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H I G H L I G H T S

� The PDS-OSEM reconstructs PET images with iteratively compensating random and scatter corrections from prompt sinogram.
� The PDS-OSEM can reconstruct PET images with low count data and data contaminations.
� The PDS-OSEM provides less noise and higher quality of reconstructed images than those of OP-OSEM algorithm in statistical sense.
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a b s t r a c t

State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with
full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to
the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT
image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new
algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Mean-
while, the time activity curve was adopted to validate a reconstructed performance of dynamic data
between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the
PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less
average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality
images under the condition of low count rates in dynamic studies with a short scan time.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The high-resolution research tomography (HRRT) scanner for
positron emission tomography (PET) can provide high-resolution
functional brain images with a spatial resolution close to 2.5 mm
(Cho et al., 2007, 2008). HRRT can be used for molecular imaging
such as neurotransmitter, neuroreceptor, and neurotransporter
studies (Leroy et al., 2007) in human brain function by using
dynamic scanning. However, the quality of HRRT images in the
dynamic studies is hindered by the limitations of reconstructed
algorithms and the low counts of each bin, which are related to the
short scanning time. Implementations of generalized EM algo-
rithms for PET reconstruction have been proposed in the literature.
The ordinary Poisson ordered subset expectation maximum
(OP-OSEM) (Van Velden et al., 2008), ordinary Poisson list
mode expectation maximum (OP-LMEM) (Cheng et al., 2007),

attenuation correction ordered subset expectation maximum
(AC-OSEM) (Bengel et al., 1997), iterative correction of random
events with MLE-EM algorithm (PDEM) (Chen et al., 2008), and
improved reconstruction techniques with faster computational
time (Hong et al., 2007) were presented in recent. In the recon-
struction methods based on OSEM algorithms, the algorithms are
often combined with attenuation, random, and scatter corrections.
The random and scatter corrections used in these OSEM algo-
rithms are often performed by two approaches. The first approach
considers the prompt sinogram minus the delayed and scatter
data, whereas the second approach applies averages of delayed
and scatter data in the step of forward projection. In the first
approach, lots of LORs became zeros after subtracting the random
and scatter data from the prompt sinogram. Also, the inaccurate
scatter estimation will affect volume uniformity (De Jong et al.,
2007, Rahmim et al., 2005). In the second approach, it is inefficient
to reduce noise for iteratively reconstructed PET images (Rahmim
et al., 2005). Furthermore, the conventional EM algorithm usually
provides poor image quality because the random and scatter data
for dynamic studies are subtracted from prompt data when lower
count rates are acquired from PET in a few seconds. In addition,
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the scatter fraction determination was affected by random and
true coincidence events under different low level count rates
(Eriksson et al., 2005). In the dynamic study, the random and
scattering events are estimated by using expected mean scatter,
random counts, and estimated scatter fraction to adjust the bias
iteratively (Cheng et al., 2007). Therefore, it is very important to
improve the precision and the accuracy of the iteratively recon-
structed HRRT images with improved methods of random and
scatter corrections (Van Velden et al., 2008, 2009).

The proposed algorithm combines prompt and delayed sino-
grams with simulated scatter sinogram for HRRT reconstruction
based on the joint Poisson model and OSEM algorithm; therefore,
it is called PDS-OSEM. The PDS-OSEM not only improves the
accuracy of reconstructed images, it also reduces image bias at
low level rates. Meanwhile, PDS-OSEM can be easily implemented
by making a few changes in the existing code of the conventional
OSEM algorithm. The derivation of PDS-OSEM will be reported in
Appendix A. Simulation and empirical studies will be conducted
to evaluate the performance between PDS- and OP-OSEM. The
Poisson assumption was used for simulated scatter sinogram
because of the easy implementation of the algorithm and the
approximation to a normal distribution as a parameter of Poisson
increases to infinity. Consequently, the derived image-reconstruc-
tion algorithms can generate images that help physicians diagnose
disease accurately (Barrett, 1990, Barrett et al., 1993, 1995). There-
fore, the Poisson model provides a useful and simplified modeling
technique for image reconstruction.

