
Padded String : Treating String as Sequence of Machine Words *
Pei-Chi Wu

	

Feng-Jian Wang
Institute of Computer Science and Information Engineerin g

National Chiao Tung University

1001 Ta-Hsueh Road, Hsinchu

Taiwan, Republic of China

{pewit, fjwang} @csie.nctu.edu.tw

ABSTRACT

A string is a sequence of characters . The operations such as copy and comparison on strings ar e
usually performed character by character . This note presents a data type called padded string, a
string type with faster operations . A padded string is a sequence of machine words . For 32-bit
machines, four characters can be operated in one machine instruction . Operations on padded
strings can then run faster than traditional strings such as char* in C language . An experiment
sorting an array of strings shows speedup 24% using padded string.

Keywords : string, data structure, string sorting .

1 . MOTIVATION

A string is a sequence of characters . The operations such as copy and comparison on strings ar e
usually performed character by character. They utilize only 1/4 computing power of 32-bi t
machines, since four characters (a machine word) can be operated in one instruction in thes e
machines. Surprisingly, this issue is rarely addressed in the literature (cf . [3, 4] for classical data
structures of string) .

This note presents a data type of string, called padded string . A padded string is a
sequence of machine words . There are two design rationale :

1) provide faster comparison operations .

There are two kinds of comparison operations :
• relation operations : <, >, <_, > =
• equality operations : __, ! =

Sorting an array of strings may be a daily work in some commercial applications . It needs O(n
log n) comparison operations on strings . Replacing the traditional string type with a more
efficient implementation can easily speedup these applications . For example, the expected
speedup is about 300% in best case, if the new string type utilizes the full computing power of
32-bit machines .

2) provide nearly free conversion to traditional string type such as char* in C language.

Since string is a basic data type, many of its utilities are already provided by programmin g
languages or operating systems . The C functions such as pr intf 0 ) take an argument of zero-

* This research was partly supported by National Science Council, Taiwan, R.O.C ., under Contract No . NSC 82-
040S-E009-280 .

64

	

ACM SIGPLAN Notices, Volume 29, No . 9, September 1994



terminated array of characters . If a free conversion to traditional string type is provided, the new
string type can then be processed by these utilities. A C++ conversion operator is defined for the
class of new string type :

operator char* 0 ;
The conversion should involve only simple computation of the address of string .

2. TECHNICAL ISSUES

There are three issues in handling a string as a sequence of words :

1) Word Alignment: A string may start in an address that is not properly aligned for machin e
words. Some architectures need (integer) data to be aligned in word boundary. For string data,
the allocation in memory hardly meets this requirement . A string may start in any address .
Consider a string "word alignment", even if the first token "word" is properly aligned (e .g . ,
address 0x200), the second token "alignment" is not (e .g., address . 0x205) . A preprocessing of
traditional string type (copy the contents to an aligned address) is needed to provide proper
alignment .

2) Varied Length : A string may not completely fill a number of machine words . Consider a
series of operations on a word representation of string . The length of a string may not be a
multiple of 4 for a 32-bit machine, thus the operation on the last word needs special treatments
or the operation may access some data outside the string . The former causes some overhead,
while the latter causes incorrect result . A solution is to pad zeros at the end of a string . For
example, the token "alignment" :

"alignment" _> ("alig", "amen", "t\0\0\0") .

3) Byte Order: The relation operations on strings should guarantee alphabetical order, i .e . ,
maintaining the order like "A100" < "B000" . Executing string comparison by comparing
machine words has two kinds of results according to the byte order in a machine word : big-
endian and little-endian .

"A 100"

	

"B000"
big-endian :

	

0x41313030 <

	

0x42303030
little-endian :	 0x30303141	 >	 0x30303042

(in ASCII code, 'A'=0x41, 'B' =0x42, '0' =0x30, '1' =0x31 )

Only the result by big-endian meets the alphabetical order . For equality operations, there is n o
problem in byte order .

3. PADDED STRING TYPE

This section presents padded string in C++ [1] class . The presented string type meets the firs t
two issues in Section 2, but does not attack the byte-order issue, which may be left to compute r
architects (e.g., [2]) .

A padded string consists of an integer denoting its length and a sequence of machin e
words for the contents . A padded string is aligned in word boundary and is zero-terminated . For
example,

"word" _> (4, "word", "\0\0\0\0") .

