

Ab Initio Chemical Kinetics for the Unimolecular Decomposition of Si₂H₅ Radical and Related Reverse Bimolecular Reactions

Shang-Ying Wu,^[a] Yun-Min Lee,^[a] Jong-Shinn Wu,^[a] and Ming-Chang Lin*^[b,c]

For plasma enhanced and catalytic chemical vapor deposition (PECVD and Cat-CVD) processes using small silanes as precursors, disilanyl radical (Si₂H₅) is a potential reactive intermediate involved in various chemical reactions. For modeling and optimization of homogeneous a-Si:H film growth on large-area substrates, we have investigated the kinetics and mechanisms for the thermal decomposition of Si₂H₅ producing smaller silicon hydrides including SiH, SiH₂, SiH₃, and Si₂H₄, and the related reverse reactions involving these species by using ab initio molecular-orbital calculations. The results show that the lowest energy path is the production of SiH + SiH₄ that proceeds via a transition state with a barrier of 33.4 kcal/mol relative to Si₂H₅. Additionally, the dissociation energies for breaking the Si-Si and H-SiH₂ bonds were predicted to be 53.4 and 61.4 kcal/mol, respectively. To validate the predicted enthalpies of reaction, we have evaluated the enthalpies of formation for SiH, SiH₂, HSiSiH₂, and Si₂H₄(C_{2h}) at 0 K by

Introduction

In the semiconductor industry, deposition of layers of silicon-based thin films is a widely adopted integral technology using either the plasma enhanced chemical vapor deposition (PECVD) or catalytic chemical vapor deposition (Cat-CVD) method.^[1-3] Fundamental modeling of fluid dynamics and chemical reaction mechanisms is often required to understand the complex chemical processes occurring inside the CVD chamber for further optimization of the processes. The success of modeling requires detailed chemical kinetics with reliable rate constants for key reactions involved. Measurements of these rate constants may be possible, but it is often very expensive or difficult. The recent progress in ab initio calculations has made reliable predictions of rate constants possible and efficient. The objective of this article is to provide the kinetic data for the unimolecular decomposition of Si₂H₅ and its related reverse bimolecular reactions involving SiH, SiH₂, SiH₃, and Si₂H₃ radicals using *ab initio* calculations. These radicals are known to coexist in CVD media for a-Si:H thin film growth with small silanes as precursors.^[1-3]

In a typical CVD process, the reactions may include the dissociation of source gases induced by electron collisions in a plasma environment, radicals reactions with silicon compounds, the thermal decomposition of compounds, and so on.^[4–7] For

 2 HSiSiH₂ + using the isodesmic reactions, such as ${}^{1}\text{Si}_{2}\text{H}_{4}(C_{2h}) + {}^{1}\text{C}_{2}\text{H}_{6}$ ${}^{1}C_{2}H_{6} \rightarrow {}^{1}Si_{2}H_{6} + {}^{2}HCCH_{2}$ and ${}^{1}\text{Si}_{2}\text{H}_{6} + {}^{1}\text{C}_{2}\text{H}_{4}$. The results of SiH (87.2 kcal/mol), SiH₂ (64.9 kcal/mol), HSiSiH₂ (98.0 kcal/mol), and Si₂H₄ (68.9 kcal/mol) agree reasonably well previous published data. Furthermore, the rate constants for the decomposition of Si₂H₅ and the related bimolecular reverse reactions have been predicted and tabulated for different T, P-conditions with variational Rice-Ramsperger-Kassel-Marcus (RRKM) theory by solving the master equation. The result indicates that the formation of $SiH + SiH_4$ product pair is most favored in the decomposition as well as in the bimolecular reactions of $SiH_2 + SiH_3$, $HSiSiH_2 + H_2$, and $Si_2H_4(C_{2h}) + H$ under T, P-conditions typically used in PECVD and Cat-CVD. © 2013 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24557

silicon-based film deposition, silane (SiH₄) is often used as the gas source; the disilanyl (Si₂H₅) radical may be generated by Hatom abstraction by H or other radicals from the disilane (Si₂H₆) formed by the recombination of SiH₃ radicals or the association of SiH₃ with SiH₂ radical, among others.^[8–10] The chemical properties of the transient silicon hydrides, Si₂H₅, Si₂H₄, Si₂H₃, and Si₂H₂ prepared from fluorine atom reactions with disilane were first investigated and measured with the photoionization mass spectrometry method by Ruscic and Berkowitz.^[11] In addition, they summarized the previous Si₂H_n, (n = 2-5) structures with *ab initio* calculations and provided the enthalpies of formation derived by combining their ionization potentials with obtained appearance potentials and that of Si₂H₆ from previous works. Jasinski et al.^[4] reviewed the various gas-phase reactions regarding monosilicon hydride radicals. A rate constant of $\sim 3 \times 10^{-12}$