2. Methodology and materials

2.1. The algorithm of PDS-OSEM

We will assume three independent Poisson models for prompt,
delay, and scatter sinogram as shown in Eqs. (1–3).

nn

pðdÞ � PoissonðλnðdÞÞ; ð1Þ

nn

r ðdÞ � Poissonðλnr ðdÞÞ; ð2Þ

nn

s ðdÞ � Poissonðλns ðdÞÞ; ð3Þ

where λnðdÞ ¼ λnt ðdÞþλnr ðdÞþλns ðdÞ ¼∑bPðb; dÞfλtðbÞþλrðbÞþλsðbÞg,
b¼1, 2, …, B for the pixel index (location) of reconstructed image,
and d¼1, 2, …, D for the bin index (projection line) in the
sinogram. The notation nn

pðdÞ denotes the number of coincidence
events in the prompt sinogram for all of the detection tubes
formed by two detectors with Poisson parameter λnðdÞ. λnt ðdÞ
denotes the number of forward projections by true image λtðbÞ.
nn
r ðdÞ denotes the number of random coincidence events in the

delay sinogram with Poisson parameter λnr ðdÞ. nn
s ðdÞ denotes the

number of scattering coincidence events using single scatter
simulation (Watson, 2000) (or Monte Carlo simulation) with
Poisson parameter λns ðdÞ. Pðb; dÞ denotes the elements of the system
matrix which is the probability that an event generated at bth
pixel is detected along dth detection tube (or dth line of response).
The parameters of λtðbÞ,λrðbÞ, and λsðbÞ are unknown and have to be
estimated. The parameters of λtðbÞ represent the intensities of true
coincidence events at bth pixel in reconstructed image. Note that
λrðbÞ and λsðbÞ do not physically exist. They are only derived values
by λnr ðdÞ and λns ðdÞ in the presented algorithm. As scatter events
arise from the scattering effect of the photon pairs emitted in the
annihilations of photons and nearby electrons, the Poisson dis-
tribution could be used to model the random phenomena of these
annihilations. These assumptions can indeed lead to the closed
form solution in the EM algorithm for the estimates of true,

random and scatter events. Hence, these assumptions provide a
useful and simplified model for the setup of complete data space.

The log-likelihood of the above observed data in prompt, delay,
and scatter sinograms are listed as Eq. (4).

linðλtðbÞ; λrðbÞ; λsðbÞÞp ∑
D

d ¼ 1
f½� ∑

B

b ¼ 1
Pðb; dÞðλtðbÞþλrðbÞþλsðbÞ�

þnn

pðdÞlog ð ∑
B

b ¼ 1
Pðb; dÞðλtðbÞþλrðbÞþλsðbÞÞg

þ∑
d
f½� ∑

B

b ¼ 1
Pðb; dÞλrðbÞ�þnn

r ðdÞlog ð ∑
B

b ¼ 1
Pðb;dÞλrðbÞÞg

þ∑
d
f½� ∑

B

b ¼ 1
Pðb; dÞλsðbÞ�þnn

s ðdÞlog ð ∑
B

b ¼ 1
Pðb; dÞλsðbÞÞg ð4Þ

Because the MLE is difficult to obtain by maximizing the above
equation numerically, we can apply the EM algorithm as follows.
First, the observed data in prompt, delay, and scatter sinograms for
all detector pairs are regarded as incomplete data. The EM
algorithm needs to specify the complete data. One possible and
simplified model for the complete data for reconstruction of PET is
as follows Eqs. (5–9).

