electronic occupation of the l orbital in the
unconfined atom.
At this point, it is important to discuss what orbitals are to be

included in the DFTB approach. DFTB is a nonorthogonal
tight-binding scheme, so some attention must be given to the
related orthogonality issues. Within the potential superposition
(eq 5), one can interpret the orthogonalization terms as
pseudopotential contributions. Those have been identified to
be small and can be neglected.73 Therefore, it is reasonable to
disregard the core orbitals in DFTB. In DFT, it is necessary to
employ a large series of unoccupied orbitals into the variational
space in order to be able to obtain high-quality KS orbitals,
energies, and properties. In DFTB, however, this variational
space is expected to be represented in the pseudoatomic
orbitals, which have been optimized during the parametrization,
and that a minimum valence basis is sufficient. In cases where

explicit polarization is important, one shell of polarization
functions has been included.90,91 The explicit choice for each
element is given in Table 1. Typical choices are, for example, to
include the next p shell in alkali metals or the unoccupied d
shell for elements such as Si and P.
Before we turn to the optimization procedure of the DFTB

parameters, we would like to motivate the importance of the
choice of the numerical atomic orbitals. Figure 1 gives the

electronic band structure of Al(fcc), calculated with our
optimized DFTB confinement (r0 = 5.9 bohr and σ = 12.4),
in comparison with a DFT benchmark calculation. The use of
analytical basis functions, even the enormous QZ4P basis set,
for calculating the DFTB pseudoatom has been found
insufficient for reproducing the DFT reference bands in the
valence region (below the Fermi level εF). As shown in Figure
1, the deviations are especially pronounced in the s band. Only
the numerical atomic orbitals match our reference calculations
closely. Hence, to reproduce the KS matrix elements with
Slater-type orbitals, special basis sets would need to be
constructed to handle steep confinement potentials. We have
not pursued this route, as the NAOs already represent the basis
set limit for this problem.

3.4. Optimization of DFTB Parameters in a Semi-
automated Procedure. It remains to determine the free
parameters r0 and σ in such way that they lead to high-quality
and transferable results. This means that the DFTB perform-

Table 1. continued

element valence shell r0 σ εd εp εs Ud Up Us

Re 5d5 6s2 6p0 4.2 13.0 −0.197477 −0.048416 −0.218183 0.313288 0.146247 0.233028
Os 5d6 6s2 6p0 4.0 8.0 −0.230140 −0.046602 −0.225640 0.331031 0.146335 0.241981
Ir 5d7 6s2 6p0 3.9 12.6 −0.262953 −0.044644 −0.232400 0.347715 0.145121 0.250317
Pt 5d8 6s2 6p0 3.8 12.8 −0.295967 −0.042604 −0.238659 0.363569 0.143184 0.258165
Au 5d10 6s1 6p0 4.8 2.0 −0.252966 −0.028258 −0.211421 0.361156 0.090767 0.255962
Hg 5d10 6s2 6p0 6.7 2.0 −0.362705 −0.038408 −0.250189 0.393392 0.134398 0.272767
Tl 6s2 6p1 6d0 7.3 2.2 0.081292 −0.087069 −0.350442 0.119520 0.185496 0.267448
Pb 6s2 6p2 6d0 5.7 3.0 0.072602 −0.128479 −0.442037 0.128603 0.209811 0.280804
Bi 6s2 6p3 6d0 5.8 2.6 0.073863 −0.167900 −0.531518 0.142210 0.231243 0.296301
Po 6s2 6p4 6d0 5.5 2.2 0.081795 −0.206503 −0.620946 0.158136 0.250546 0.311976
Ra 6d0 7s2 7p0 7.0 14.0 −0.047857 −0.037077 −0.120543 0.167752 0.093584 0.151368
Th 6d2 7s2 7p0 6.2 4.4 −0.113604 −0.045825 −0.161992 0.211980 0.114896 0.174221

aConfinement radii r0 are given in bohr, whereas orbital energies εl and Hubbard parameters Ul are given in hartree. When applying the SCC
correction per atom rather than per atomic shell, we use the Hubbard parameter of the occupied shell with highest l number.