[b] M. C. Lin

[[]a] S.-Y. Wu, Y.-M. Lee, J. S. Wu Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

Department of Applied Chemistry, Center for Interdisciplinary Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan E-mail: chemmcl@emory.edu

[[]c] M. C. Lin

Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA © 2013 Wiley Periodicals, Inc.

cm³ molecule⁻¹ s⁻¹ at 500 K in the low pressure range for the reaction of silylidyne (SiH) with silane (SiH₄) was estimated. Recently, Sillars et al.^[12] presented an experimental and theoretical study on the Si₂H₅ radical. The molecular structures, vibrational frequencies, and relative energy estimates of Si₂H₅, H₂SiHSiH₂ (transition state, TS), and HSiHSiH₃ (*C*₁) were also computed with electronic structure methods using the Gaussian 98 program. However, no related kinetic data were predicted.

In this study, we attempt to investigate the elementary reactions relevant to the thermal decomposition of the Si_2H_5 radical and its related reverse bimolecular processes. The dissociation of Si_2H_5 to elementary silicon hydride radicals are considered as follows:

$$Si_2H_5 \rightarrow SiH + SiH_4$$
 (1)

$$\rightarrow$$
 HSiSiH₂+H₂ (2)

$$\rightarrow$$
 SiH₃+SiH₂ (3)

$$\rightarrow Si_2H_4(C_{2h}) + H \tag{4}$$

and their reverse reactions are also considered, such as,

$$SiH+SiH_4 \rightarrow Si_2H_5* \rightarrow products$$
 (5)

$$SiH_2 + SiH_3 \rightarrow Si_2H_5 * \rightarrow products$$
 (6)

$$HSiSiH_2 + H_2 \rightarrow Si_2H_5 * \rightarrow products$$
(7)

$$Si_2H_4 + H \rightarrow Si_2H_5 * \rightarrow \text{products}$$
 (8)

In the above reactions, "Si₂H₅*" represents internally excited disilanyl radical formed by bimolecular radical association reactions Eqs. (5–8) and the "products" represent all possibly product pairs which can be formed in each reverse reaction via the Si₂H₅* intermediate as depicted in the potential energy surface (PES) to be discussed later. Additionally, the calculated enthalpies of reaction including isodesmic reactions will be used to deduce the enthalpies of formation for silicon hydride species involved; these results will be validated by comparison with the published data wherever possible. Finally, temperature and pressure-dependent rate constants over a wide range of conditions, including those which are generally applied to deposition by PECVD and Cat-CVD processes, will be predicted by statistical theory based on PES computed by high-level quantum chemical calculations discussed below.

Computational Methods

Ab initio MO calculations

The geometries of the reactants, products, and TSs for the disilanyl (Si₂H₅) thermal decomposition reaction were optimized by using density functional theory using Becke's three parameter nonlocal exchange functions with the nonlocal correlation functions of Lee, Yang and Parr method (B3LYP)^[13–15] with the 6-311++G(3df,2p) basis set. This calculation was further improved by the coupled-cluster method using single, double, and perturbative triple excitations $(CCSD(T))^{[16a]}$ with the 6-311+G(d,p)^[16b] basis set. Vibrational frequencies of all species were also computed at the same level of theory to characterize stationary points and zero-point energy (ZPE) corrections. The geometries of TSs were verified by their connectivity with the reactants and products using the intrinsic reaction coordinate calculations.^[17,18] To obtain reliable energies, the singlepoint energy calculations of the stationary points were executed at the CCSD(T)/6-311++G(3df,2p) level of theory based on the optimized geometries using the CCSD/6-311++G(d,p)method. Complete basis set (CBS^[19,20]) extrapolation technique was also used for further improving the energy accuracy. The basis set extrapolation was based on the calculations with the aug-cc-pVXZ (X = D, T, and Q) basis using the CCSD(T) optimized geometries. The CBS energies have been estimated using three-point extrapolation scheme, $E(X) = E_{CBS} + b$ $\exp[-(X-1)] + c \exp[-(X-1)^2]$ where X is the cardinal number of the basis sets associated with X = 2 (DZ) (double Zeta), 3 (TZ) (triple Zeta), 4 (QZ) (quadruple Zeta), and E_{CBS} is the asymptotic value to approximate the CBS limit. The Gaussian 03 guantum chemical software was used throughout the study.^[21]