npðb; dÞ � Poissonðpðb; dÞλtðbÞÞ; ð5Þ

nr
pðb; dÞ � PoissonðPðb; dÞλrðbÞÞ; ð6Þ

ns
pðb; dÞ � PoissonðPðb; dÞλsðbÞÞ; ð7Þ

nrðb; dÞ � PoissonðPðb; dÞλrðbÞÞ; ð8Þ

nsðb; dÞ � PoissonðPðb; dÞλsðbÞÞ; ð9Þ
where npðb; dÞ is the number of emissions detected by dth tube at
bth pixel of true image, nr

pðb; dÞ is the number of accidental
(or random) coincidence (AC or RC) events detected by dth tube
at bth pixel of true image, and ns

pðb; dÞ is the number of scattering
coincidence events at bth pixel of true image in dth tube derived
from a scatter estimation, such as single scatter simulation or
Monte Carlo simulation. nrðb; dÞ is the assumed unobserved
number of accidental (or random) coincidence (AC or RC) events
detected by dth tube from bth pixel, and nsðb; dÞ is the assumed
unobserved number of scattering coincidence events detected
by dth tube at bth pixel. Note that we assume the estimated
scatter coincidence follows the Poisson model. We will assume
that npðb; dÞ; nr

pðb;dÞ; ns
pðb; dÞ; nrðb; dÞ; and nsðb; dÞ are statisti-

cally independent. Thus, nn
pðdÞ ¼∑B

b ¼ 1npðb; dÞþnr
pðb; dÞþns

pðb; dÞ;
nn
r ðdÞ ¼∑B

b ¼ 1nrðb; dÞ; and nn
s ðdÞ ¼∑B

b ¼ 1nsðb; dÞ. The E-step will
compute the conditional expectation of the log-likelihood of
complete data, given the observed incomplete data and old values
(i.e., k¼0) of parameters. The starting value of λkt ðbÞ is initialized by
FBP, and the starting values of λkr ðbÞ and λks ðbÞ are initialized to 0.05.
According to models Eqs. (5–9), the joint log-likelihood function of
the complete data is given as in Eq. (10) and the constant terms are
omitted.

LðλtðbÞ; λrðbÞ; λsðbÞÞp∑
d
∑
b
fnpðb; dÞlog ðPðb; dÞλtðbÞÞ�Pðb;dÞλtðbÞg

þ∑
d
∑
b
fnr

pðb; dÞlog ðPðb; dÞλrðbÞÞ�Pðb; dÞλrðbÞg

þ∑
d
∑
b
fns

pðb; dÞlog ðPðb; dÞλsðbÞÞ�Pðb; dÞλsðbÞg

þ∑
d
∑
b
fnrðb; dÞlog ðPðb;dÞλrðbÞÞ�Pðb; dÞλrðbÞg

þ∑
d
∑
b
fnsðb; dÞlog ðPðb; dÞλsðbÞÞ�Pðb; dÞλsðbÞg: ð10Þ

The conditional distribution of npðb; dÞ, nr
pðb; dÞ, ns

pðb; dÞ, nrðb; dÞ, and
nsðb; dÞ given as observed data are shown in the Appendix A. The
M-step will determine λkþ1

t ðbÞ, λkþ1
r ðbÞ, and λkþ1

s ðbÞ as the soluti-
ons that maximize the function of the expectation of the complete
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log-likelihood. This can be achieved now by taking the first
derivatives equal to zero. The solutions are shown in Eqs. (11–13)
and detailed derivations are shown in the Appendix A.

λkþ1
t ðbÞ ¼ λkt ðbÞ

∑D
d ¼ 1Pðb; dÞ

∑
D

d ¼ 1

nn
pðdÞpðb; dÞ

∑B
b′ ¼ 1pðb′; dÞ½λkt ðb

0Þþλkr ðb′Þþλks ðb′Þ�
;

ð11Þ

λkþ1
r ðbÞ ¼ λkr ðbÞ

2∑dPðb;dÞ
∑
d

nn
pðdÞPðb; dÞ

∑B
b′ ¼ 1pðb′;dÞ½λkt ðb′Þþλkr ðb′Þþλks ðb′Þ�

þ nn
r ðdÞPðb; dÞ

∑B
b′ ¼ 1pðb′; dÞλkr ðb′Þ

" #
;

ð12Þ

λkþ1
s ðbÞ ¼ λks ðbÞ

2∑dPðb;dÞ
∑
d

nn
pðdÞPðb; dÞ

∑B
b′ ¼ 1pðb′;dÞ½λkt ðb′Þþλkr ðb′Þþλks ðb′Þ�

þ nn
s ðdÞPðb; dÞ

∑B
b′ ¼ 1pðb′; dÞλks ðb′Þ

" #
;

ð13Þ
where k¼1, 2, …, K, represents the iteration number after the initial
number of zero.