Figure 1. Electronic band structures of the Al(fcc) crystal obtained
with DFT (PBE/TZP) and DFTB, employing QZ4P, TZP, and
numerical atomic orbitals (NAOs) in the calculation of the
pseudoatoms. All further numerical parameters are identical in the
three DFTB calculations.
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ance shall be similarly good for the different crystal systems that
have been chosen as reference systems for each element. The
quality assessment is associated to the band structure
differences to the reference values and thus contains a
significant amount of information.
In principle, a careful eye observation of the band structures

or projected density of states would be the best way to judge
the quality of the DFTB parameters. However, this is most
inconvenient in terms of time and manual effort and introduces
a subjective component that is difficult to control. The main
challenge of this work is to find an optimization scheme that is
as much automated as possible. As our target quantities are
band structures, we defined two scoring functions η(ε) and
η(κ). η(ε) evaluates the quality of the band structure energies.
It is defined as

∑η ε ε ε= | − |
N

( )
1

i

N

i i
k

k k
,

,
DFT

,
DFTB

(12)

where the sum runs over the valence bands, indicated with i and
a set of k points from the selected path through the Brillouin
zone, yielding a total of N elements. A similar expression can be
written for the curvature of the bands
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For some insulating systems, for example, Ge(dia), the lowest
conduction band is also included in the scoring functions. For
details on the number of bands used in the scoring functions for
each reference crystal, we refer the reader to Table S1.1 on the
SI.
The parametrization of the individual atom types moves

along the following procedure:

1. We generate parameter sets by varying the parameters r0
and σ in a brute-force scheme. In detail, we change r0 in
steps of 0.1 rcov, starting from the covalent radius rcov of
the element up to 10 rcov. The values of rcov are taken
from the work of Cordero et al.95 The exponent σ is
varied from 2 to 17 in steps of 0.2. Slater−Koster tables
are prepared and saved for analysis.

2. For each atom type we have selected several crystal
systems. For each of the crystal systems, we compute and
score the band structures following eqs 12 and 13. We
first rank the best parameters in terms of the band
energies (η(ε)). It is interesting to note that a rather

large variation of parameters produces excellent band
structures for many systems. We pick a set of the best
performing sets, typically about 50.

3. We re-rank the best performing sets in terms of band
curvatures (η(κ)).

4. Finally, the sets of ranked parameters of different crystal
systems are progressively compared until the closest
intersection point is found (i.e., those parameters that are
performing well in all crystal systems with the lowest
possible energy and curvature deviation). This step is
comparable to drawing a Venn diagram, where only one
single element is common between all sets. If there are
no common parameters found, we extend the best-
performing set in point 2 and start over.

This procedure yields values for r0 and σ that produce high-
quality band energies and band curvatures for different crystal
systems.
We have carried out this procedure for DFTB formulated in

the density superposition as well as for the potential
superposition scheme (eqs 5 and 6). It turned out that the
potential superposition scheme showed, overall, superior results
in terms of band energies and curvatures, as exemplified in
Figure 2. We will therefore consistently apply this scheme to
generate all parameters that will be presented below.
In addition to the procedure described above, different

electronic configurations have been tested for transition metal
elements. Although the ground state configuration should be
used to ensure correct dissociation energies, as discussed in
Section 2, alternative configurations, in which an electron is
reassigned from the s to the d orbital or vice versa, may improve
the description of electronic band structures. Hence, we have
chosen to use the electronic configuration that resulted in the
best band structure around the Fermi energy.