Kinetics methods

For the barrierless reactions, the canonical variational TS theory (CVTST)^[22-24] was used to minimize rate coefficients. The CVTST rate coefficient equation in the quasi-thermodynamic form could be expressed by

$$k(T,s) = \alpha(k_{\rm b}T/h) \exp(-\Delta G^{\circ}(T,s)/k_{\rm b}T)$$
(9)

where s is the distance along the minimum energy path (MEP), with the saddle point at s = 0, the reactants region corresponding to s < 0 and the products region corresponding to s > 0. α is statistical factor and $k_{\rm b}$ is the Boltzmann constant. T is the temperature, h is Planck's constant, and $\Delta G^{\circ}(T,s)$ is a quasi-thermodynamic quantity (Gibbs standard free energy of activation). The condition for minimizing k(T,s) is equivalent to maximizing the free energy activation. The Gibbs standard free energy functions were determined using the thermodynamic functions of NIST-JANAF Thermochemical Tables.^[25] Furthermore, the pressure-dependent rate constants were calculated with the RRKM theory^[22-24,26,27] by solving the master equation with the VARIFLEX program suite.^[28] The microcanonical rate coefficient of the standard RRKM form is expressed as a function of total energy *E* and angular momentum quantum number J by

$$k(E,J) = \frac{N^{+}(E,J)}{h\rho(E,J)}$$
(10)

where $N^{+}(E, J)$ is the TS's sum of states, $\rho(E, J)$ is the density of states of activated reactants, and again *h* is Planck's constant. Then, one-dimensional master equations were solved to determine the nonequilibrium distribution functions for each channel.

Figure 1. Optimized geometric parameters of various stationary points for Si_2H_5 thermal decomposition reaction calculated at the CCSD(T)/6-311+G(d,p) level. Bond lengths are in angstroms and angles are in degrees. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Potential energy diagram of the Si_2H_5 thermal decomposition reaction. Relative energies (kcal/mol) calculated at the CCSD(T)/6-311++G(3df,2p)//CCSD(T)/6-311+G(d,p)+ZPE levels of theory at 0 K and the CBS energies with ZPE corrected are given in the parentheses. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

CHEMISTRY

Table 1. Relative energies	^[a] (kcal/mol) o	f various species at 0	K in the Si ₂ H ₅ thermal	decomposition reaction	calculated at the different levels.
----------------------------	-----------------------------	------------------------	---	------------------------	-------------------------------------

Species	B3LYP/6-311++G(3df,2p)	CCSD(T)/6-311+G(d,p)	CCSD(T)/6-311++G(3df,2p)// CCSD(T)/6-311+G(d,p)	CBS//CCSD(T)/6-311+G(d,p)	
² Si ₂ H ₅	0.0	0.0	0.0	0.0	
² TS1	27.3 (28.2 ^[b])	30.8	29.6 (29.0 ^[c])	29.3	
² TS2	31.9	35.4	33.4	33.5	
² LM1(SiH…SiH ₄)	30.7 (31.7 ^[b])	31.7	31.8 (31.2 ^[C])	33.2	
2 SiH + 1 SiH ₄	37.6 (37.1 ^[b])	36.4	38.5 (39.0 ^[c])	41.4	
² TS3	35.3	39.1	37.3	36.9	
² TS4	49.1	53.4	50.9	50.7	
² TS5	45.8	44.5	43.0	43.2	
${}^{2}\text{H}_{2}\text{SiSiH} + {}^{1}\text{H}_{2}$	37.6	41.1	38.8	41.4	
${}^{2}SiH_{3} + {}^{1}SiH_{2}$	52.1 (51.8 ^[b])	51.6	53.4 (53.8 ^[c])	56.0	
${}^{1}Si_{2}H_{4}(C_{2h}) + {}^{2}H$	64.7	61.4	61.4	63.3	
[a] Energies are ZPE corrected. [b] Evaluated with B3LYP/6–311G(d,p) from Ref. [12]. [c] Evaluated with CCSD(T)/aug-cc-pVTZ from Ref. [12]					