The MLE-EM algorithm for the joint model of prompt, delay,
and scattered sinograms is described in Eqs. (11–13); henceforth, it
will be called the PDS-OSEM algorithm. This novel approach not
only reconstructs HRRT but updates estimated true intensities
with iteratively corrected random and scattering noise. The
simulated, empirical, and dynamic data were applied to compare
the performance between the presented method and OP-OSEM.

2.2. The algorithm of OP-OSEM

The algorithm of ordinary Poisson OSEM (OP-OSEM) is pre-
sented in Eq. (14). OP-OSEM is an iterative reconstructed method
that adopts observed random and scattered coincidence data
without updated information of random and scattered noise
from a prompt sinogram in each iteration. The advantage of this
algorithm is using whole data to reconstruct HRRT, as does PDS-
OSEM. However, PDS-OSEM iteratively updates the estimated
noise of random and scatter from nn

r ðdÞ, nn
s ðdÞ, and nn

pðdÞ.
This capability however will increase the computational cost of

PDS-OSEM compared with that of OP-OSEM. On the other hand,
reconstructed HRRT images provided by PDS-OSEM will have less
noise and better quality than those of OP-OSEM.

λkþ1
t ðbÞ ¼ λkt ðbÞ

∑D
d ¼ 1Pðb; dÞ

∑
D

d ¼ 1

nn
p ðdÞPðb; dÞ

∑B
b′ ¼ 1pðb′; dÞλkt ðb′Þþnn

r ðdÞþnn
s ðdÞ

ð14Þ

2.3. Materials

2.3.1. HRRT
HRRT is the state-of-the-art human brain-imaging device of

PET. HRRT not only provides functional and metabolic images; it
also generates high spatial resolution down to 2.5 mm full width
at half maximum (FWHM) (Wienhard et al., 2002). HRRT has a
diameter 46.9 cm and an axial FOV 25.2 cm. The smaller system
diameter and the longer axial FOV can improve system sensitivity.
HRRT utilizes the smallest detector size currently available, with a
dimension of 2.3 mm by 2.3 mm. It applies the depth of interaction
(DOI) scheme using dual detector layers, in which LSO and LYSO
layers, with the depth of 10 mm each (De Jong et al., 2007,
Schmand et al., 1998, Eriksson et al., 2002, Astakhov et al., 2003)
are combined. This scheme improves the energy resolution and
the coincident efficiency. The gantry includes eight detector heads
and each detector head includes 13�9 detector blocks. Each block
has 8�8 detectors of double layers. Hence, the total number of
scintillation detector crystals is 119,808. Also, each detector of
HRRT can match the opposite five heads, corresponding to 74,880
detectors, and form a total of 4.48 billion LORs (lines of response)
(Cho et al., 2008).

2.3.2. Simulation, phantom, and human dynamic study
A Hoffman digital brain image simulated in 2D was used to

evaluate and investigate the accuracy of reconstructed images. The
image size of the target image is 256�256 pixels. The two ROIs
selected from the target image are shown in Fig. 1. The intensity is
50 and 10 for the 1st and 2nd ROI, respectively. Meanwhile, the

Fig. 1. This figure shows the target image with an imputed pixel value of 50 for the white part and 10 for the gray part (a). The two ROIs were selected to compare the SNR
between PDS-and OP-OSEM (b and c). The bottom row shows the reconstructed images with stopping rules determined by the minimum averaging square of error (ASE)
(d and e). Both PDS- and OP-OSEM stopped at the 4th iteration (f). A smaller ASE means that the reconstructed image resembles the target image.
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uniform F-18 FDG water phantom injects 3,057.85 Bq/ml and has
an acquisition time of 30 min.