3.5. Securing Transferability. Already during the para-
metrization procedure of homoatomic materials, we have
generated sufficient data to discuss the transferability of
DFTB. If a large number of parameter sets scores well in the
description of each crystal type selected per element, a good
transferability is expected. On the contrary, if very few
parameter sets score well, transferability may turn out to be
problematic and compromises would have to be made when
selecting the best parameter set for a certain element. In Figures
3 and 4 we show an exceptionally good (phosphorus) and an
exceptionally bad (carbon) example. It is surprising and
interesting to note that carbon is one of the least transferable

Figure 2. Electronic band structures calculated for fcc crystals of (a) carbon and (b) aluminum, using DFTB parameters optimized with the potential
superposition (potential) and density superposition (density) approaches. The bands have been shifted according to the Fermi energy εF. In the
present work, the potential superposition has generally performed better than the density superposition in terms of band energies and band
curvatures. For reference, the band structures calculated with the matsci-0-396 parameter set are also shown.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4004959 | J. Chem. Theory Comput. 2013, 9, 4006−40174011

http://pubs.acs.org/action/showImage?doi=10.1021/ct4004959&iName=master.img-004.jpg&w=441&h=129


elements that we have encountered because a significant
portion of the success of DFTB is related to its excellent
performance for carbon-based systems. The original choice of
Porezag et al.5 for Vconf, with r0/rcov ≈ 1.8 and σ = 2, is clearly
outside the best range for carbon systems (Figure 4). This
finding indicates that it is important to compromise between
different benchmark systems. It further shows how inaccuracies
in the electronic parameters may be compensated by the
additional terms of the total energy (eq 10).
Because only homoatomic crystals have been used as

references for our DFTB parametrization, the performance of
our parameters with heteroatomic systems would be a true
evidence of transferability. In the majority of the cases, we have
obtained very good qualitative agreement between DFTB and
DFT calculations of band energies and band curvatures of
binary crystals. For some systems, however, poor results have
been achieved. More specifically, systems containing elements

that do not naturally occur in solid phase, i.e., N, O, F, Cl, and
Br. In order to overcome this problem, we have reoptimized the
parameters of these elements using a series of binary
compounds as reference. Upon reoptimization, significant
improvement has been achieved (Figure 5). Table S1.1 of the
Supporting Information shows a detailed list of the crystal
systems used as reference for the parametrization of each
element, as well as the final band energy and curvature scores
for all systems considered in this work.

4. RESULTS AND DISCUSSION

Table 1 gives the selected DFTB valence shells, the optimized
parameters r0 and σ to express Vconf, the orbital energies ε of the
unconfined pseudoatoms, and the Hubbard parameters U for
all elements of the periodic table from H to Th, with
completely filled f levels. With these parameters it is possible to
compute all elements of the overlap and Hamiltonian matrices
for DFTB calculations. It should be reminded that it is
important to use an extremely extended basis set, preferentially
numerical atomic orbitals.
For several elements, we have obtained a value of 2.0 for σ,

which is the lowest limit in our optimization range. Hence, in
these cases, we have reoptimized the confinement potential
using 1.0 as the lower limit. Nevertheless, the results have not
changed, confirming that 2.0 is truly the lower limit of σ.
It is interesting to notice that opposite to previous

assumptions the optimal value of r0 is not related to the
covalent radii by a simple constant. In fact, the values of both r0
and σ considerably differ from element to element. In Figure 6
we compare the bond lengths (De) in the reference crystals to
the optimal values of r0. A trend can be observed between this
values. Furthermore, it can be observed that the covalent radii
do not reflect the bond lengths of the crystal systems.
The corresponding band structures of the benchmark

systems are compared to our DFT reference calculations and
to results obtained using the matsci-0-3 parameter set50,51,96

available at DFTB.org.97 In the matsci-0-3 parameter set the
confinement potential has been tuned manually, and the
pseudoatomic calculations have been carried out with
convenient Slater-type basis functions and the local density
approximation.98 Not surprisingly, our new set of DFTB
parameters, entitled QUASINANO2013.1 (quantum-mechan-
ical simulations for the nanoscale, labeled according to the title
of the funding project), performs very well for the vast majority
of all homoatomic systems in the periodic table. Three
examples have been selected for discussion here: C, Si, and
Au. Despite the transferability issue discussed before, very good
qualitative results have been obtained for all carbon systems
(Figure 7), although the band gap in C(dia) has been
compromised. In the case of Si (Figure 8), our parameters
outperform the matsci-0-3 set in both the valence and
conduction bands close to the Fermi level. The matsci-0-3 set
does not include Au parameters; however, a very good
agreement between our parameters and DFT can been
observed in Figure 9. It is important to note that the
conduction bands of DFTB will always differ from DFT.
There are bands missing due to the choice of minimum basis
set in DFTB, and the higher-energy conduction bands have not
been included in the calculation of the scoring functions. This
deviation from DFT is not relevant, as the high-energy part of
the band structure does not influence the electronic ground
state of the system.