Results and Discussions

Potential energy surfaces and reaction mechanisms

In this section, the Si₂H₅ thermal decomposition is investigated for formation of smaller silicon hydrides, specifically, SiH, SiH₂, SiH₃, SiH₄, HSiSiH₂, and Si₂H₄. The geometric parameters of reactants, intermediates, and TSs optimized at the CCSD(T)/6-311+G(d,p) level are given in Figure 1. The potential energy diagram of Si₂H₅ of the fragmentation pathways using the refined energies predicted with the CCSD(T)/6-311++G(3df,2p)//CCSD(T)/6-311+G(d,p) method is presented in Figure 2. The relative energies of the stationary points obtained from different calculations are summarized in Table 1. In the following discussion, the extrapolated CBS energies are given in the accompanied parentheses for comparison; with the exception of a few cases, most values obtained by the two methods agree within 1 kcal/mol. The rotational constants and vibrational frequencies for all of the stationary points computed at the CCSD(T)/6-311+G(d,p) level are summarized in Table 2.

According to the CCSD(T)/6–311++G(3df,2p)//CCSD(T)/6– 311+G(d,p) calculations, the lowest energy pathway for Si_2H_5 fragmentation is the migration of one hydrogen atom from the SiH₂-moiety of the H₂Si-SiH₃ structure to the SiH₃ moiety via the mono-hydrogen-bridged structure HSiHSiH₃ at TS2 with a barrier height of 33.4 (33.5) kcal/mol. The production of the SiH + SiH₄ products occurs via the hydrogen-bridged complex, SiH...SiH₄ (local minimal 1, LM1) locating at -1.6 (-0.3) kcal/mol relative to TS2. The decomposition reaction is endothermic by 38.8 (41.4) kcal/mol. Another pathway for the fragmentation leading to the same products via LM1 is the simultaneous migration of two H-atoms from the SiH₃ moiety to the SiH₂ via TS5 with an energy barrier of 43.0 (43.2) kcal/ mol.

Aside from the production of the SiH + SiH₄ product pair, the disilanyl radical can also decompose by elimination of a hydrogen atom and a hydrogen molecule. The pathway of H₂ elimination can take place from the SiH₃ moiety, proceeding over the saddle point at TS4 which has the characteristic H…H bond length of 1.073 Å and a barrier height of 50.9 (50.7) kcal/mol. The elimination of the H-atom from Si₂H₅, however, is a barrierless dissociation process producing Si₂H₄ (C_{2h}) with the largest endothermicity of 61.4 (63.3) kcal/mol relative to Si₂H₅. Si₂H₅ can also decompose by breaking the Si—Si bond

Table 2. Vibrational frequencies and rotational constants for the various stationary points of the Si_2H_5 thermal decomposition reaction at the CCSD (T)/ 6–311+G(d,p) level of theory.