The resolution phantomwas used to compare the image quality
between PDS-OSEM and OP-OSEM. In a human dynamic study,
555 MBq of C-11 Raclopride was injected and several frames were
reconstructed with different acquisition times. For real data
studies using phantom and human subjects, additional blank scans
and transmission scans using the Cs-173 point source were
conducted to determine the attenuation correction using the
MAP-TR algorithm (Xu et al., 1994, Nuyts et al., 1999). Direct
normalization using rotating line Ge-68 source was also applied.

The used reconstructed protocol is based on the OP-OSEM
(six iterations, 16 subsets, and matrix of image 256�256).
The OP-OSEM used parameters that are commonly applied to
clinical imaging study by HRRT, especially dynamic PET study. In
OP-OSEM, the estimated random was obtained by variance reduc-
tion on random coincidences (VRR) algorithm, which is designed
for HRRT (Byars et al., 2005). VRR is based on the single events
based random coincidence estimation (Barker et al., 2004). It
estimates the expected random coincidence rate from expected
single rates. The expected single rate is obtained by iterative
estimation by using the measured delayed coincidences from a
delayed coincidence window technique. The scatter sinogram
was estimated by the single scatter simulation (SSS) algorithm
(Watson, 2000). This algorithm is now one of the most popular
methods for scatter correction because of its relatively high level
of accuracy. The VRR and SSS implementations used for this study
are manufacturer's software provided by Siemens. Hence, both OP-
OSEM and PDS-OSEM used the same sinograms to reconstruct PET
images. OP-OSEM Eq. (14) reconstructed PET images with random
and scatter correction using nn

r ðdÞ (estimated by VPR) and nn
s ðdÞ

(estimated by SSS) without compensating for nn
pðdÞ (prompt

sinogram). In contrast, PDS-OSEM Eq. (11) not only iteratively
reconstructed PET images using nn

r ðdÞ and nn
s ðdÞ, but also compen-

sated for nn
pðdÞ to perform noise correction Eqs. (12)and (13). The

time activity curve (TAC) was used to investigate the fluctuation
effects of specified ROIs between PDS-OSEM and OP-OSEM. Both
SNR and TAC approaches are used to compare image qualities and

performances between PDS-OSEM and OP-OSEM in real dynamic
human brain image.

3. Results

In the simulation study, we used averaging sum of square error
(ASE) to evaluate the difference between estimated (Esti) and true
(Tri) intensity at ith pixel, where i¼1, …, B (in this case B is the
number of pixels in a ROI) as in Eq. (15).

ASE¼ ∑
B

i ¼ 1

½Esti�Tri�2
B

ð15Þ

Meanwhile, the average (AVG) as in Eq. (16), standard deviation
(STD) as in Eq. (17), and signal-to-noise ratio (SNR) of ROI as in
Eq. (18) were used to compare the image quality between PDS-
OSEM and OP-OSEM.

AVG¼ ∑
B

i ¼ 1
Esti=B ð16Þ

STD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B�1
∑
B

i ¼ 1
ðEsti�AVGÞ2

s
ð17Þ

SNR¼ AVG
STD

ð18Þ

Fig. 1 (bottom row) shows the reconstructed images with
stopping rules determined by minimum ASE. The smaller ASE
means that the reconstructed image resembles the simulated
image (Table 1). As shown in Figs. 1–2 and Table 1, it is clear that
PDS-OSEM can provide high accuracy, smaller ASE, and higher SNR
than OP-OSEM. The averaging relative performances (ARP) indi-
cate that the PDS-OSEM algorithm has a higher accuracy from
investigating 20 realizations for the target image. The ARP of SNR
and AVG for PDS-OSEM and OP-OSEM in the 1st and 2nd ROIs are
(13.3%, 3.9%) and (2.5%, 9.7%), respectively, and the ARP of ASE in
both ROIs is 11.6% (Table 1). Especially, PDS-OSEM has a better ARP

Table 1
Data from ROI analysis of OP-OSEM and PDS-OSEM are shown. Compared with OP-OSEM, the PDS-OSEM algorithm improves the performance of SNR, average, and ASE by 20
realizations of target image. Note, the Average Relative Performance (ARP) is defined as 100%� [(a)�(c)]/(c) and 100%� [(b)�(d)]/(d).