Figure 3. Mean absolute error (MAE) of the electronic band energies
for phosphorus in (a) bcc, (b) fcc, and (c) simple cubic arrangements,
plotted as function of the confinement radius (r0) and exponent (σ).
The optimal performance regions (blue) within all three systems
overlap nicely, meaning an excellent transferability of the DFTB
parameters can be obtained for phosphorus. The best points are
marked on the plots.
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We have further tested our DFTB parameters for binary
compounds. Four crystals that have not been used as reference
in the parametrization have been chosen, namely, ScC (rock salt
type) and TiC (rock salt type) (Figure 10), GeSi (zinc blende
type), and SnSi (zinc blende type) (Figure 11). All these
examples show that DFTB bands obtained with our parameters
are in good agreement with DFT reference bands. With the
exception of a few transition metal compounds, we observed
results of similar quality for many other systems (SI), which
confirms the transferability of the parameters.
Another test worth mentioning refers to the mechanical

deformation of MoS2 monolayers. The change in electronic
conductivity associated to mechanical strain in transition-metal
dichalcogenides has been investigated in our group,99 using full
DFT calculations. We have repeated the band structure
calculations (results not shown) of the MoS2 monolayer
subject to compression of up to 15% and have observed the
same trends with respect to the position and value of the

Figure 4. Mean absolute error (MAE) of the electronic band energies for carbon crystals in (a) bcc, (b) fcc, (c) diamond, and (d) graphite
arrangements, plotted as function of the confinement radius (r0) and exponent (σ). The regions with optimal performance (blue) of diamond do not
overlap with other systems, indicating limited transferability of the DFTB parameters for carbon. The best points are marked on the plots.

Figure 5. Electronic band structures of (a) ZnO (zinc blende type) and (b) LiBr (rock salt type) after reoptimization of O and Br parameters by
including these crystal structures in the set of reference systems. DFT reference bands are plotted in solid black lines, whereas the bands obtained
with our DFTB parameters are shown in dashed−dotted red lines. The band energies have been shifted according to the Fermi energy εF.

Figure 6. Equilibrium distances (De) and optimized values of r0, both
in terms the covalent radius (rcov), in function of the atomic number Z.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4004959 | J. Chem. Theory Comput. 2013, 9, 4006−40174013

http://pubs.acs.org/action/showImage?doi=10.1021/ct4004959&iName=master.img-006.jpg&w=419&h=271
http://pubs.acs.org/action/showImage?doi=10.1021/ct4004959&iName=master.img-007.jpg&w=440&h=122
http://pubs.acs.org/action/showImage?doi=10.1021/ct4004959&iName=master.img-008.jpg&w=239&h=160


electronic band gap. On the basis of these results, our DFTB
parameters have been applied in a recent investigation of the
electromechanical properties of MoS2 nanotubes.

100

Many more examples can be found in the Supporting
Information. Our parameters are already applicable for band
structures, electron mobilities, and quantum conductance
calculations. The applicability of the parameter set is currently
being extended by inclusion of the repulsion energy term Erep.

5. CONCLUSION

We have presented a semiautomated parametrization scheme
for the density-functional based tight-binding method that
yields parameters throughout the periodic table. Thus,
electronic structure calculations of solids and finite systems
are now possible for practically any material using the DFTB
approximation.

