Padded String: Treating String as Sequence of Machine Words*

Pei-Chi Wu Feng-Jian Wang
Institute of Computer Science and Information Engineering

National Chiao Tung University
1001 Ta-Hsueh Road, Hsinchu
Taiwan, Republic of China
{pew, fjwang} @csie.nctu.edu.tw

ABSTRACT

A string is a sequence of characters. The operations such as copy and comparison on strings are
usually performed character by character. This note presents a data type called padded string, a
string type with faster operations. A padded string is a sequence of machine words. For 32-bit
machines, four characters can be operated in one machine instruction. Operations on padded
strings can then run faster than traditional strings such as char* in C language. An experiment
sorting an atray of strings shows speedup 24% using padded string.

Keywords: string, data structure, string sorting.

1. MOTIVATION

A string is a sequence of characters. The operations such as copy and compatison on strings are
usually performed character by character. They utilize only 1/4 computing power of 32-bit
machines, since four characters (a machine word) can be operated in one instruction in these
machines. Surprisingly, this issue is rarely addressed in the literature (cf. [3, 4] for classical data
structures of string).

This note presents a data type of string, called padded string. A padded string is a
sequence of machine words. Thete are two design rationale:

1) provide faster comparison operations.

There are two kinds of comparison operations:
. relation operations: <, >, <=, >=
. equality operations: ==, |=

Sorting an array of strings may be a daily work in some commercial applications. It needs O(n
log n) comparison operations on strings. Replacing the traditional string type with a more
efficient implementation can easily speedup these applications. For example, the expected
speedup is about 300% in best case, if the new string type utilizes the full computing power of
32-bit machines.

2) provide nearly free convetsion to traditional string type such as char* in C language.

Since string is a basic data type, many of its utilities are already provided by programming
languages or operating systems. The C functions such as printf () take an argument of zero-

" This research was partly supported by National Science Council, Taiwan, R.O.C., under Contract No. NSC 82-
0408-E009-280.

64 ACM SIGPLAN Notices, Volume 29, No. 9, September 1994

terminated array of characters. If a free convetsion to traditional string type is provided, the new
string type can then be processed by these utilities. A C++ conversion operator is defined for the
class of new string type:

operator char* ();
The conversion should involve only simple computation of the address of string.

2. TECHNICAL ISSUES
There are three issues in handling a string as a sequence of words:

1) Word Alignment: A string may start in an address that is not properly aligned for machine
words. Some architectures need (integer) data to be aligned in word boundaty. For string data,
the allocation in memory hardly meets this requirement. A string may start in any address.
Consider a string “word alighment”, even if the first token “word” is properly aligned (e.g.,
address 0x200), the second token “alignment” is not (e.g., address. 0x205). A preprocessing of
traditional string type (copy the contents to an aligned address) is needed to provide proper
alignment.

2) Varied Length: A string may not completely fill a number of machine words. Consider a
series of operations on a word representation of string, The length of a string may not be a
multiple of 4 for a 32-bit machine, thus the operation on the last word needs special treatments
or the operation may access some data outside the string. The former causes some overhead,
while the latter causes incorrect result. A solution is to pad zeros at the end of a string. For
example, the token “alighment”:

Ila]jgnmentll = (Ilaligll, "I’]Inen”, IIt\O\O\OII).

3) Byte Order: The telation operations on strings should guarantee alphabetical order, i.e.,
maintaining the order like “A100” < “B000”. Executing string comparison by comparing
machine words has two kinds of results according to the byte order in a machine word: big-
endian and little-endian.

- "A100” “B000”
big-endian: 0x41313030 < 0x42303030
little-endian: 0x30303141 > 0x30303042
(in ASCII code, ‘A'=0x41, B'=0x42, '0'=0x30, '1'=0x31)

Only the result by big-endian meets the alphabetical order. For equality operations, there is no
problem in byte ordet.

3. PADDED STRING TYPE

This section presents padded string in C++ [1] class. The presented string type meets the first
two issues in Section 2, but does not attack the byte-order issue, which may be left to computer

architects (e.g., [2]).
A padded string consists of an integer denoting its length and a sequence of machine
words for the contents. A padded string is aligned in word boundary and is zero-terminated. For

example,
"word” => (4, "word", "\O\O\0\0").