65



The code listed here does not consider the dynamic allocation of data. A padded string i s
given a predefined bounded space . The implementation stores length-1 (data member len_2)

instead of length of string .

static int const MAX_N_BYTES = 256 ;
static int const MAX N WORDS=MAX N BYTES/4 ;

class Pad_String
{
public :

Pad String(const char *str, int len) ;
-Pad String() ;
operator char *() const { return a ; )
int length() const { return len _l + 1 ; }

friend int operato r == (const Pad String& psi, const Pad_String& ps2) ;
friend int operator!=(const Pad_String& psi, const Pad_String& ps2) ;

friend int strcmp(const Pad_String& psi, const Pad_String& ps2) ;
friend int operator < = (const Pad_String& psi, const Pad_String& ps2 )

{ return strcmp(psl,ps2)< = 0 ; )
friend int operator > = (const Pad_String& psi, const Pad_String& ps2 )

{ return strcmp(psl,ps2)> = 0 ; )
friend int operator<(const Pad_String& psi, const Pad_String& ps2 )

{ return strcmp(psl,ps2)<0; }
friend int operator>(const Pad_String& psi, const Pad_String& ps2 )

{ return strcmp(psl,ps2)>0; }
private :

int len 1 ;
union {
unsigned int w[MAXN WORDS] ; /* word * /
char a[MAX_N_BYTES]_ 7* alphabet : a[o :n-1], zero : a[n :]* /

} ;
// number of words - i
int nwords_1() const { return len_l>>2 ; 1

} ;

Pad String : :Pad String(const char* str, int len )
{
int i, sz ;

len _l = len-l ;
for(i=0 ; i<len ; i++) // byte by byt e

a[i] = str [i] ;
sz = (len+1 + 0x3) & -0x3 ;
for(i=ten ; i<sz ; i++) // padding '\0 '
a[i] = '\0' ;

}

// return <0 for psi<ps2, ==0 for ps l ==ps2, >0 for psl>ps 2
int strcmp(const Pad_String& psi, const Pad String& ps2 )
{
int i, nwords 1, flag ;

nwords 1 = psl .nwords_1() ; // one's last wor d
for(i=o ; i<=nwords_1 ; i++) { // compare w[0 :nwords_1 ]

if (flag=psl .w[i] - ps2 .w[i])

	

// psl .w[i] != ps2,w[i ]
return (flag) ;

}
return 0 ;

4. AN EXPERIMENTAL RESULT

We have tested the padded string type in sorting (quick sort) a dictionary in UNIX system
(/usr/dict/words) . The dictionary contains about 25,000 words . It is a sequence of words partly

66



sorted by the alphabetical order in ASCII code . (Words are listed in the order that ignores cas e
and skip non-letter symbols) . The following is an experimental result sorting the dictionary
according to the alphabetical order . String class is an encapsulated version of char* . The
compiler used is GNU C++ version 2 .5.8 [2] with optimization flag "-O" . All operations are
inlined. The host machine is SPARC station ELC (a big-endian machine) with 28M byte s
memory .

String Padded String Speedup
1.18 sec 0.95 sec 24%_

5. DISCUSSION S

Common prefix in strings . The performance gains on padded strings depend on the set o f
input strings . For strings with common prefix, the speedup may be greater than the result i n
Section 4 . Symbols automatically generated by programs usually have long common prefix t o
distinguish the use of symbols . For example, compilers usually add some prefix to program's
symbols. C compilers add a prefix to "i" and "j" . Some preprocessor symbols use prefix
"_", e .g ., "LINE__" and "__FILE_". Label numbers may be represented as "L0010" an d
"L0020". C++ compilers expand the templates with the name of template as prefix, e .g . ,
"_gsort_FPP6Stringii" and "_cisort FPP10Pad_Stringii" .

Preprocessing . A padded string can be created by copying a traditional string to a word aligne d
memory and padding zeros . This overhead sometimes defeats the applications of padded strings .
An example is symbol processing in compilers . A token from a scanner is usually a pointer to a
character buffer. The address of token cannot be properly aligned . The time in preprocessing
may dominate the time in equality operations on a dictionary of existing strings . Sorting a set of
strings is a case that preprocessing is not significant . All the words read from a file should b e
allocated in a memory . There is no additional cost for allocating it in word boundary, since mos t
memory allocators allocate objects in word boundary .

References

1. Ellis, M.A ., and Stroustrup, B., The Annotated C+ + Reference Manual, Addison-Wesley ,
1990 .

2. Free Software Foundation, GNU C+ + Compiler, Version 2 .5.8, 1994 .
3. Hennessy, J ., Patterson, D., Computer Architecture: A Quantitative Approach, Morgan

Kaufmann Publishers, Inc ., 1990, p .95 .
4. Horowitz, E ., Sahni, S., Fundamentals of Data Structures in Pascal, Computer Scienc e

Press, 1984, p .175 .
5. Knuth, D. E., The Art of Computer Programming, Vol. 1 : Fundamental Algorithms ,

Addison-Wesley, 1973, p .460.

6 7


