
Pool : An Unbounded Array *

Pei-Chi Wu

	

Feng-Jian Wang

Institute of Computer Science and Information Engineering

National Chiao Tung University

1001 Ta-Hsueh Road, Hsinchu

Taiwan, Republic of China

{pcwu, fjwang} @csie.nctu.edu.tw

ABSTRACT

Many collection objects, e .g ., stack, can be implemented with tabular representation (an array) .
Such an implementation provides fast index and saves space on linked structures . However, its
space is bounded at creation time . This note presents a hybrid data structure, called pool, which
combines tabular and indexed data structures. A pool is a number of segments of contiguous
memory space. It provides unbounded space . Its first segment is allocated initially . When more
space is needed, a new segment is allocated in double size of previous segment . All segments
allocated can be accessed via an index table. The size of index table is log n, where n is the
number of elements . A pool can provide index operation in 0(log n) and iterations almost as
fast as tabular implementation .

Keywords : dynamic data structures, collection objects .

1 . MOTIVATION

A collection object (e .g., a stack, a queue) is a dynamic data structure whose size cannot b e
determined at the creation time. Its implementation usually contains many pointers that link it s
elements. There is some space overhead for storing these links and some time overhead whe n
accessing data indirectly . Tabular representation [3] is an implementation technique tha t
represents a collection object in a contiguous memory space (an array) . The tabula r
representation is suitable for a collection object that needs to maintain some "linear "
relationship between its elements. The linear relationship is not implemented by additiona l
links but by physical adjacency of elements .

Such a technique has been widely used (although may not be explicitly addressed) . For
example, a stack can be represented as an array of elements and a variable count as the
number of elements in the stack. The variable count is increased when an element is pushed,
and it is decreased when an element is popped . There are no additional links needed, in
comparison with a linked list implementation. The tabular representation is fast since no links
need be set when pushing or popping an element . When the size of a collection object is fixed,
it can also save space .

Some data movements may be needed for collection objects in tabular representation . A
(bounded) contiguous space is first allocated in the creation time of a collection object . When
the size of the collection object exceeds the predetermined size, its contents are copied to a
new and larger memory space. The overall cost (in worst case) is 0(n2), when the spac e
allocated is linearly increasing each time .

* This research was partly supported by National Science Council, Taiwan, R .O,C ., under Contract No . NSC
82-0408-E009-280 .

	

ACM SIGPLAN Notices, Volume 29, No . 9, September 1994

68

2. POOL

M
a test string sh

This section presents a hybrid data structure, called pool, which combines tabular and indexed
data structures. A pool is a number of segments of contiguous memory space. It provides
unbounded space. The first segment is allocated initially. Its size is 16 or more. When more
space is needed, the size of a new allocated segment is the double of current segment . Al l
segments allocated can be accessed via an index table . Since the size of segment increases
exponentially, the size of index table is log n, where n is the number of elements in a
collection. For a 32-bit machine, the size of index table is smaller than 32. The index table can
then be implemented as an array . This implementation can provide index operation in O(log n)
time and the iterators as fast as tabular implementation .

This is

owing the use of Pool<char> in h

andling text lines\ 0

Figure 1 . A String in Pool representation .

Figure 1 shows an example use of string by Pool<char> . The size of first segment is 8.
The number of segments currently used is 4 . The length of string is 75 . Totally there are 120
bytes allocated, 120=(24-1)*8 .

We give an implementation of pool in C++ template class . The Pool template clas s
contains three operations : glow, operator [], and forEachItem . Operation grow returns a
reference to a newly allocated space for an element . The index operator [] returns the
reference of n-th element . Operation forEachItem is an iterator that accepts a function pointe r
(f) and a pointer of arguments (arg) . It passes the element and the argument to f, "f (*obj ,
arg) " .

template<class objT >
class Poo l
{
public :

Pool(int log2_init_sz = 4, int nindex = 16) ;
objT& grow() ;
objT& operator[] (int n) const ;
void forEachltem(void(*f)(objT&, void*), void* arg=0) ;

public :
int 1og2 segment size ; // log2(size of first segment)
int nsegments ;

	

// number of segment s
int nitems ;

	

// number of items
objT* item ;

	

// next available item in current segmen t
objT* limit ;

	

// address after last ite m
objT** index ;

	

// support up to 2"nindex - 1
} ;

template<class objT >
Pool<objT> : :Pool(int log2 init sz = 4, int nindex = 16) .