Realization Average in ROI SNR Minimum ASE

PDS OP PDS OP PDS OP

ROI 1 ROI 2 ROI 1 ROI 2 ROI 1 ROI 2 ROI 1 ROI 2

1 41.42 14.59 40.47 16.14 3.28 2.30 2.89 2.20 6.01 6.79
2 41.78 14.64 40.69 16.23 3.28 2.26 2.89 2.20 6.00 6.80
3 41.66 14.72 40.46 16.27 3.27 2.34 2.87 2.28 6.00 6.81
4 41.48 14.70 40.38 16.28 3.25 2.37 2.88 2.26 6.01 6.81
5 41.85 14.69 40.77 16.24 3.26 2.32 2.87 2.24 5.98 6.78
6 41.84 14.78 40.88 16.41 3.27 2.27 2.91 2.19 6.02 6.81
7 41.65 14.76 40.71 16.36 3.32 2.32 2.95 2.25 5.98 6.74
8 41.96 14.60 40.96 16.19 3.30 2.28 2.88 2.22 5.95 6.75
9 41.76 14.89 40.93 16.47 3.33 2.36 2.92 2.28 5.99 6.77
10 41.87 14.69 40.86 16.24 3.27 2.32 2.86 2.23 5.98 6.77
11 41.69 14.72 40.71 16.29 3.25 2.28 2.86 2.18 6.04 6.83
12 41.98 14.63 40.95 16.24 3.24 2.38 2.87 2.29 5.95 6.74
13 41.68 14.64 40.73 16.16 3.29 2.28 2.90 2.20 5.99 6.75
14 41.92 14.77 40.75 16.36 3.25 2.30 2.86 2.21 6.03 6.85
15 42.06 14.59 41.19 16.12 3.24 2.34 2.85 2.26 5.96 6.72
16 41.74 14.56 40.83 16.14 3.22 2.33 2.87 2.23 6.01 6.77
17 41.83 14.71 40.76 16.37 3.29 2.27 2.92 2.19 6.01 6.81
18 41.78 14.75 40.60 16.31 3.23 2.35 2.86 2.24 6.02 6.83
19 42.03 14.60 41.15 16.12 3.24 2.31 2.85 2.21 5.95 6.72
20 41.85 14.71 40.79 16.24 3.34 2.26 2.95 2.15 5.98 6.77
Average 41.79(a) 14.69(b) 40.78(c) 16.26(d) 3.27(a) 2.31(b) 2.89(c) 2.23(d) 5.99(a) 6.78(c)

Relative Performance (%) 2.5 9.7 13.3 3.9 11.6
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Fig. 2. This figure shows SNR and ASE provided by PDS- and OP-OSEM algorithms after 20 realizations.

Fig. 3. This figure shows the uniform phantom images reconstructed by PDS- and OP-OSEM. The six investigated ROIs were plotted and the radius is 10, 20, 30, 40, 50, and 60
pixels. The SNR of each ROI was used to compare the image quality between PDS- and OP-OSEM from the 43rd to 182nd slices as shown in Fig. 4 and Table 2.

Fig. 4. These Bland–Altman plots show comparisons of SNRs between PDS- and OP-OSEM from the 43rd to 182nd slices of uniform phantom images for the six ROIs shown
in Fig. 3. The solid lines show the mean 72� STD. The Y-axis shows the difference of SNRs between PDS- and OP-OSEM. The X-axis shows the average SNRs of PDS- and
OP-OSEM.

T.-B. Chen et al. / Radiation Physics and Chemistry 96 (2014) 107–114 111



of AVG than that of OP-OSEM in the 2nd ROI, which has lower
counts than the 1st ROI.