65

The code listed here does not consider the dynamic allocation of data. A padded string is
given a predefined bounded space. The implementation stores length-1 (data member len 1)
instead of length of string.

static int const MAX N BYTES = 256;
static int const MAX N WORDS=MAX N BYTES/4;

class Pad_String

{

public:
Pad String(const char *str, int len);
~Pad _String();
operator char *() const { return a; }
int length() const { return len 1 + 1; }

friend int operator=={const Pad String& psl, const Pad String& ps2);
friend int operator!=(const Pad_String& psl, const Pad String& ps2);

friend int strcmp(const Pad_String& psl, const Pad String& ps2);
friend int operator<={const Pad_String& psl, const Pad String& ps2)
f return strcmp(psil,psz2)<=0; })
friend int operator>=(const Pad_String& psl, const Pad String& ps2)
{ return strcemp(psl,ps2)>=0; }
friend int operator<(const Pad Stringé& psl, const Pad String& ps2)
{ return stremp(psl,ps2)<0; 1}
friend int operator> (const Pad String& psi, const Pad String& ps2)
{ return strcmp(psl,ps2)>0; }
private:
int len 1;
union {
unsigned int w[MAX N WORDS]; /* word */
char a([MAX N BYTES]; /* alphabet: al[0:n-1], zero: aln:]*/
I
// number of words - 1
int nwords 1() const { return len 1>>2;}
1

Pad String::Pad String(const char* str, int len)

{

int i, sz;

len 1 = len-1;
for (i=0; i<len; i++) // byte by byte
ali)l = stx(il;

sz = (len+l + 0x3) & ~0x3;
for(i=len; i<sz; i++) // padding '\O'
alil = '\o';
}
// return <0 for psi<ps2, ==0 for psl==ps2, >0 for psl>ps2

int strcmp(const Pad_String& psl, const Pad String& ps2z)
int i, nwords 1, flag;

nwords 1 = psl.nwords 1(

)

y: // one's last word
for(i=o0; i<=nwords_1; i++) { // compare w[0:nwords 1]
if (flag=psl.w([i] - ps2.wl[i]) // psl.w[i) '= ps2.wl[i]

return (flag);

1

return 0O;

L

4. AN EXPERIMENTAL RESULT

We have tested the padded string type in sorting (quick sort) a dictionary in UNIX system
(fust/dictfwords). The dictionary contains about 25,000 words. It is a sequence of words partly

66

sorted by the alphabetical order in ASCII code. (Words are listed in the order that ignores case
and skip non-letter symbols). The following is an experimental result sorting the dictionary
according to the alphabetical order. String class is an encapsulated version of char*. The
compiler used is GNU C++ version 2.5.8 [2] with optimization flag “-O”. All operations are
inlined. The host machine is SPARC station ELC (a big-endian machine) with 28M bytes
memory.

String Padded String Speedup
1.18 sec 0.95 sec 24%

5. DISCUSSIONS

Common prefix in strings. The performance gains on padded strings depend on the set of
input strings. For strings with common prefix, the speedup may be greater than the result in
Section 4. Symbols automatically generated by programs usually have long common prefix to
distinguish the use of symbols. For example, compilers usually add some prefix to program’s
symbols. C compilers add a prefix “_" to “i” and “j”. Some preprocessor symbols use prefix
“_ " eg, " _LINE_"and “__FILE__". Label numbers may be represented as “1.0010” and
“L.0020". C++ compilers expand the templates with the name of template as prefix, e.g.,

"_gsort__FPP6Stringii” and “_gsort__ FPP10Pad_Stringii”.

Preprocessing. A padded string can be created by copying a traditional string to a word aligned
memory and padding zeros. This overhead sometimes defeats the applications of padded strings.
An example is symbol processing in compilers. A token from a scanner is usually a pointer to a
character buffer. The address of token cannot be propetly alignhed. The time in preprocessing
may dominate the time in equality operations on a dictionary of existing strings. Sorting a set of
strings is a case that preptocessing is not sighificant. All the words read from a file should be
allocated in a memory. There is no additional cost for allocating it in word boundary, since most
memory allocators allocate objects in word boundary.

References

1. Ellis, M.A., and Stroustrup, B., The Annotated C++ Reference Manual, Addison-Wesley,
1990.

2. Free Software Foundation, GNU C+ + Compiler, Version 2.5.8, 1994,

3. Hennessy, I., Patterson, D., Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, Inc., 1990, p.95.

4. Horowitz, E., Sahni, S., Fundamentals of Data Structures in Pascal, Computer Science
Press, 1984, p.175.

5. Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
Addison-Wesley, 1973, p.460.

67