log2_segment size(log2 init sz), nsegments(1), nitems(0)
{
index = (objT**) malloc(nindex*sizeof(void*)) ;
/* allocate 1st segment * /
item = index[O] = (objT*) malloc((1<<log2init_sz)*sizeof(objT)) ;
limit = item + (1<<log2 init sz) ;

69

template<class objT >
objT& Pool<objT> : :grow ()
{
if (item < limit)
return nitems++, *item++ ;

int sz = 1<<(log2 segment_size+nsegments) ; /* allocate next segment * /
item = index[nsegments] = (objT*) malloc(sz*sizeof(objT)) ;
limit = item + sz ;
nsegments++ ;
return nitems++, *item++ ;

}

template<class objT >
objT& Pool<objT> : :operator[](int n) cons t
{
int segment len = 1<<log2_segment_size ;
int offset = n ;
int indx=0 ;
while (offset >= segment len) {

offset = offset - segment_len ;
segment len = segment_len << 1 ;
indx++ ;

}
return * (index [indx] + offset) ;

}

template<class objT >
void Pool<objT> : :forEachltem(void (*f)(objT&, void*), void* arg=0)
{
int segment len = 1<<log2_segment_size ;
for(int i = 0 ; i<nsegments-1 ; i++, segment_len = segment_len<<l)

for(int j = 0 ; j<segment len ; j++)
f (* (index [i] +j) , arg) ;

for(objT *obj = index[i] ; obj<item ; obj++)

	

// last segmen t
f (*obj , arg) ;

}

3. DISCUSSION

Figure 2 summarizes the time complexities of operations on pool, list, and tabular (array)
representations . Pool and array can support two kinds of iterators : obverse and reverse . The
iterators provided in list representation depend on whether the linked structures are double- o r
single- linked list . Although all these iterator operations have the same time complexity, th e
speed is as follows : array > pool > list. Pool is faster than list since the internal loop in iterato r
of pool is an iteration on a segment, which is in tabular representation .

list array pool
iterators 0(1) 0(1) 0(1)

grow 0(1) -- 0(1)
index 0(n) 0(1) a(log n)

Figure 2 . Summary of operations in list, tabular, and pool representations .

All memory chunks requested by pool are in 2 i . The space wasted is 1/2 in worst cas e
and 1/4 in average . This space overhead is the same as buddy system in dynamic memory
management [1] . This implies that allocating a collection object in pool has no space overhea d
if buddy system is used .

7 0

4. CONCLUSION AND APPLICATIONS

We have presented a hybrid data structure called pool for implementations of collectio n
objects. Pool has many potential applications. Here we present a couple of examples i n
compiler construction :
Pool<char> . In a compiler, the size of a string literal scanned does not have any limitation . A

compiler need maintain a data structure flexible for various size of literals . GNU CC
[2] uses obs tack for such literals . When the space allocated for the literal is overflow ,
it allocates a bigger contiguous space . The contents is then copied into the new space.
Pool<char> can provide unbounded space for such literals without moving data . Each
character scanned is put in the location returned by the grow operation . A grow

operation may allocate a new segment but does not copy data . Most operations on a
literal, e .g., to print a literal, can be done by using iterator operation on each
character.

Pool<Entry> . The entries in a hash symbol table sometimes need be organized in its insertio n
order . Consider a symbol table for the definition of a structure . The insertion order o f
entries in the table is related with the storage layout of a structure. Pool<Entry >
provides unbounded space for the unlimited number of entries in a scope. It also
maintains a linear (insertion) order on the created entries by their physical adjacency .
We have used this data structure in development of a systematic catalog for symbo l
processing [4] .

References

1. Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms ,
Addison-Wesley, 1973 .

2. Stallman, R.M ., Using and Porting GNU CC, version 2 .4, Free Software Foundation, June
1992 .

3. Uhl, J ., and Schmid. H.A., A Systematic Catalogue of Reusable Abstract Data Types ,
LNCS No. 460, Springer-Verlag, 1990, (Ch . 6.2 Tabular Collections), p .117 .

4. Wu, P.-C., Lin, J .-H ., and Wang, F .-J, "Designing a Reusable Symbl Table Library, "
Technical report No . CSIE-93-1010, Department of Computer Science and Informatio n
Engineering, National Chiao-Tung University, Taiwan, R .O.C., 1993. (Available via
ftp.csie.nctu.edu.tw in directory "/papers/tech-report/1993")

71