In the uniform phantom study, the scanning time was 30 min,
and 3,057.85 Bq/ml F-18 was injected; 16 subsets and six iterations
were used to reconstruct the images. Fig. 3 shows that six SNRs
were selected for the SNR comparison between OP- and PDS-
OSEM from the 43rd to 182nd slices. The disagreement (Bland–
Altman plot (Bland and Altman, 1986)) between PDS- and
OP-OSEM indicates that PDS-OSEM has a higher SNR than OP-
OSEM (Fig. 4). The mean of the difference between PDS- and OP-
OSEM is greater than zero. In Table 2, the P-values of the t-test
display the significantly different mean of SNRs between PDS- and
OP-OSEM because all P-values are smaller than 0.05. Meanwhile,
the SNRs provided by PDS-OSEM are greater than those of OP-
OSEM. Hence, the image quality provided by PDS-OSEM is better
than that provided by OP-OSEM and contains less noise.

In the resolution phantom, 84,090.91 Bq/ml F-18 was injected,
and 16 subsets and six iterations were used to reconstruct images.
Fig. 5 shows the resolution phantom images (top-left) reconstructed

by OSEM. The central part of the image with 2 mm spacing was
used to compare the line profiles between both reconstructed
algorithms. The selected locations of vertical line profiles are shown
for OP-OSEM at the bottom-left of the image and at the bottom-
right for PDS-OSEM. The vertical line profiles (top-right) indicate
that PDS-OSEM (green color) has a higher contrast than OP-OSEM
(red color) compared with Bland–Altman plots. In a real dynamic
human brain study, 555 MBq C-11 Raclopride was injected, and 16
subsets and six iterations were used to reconstruct images. Fig. 6
shows the comparisons of TAC and SNRs between OP-OSEM and
PDS-OSEMwith the regions of interest (ROI) and the reference (Ref.)
in a dynamic human brain study using HRRT. In addition, the
increased SNRs of ROI as in Eq. (19) for all the frames are shown.

Increased SNR¼ SNRPDS�OSEM�SNROP�OSEM

SNROP�OSEM
ð19Þ

In all frames, SNRs of PDS-OSEM are higher than those of OP-OSEM.
The increased SNRs are commonly higher in the early frames, which
have shorter scan times (except for the first frame). The higher SNR
in the early frames can help obtain more accurate TAC and make it
possible to obtain more accurate final parametric imaging. The
results of the dynamic study reconstruction show that resultant
images produced by PDS-OSEM are more stable and have higher
SNRs compared with the OP-OSEM images.

4. Conclusion

The ASE, SNR, and TAC have been evaluated to compare the
accuracy, quality, and feasibility of reconstructing images with the
PDS-OSEM and OP-OSEM algorithms via simulated images,
empirical phantoms, and real human brain data. The proposed
new approach of PDS-OSEM demonstrates less noise, higher

Table 2
The P-values of t-tests are reported for the significant different mean of SNRs from
the 43rd to 182nd slices between PDS-OSEM and OP-OSEM, as referred in Fig. 3.

ROI PDS-OSEM OP-OSEM P-value

Average STD Average STD

1 4.39 0.59 4.16 0.57 1.19E�03
2 4.30 0.54 4.07 0.52 4.18E�04
3 4.24 0.55 4.03 0.53 9.98E�04
4 4.23 0.56 4.03 0.54 2.43E�03
5 4.24 0.59 4.05 0.57 6.44E�03
6 4.26 0.61 4.08 0.59 1.43E�02