Figure 7. Electronic band structures of carbon crystals in (a) bcc, (b) fcc, (c) diamond, and (d) graphite arrangements. Solid black lines show the
DFT reference bands, whereas dashed−dotted red lines show the results with our DFTB parameters and dotted blue lines correspond to DFTB
calculations using the matsci-0-396 parameter set. Band energies have been shifted according to the Fermi energy εF.

Figure 8. Electronic band structures of silicon crystals in (a) bcc, (b) fcc, (c) simple cubic, and (d) diamond arrangements. Solid black lines show the
DFT reference bands, whereas dashed−dotted red lines show the results with our DFTB parameters, and dotted blue lines correspond to DFTB
calculations using the matsci-0-396 parameter set. Band energies have been shifted according to the Fermi energy εF.
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The parametrization scheme takes reference calculations,
obtained with a standard density-functional (PBE), as bench-
marks and analyzes the electronic band energies and curvatures
for selecting the best possible DFTB parameters.
We have presented the optimized parameters for our first

global parameter set, QUASINANO2013.1, and validated it for
a set of test systems. Within the accuracy range of DFTB, a very
good performance has been observed for the new QUASINA-
NO2013.1 parameters, in most cases outperforming previous
parameters that have been regularly employed. We note that a
proper choice of basis functions is essential for obtaining
correct DFTB parameters.
It should be noted that the calculation of other important

properties, such as binding energies, reaction paths, and bond
angles, requires the parametrization of repulsive potentials,
which will be the focus of a forthcoming contribution. Once
this parametrization is complete, a more detailed analysis of the
performance and transferability of our DFTB parameters and

further comparison to other parameters already available will be
possible.
The article is accompanied with extensive Supporting

Information, which brings detailed results of benchmark and
validation calculations for more than 100 systems. The
QUASINANO2013.1 parameter set can be produced with the
current version of the ADF software.
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Figure 9. Electronic band structures of gold crystals in (a) bcc and (b) fcc arrangements. Solid black lines show the DFT reference bands, whereas
dashed−dotted red lines show the results with our DFTB parameters. Band energies have been shifted according to the Fermi energy εF.

Figure 10. Electronic band structures of (a) ScC (rock salt type) and (b) TiC (rock salt type). Solid black lines show the DFT reference bands,
whereas dashed−dotted red lines show the results with our DFTB parameters. Band energies have been shifted according to the Fermi energy εF.

Figure 11. Electronic band structures of (a) GeSi (zinc blende type) and (b) SnSi (zinc blende type). Solid black lines show the DFT reference bands,
whereas dashed−dotted red lines show the results with our DFTB parameters. Band energies have been shifted according to the Fermi energy εF.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4004959 | J. Chem. Theory Comput. 2013, 9, 4006−40174015

http://pubs.acs.org
mailto:t.heine@jacobs-university.de
http://pubs.acs.org/action/showImage?doi=10.1021/ct4004959&iName=master.img-011.jpg&w=441&h=122
http://pubs.acs.org/action/showImage?doi=10.1021/ct4004959&iName=master.img-012.jpg&w=440&h=122
http://pubs.acs.org/action/showImage?doi=10.1021/ct4004959&iName=master.img-013.jpg&w=441&h=121


Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank the European Commission for financial
support for the Marie Curie Industrial-Academic Partnership
Pathways project QUASINANO (REA-FP7-PEOPLE-2009-
IAPP/251149). Stan van Gisbergen is thanked for his support.
We also thank Marcus Elstner, Gotthard Seifert, Stephan Irle,
Chien-Pin Chou, Yoshifumi Nishimura, Stefano Borini, and
Agnieszka Kuc for enlightening and inspiring discussions.

■ REFERENCES
(1) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864−B871.
(2) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133−A1138.
(3) Seifert, G.; Eschrig, H.; Bieger, W. Z. Phys. Chem. 1986, 267,
529−539.
(4) Seifert, G.; Porezag, D.; Frauenheim, T. Int. J. Quantum Chem.
1996, 58, 185−192.
(5) Porezag, D.; Frauenheim, T.; Köhler, T.; Seifert, G.; Kaschner, R.
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