Fig. 5. This figure shows resolution phantom images (top-left) reconstructed using the OP-OSEM algorithm. The central part of the reconstructed image was used to compare
the image contrast between the two algorithms. The vertical line profile (top-right) was adopted to investigate the image contrast between OP-OSEM (bottom-left and red
color) and PDS-OSEM (bottom-right and green color). The vertical line profiles of both algorithms are shown at top-right. They indicate that PDS-OSEM has higher contrast
than OP-OSEM. 84,090.91 Bq/ml F-18 was injected; 16 subsets and six iterations were used to reconstruct images.
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accuracy, and higher quality compared with OP-OSEM. The PDS-
OSEM algorithm uses the joint Poisson models of prompt, delay,
and scatter sinograms based on the MLE-EM algorithm. It has
many advantages, such as simplicity in implementation, better
maintenance, effectiveness in removing noise, ability to keep
positive values, capability of applying to dynamic scanning, and
enhancement in image quality without increasing bias and noise.
Meanwhile, the PDS-OSEM reconstructs images by iteratively
applying random and scatter corrections based on the previously
(latest) updated estimates of true events. The proposed method
provides a useful approach to estimate true events by the closed
form solutions in the derived EM algorithm. The estimate of true
events will certainly have less noise. The empirical smoothing
techniques cannot distinguish the estimates of random and scatter
events. Hence, the presented algorithm provides more accurate
information than that of OP-OSEM. Moreover, the proposed
method does not need to perform any empirical smoothing step.
The presented algorithm can be applied to reconstruct images
generated by any PET scanner. However, the PDS-OSEM has
increased computational cost. Future work can be conducted to
improve PDS-OSEM, including acceleration of the algorithm,
combination of attenuation and normalization corrections, selec-
tion of initial values for reconstructed algorithm, stopping criter-
ion for iterative scheme, and evaluation of more dynamic studies.
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Appendix A

The conditional expectation of the log-likelihood of complete
(unobserved) data is derived below. Eqs. (A.1)–(A.5) show the
conditional distribution of npðb; dÞ, nr

pðb; dÞ, ns
pðb; dÞ, nrðb; dÞ, and

nsðb; dÞ given as unobserved data followed a binomial distribution

where b¼1, …, B and d¼1, …, D.

nn

pðb; dÞ nn

pðdÞ; λkt ðbÞ; λkr ðbÞ; λks ðbÞ
���

� Bin nn

pðdÞ;
Pðb; dÞλkt ðbÞ

∑b′Pðb′;dÞ½λkt ðb′Þþλkr ðb′Þþλks ðb′Þ�

 !
; ðA:1Þ
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� Bin nn
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∑b′Pðb′;dÞ½λkt ðb′Þþλkr ðb′Þþλks ðb′Þ�

 !
; ðA:2Þ
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� Bin nn
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: ðA:5Þ

Then, Eq. (A.6) shows the conditional expectation of the log-
likelihood of complete data (for λkþ1

t ðbÞ,λkþ1
r ðbÞ, and λkþ1

s ðbÞ at the
next iteration) given the observed incomplete data and initialized
values of parameters (λkt ðbÞ,λkr ðbÞ,and λks ðbÞ).
Q ðλtðbÞ; λrðbÞ; λsðbÞjnn
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n

r ;n
n

s ; λ
k
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Fig. 6. TAC of OP-OSEM and PDS-OSEM with the regions of interest (ROI) and the reference (Ref.) in a dynamic human brain HRRT are shown at top-left. The SNRs of PDS-
OSEM are higher than those of OP-OSEM (top-right). The SNRs of ROIs provided by PDS-OSEM and OP-OSEM are increasing in all frames (bottom-right).
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where
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nn
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The M-step will determine λkþ1
t ðbÞ, λkþ1

r ðbÞ, and λkþ1
s ðbÞ, the

solutions that maximize the function of Eq. (A.6). This can be
achieved by taking the first derivatives equal to zero in Eqs. (A.7)–
(A.9). The solutions are shown as in Eqs. (A.10)–(A.12).
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where k¼1, 2, …, K, representing the iteration number after the
initial number of zero.

The MLE-EM algorithm for the joint model of prompt, delay,
and scatter sinograms are described in Eqs. (A.10)–(A12), which is
called the PDS-OSEM algorithm. This novel approach not only
reconstructed HRRT but updated the estimated true intensities
with iteratively corrected random and scattering noise.
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