Species	A (GHz)	B (GHz)	C (GHz)	Frequencies (cm ⁻¹)
² SiH		224.1		2064
¹ SiH ₂	244.1	209.1	112.6	1042, 2094, 2098
² SiH ₃	142.4	142.4	84.2	801, 957, 957, 2259, 2293, 2293
¹ SiH ₄	86.1	86.1	86.1	955, 955, 955, 991, 991, 2291, 2296, 2296, 2296
² HSiSiH ₂	96.0	6.1	5.8	189, 391, 419, 471, 689, 979, 2095, 2242, 2267
${}^{1}Si_{2}H_{4}(C_{2h})$	74.2	6.2	5.9	347, 414, 447, 516, 561, 634, 939, 966, 2268, 2273, 2287, 2297
² Si ₂ H ₅	53.5	5.3	5.2	144, 404, 432, 444, 623, 655, 905, 955, 968, 970, 2246, 2256, 2268, 2272, 2280
				(127, 390, 405, 424, 596, 637, 875, 936, 949, 950, 2188, 2199, 2213, 2223, 2231) ^[12]
² LM1(SiH…SiH ₄)	63.7	3.6	3.6	83, 138, 257, 454, 685, 804, 922, 957, 973, 1260, 1934, 2039, 2298, 2328, 2344
				(31, 131, 234, 439, 648, 754, 887, 936, 957, 1209, 1829, 1988, 2242, 2275, 2291) ^[12]
² TS1	58.3	5.5	5.3	<i>i</i> 207, 112, 340, 424, 701, 713, 900, 921, 929, 1310, 1545, 2220, 2225, 2249, 2261
				(<i>i</i> 225, 128, 333, 400, 676, 705, 885, 904, 916, 1240, 1503, 2160, 2161, 2190, 2205) ^[12]
² TS2	54.3	5.1	5.0	i468, 212, 374, 442, 659, 760, 924, 950, 988, 1017, 1703, 2121, 2210, 2280, 2312
² TS3	56.7	5.6	5.4	<i>i</i> 903, 275, 417, 423, 549, 658, 667, 887, 938, 962, 1487, 2199, 2256, 2278, 2291
² TS4	49.4	5.5	5.3	i1160, 140, 303, 429, 455, 630, 691, 807, 927, 1013, 1668, 2074, 2224, 2234, 2249
² TS5	63.38	4.69	4.57	<i>i</i> 891, 289, 369, 449, 494, 718, 880, 929, 958, 1302, 1502, 1858, 2080, 2283, 2325

Table 3. Enthalpies of formation $(\Delta_f H^\circ)$ of species at 0 K predicted at the CCSD(T)/6–311++G(3df,2p)//CCSD(T)/6–311+G(d,p)+ZPE level of theory. The CBS energies with ZPE corrected are listed in the parentheses.

		Enthalpy of (kc	formation $\Delta_{ m f} {H_0}^\circ$ al/mol)	
Species	Reactions	Calculated	Literatures	
² SiH	$^{2}\text{Si}_{2}\text{H}_{5} \rightarrow ^{1}\text{SiH}_{4} + ^{2}\text{SiH}$	87.2 (90.0)	$89.6 \pm 2.0^{[25]}$	
¹ SiH ₂	$^{2}\text{Si}_{2}\text{H}_{5} \rightarrow ^{1}\text{SiH}_{2} + ^{2}\text{SiH}_{3}$	64.9 (67.5)	$65.5 \pm 0.7^{[29]}$	
² HSiSiH ₂	$^{2}\text{Si}_{2}\text{H}_{5} \rightarrow ^{2}\text{HSiSiH}_{2} + ^{1}\text{H}_{2}$	98.0 (100.6)	98.8 ^[30]	
	2 HSiSiH ₂ + 1 C ₂ H ₆ \rightarrow	97.3 (99.6)		
	$^{1}Si_{2}H_{6}\rightarrow ^{2}HCCH_{2}$			
${}^{1}Si_{2}H_{4}(C_{2h})$	$^2\text{Si}_2\text{H}_5 \rightarrow ^2\text{H} + ^1\text{Si}_2\text{H}_4$	68.9 (70.9)	$67.9 \pm 0.9^{[11]}$	
	$^{1}\text{Si}_{2}\text{H}_{4} + {^{1}\text{C}}_{2}\text{H}_{6} \rightarrow$	69.4 (71.1)	69.32; 68.84 ^[31]	
	${}^{1}Si_{2}H_{6} + {}^{1}C_{2}H_{4}$			
			66.5 ^[30]	
The experimental values are obtained based on the enthalpies of for- mation at 0 K for H = 51.66 kcal/mol ^[25] ; H ₂ = 0.0 kcal/mol ^[25] ; HCCH ₂ = 71.5 kcal/mol ^[32] ; C ₂ H ₄ = 14.6 kcal/mol ^[25] ; C ₂ H ₆ = -16.3 kcal/ mol ^[33] ; SiH = 89.6 kcal/mol ^[25] ; SiH ₂ = 65.5 kcal/mol ^[29] ; SiH ₃ = 47.7 ± 1.2 kcal/mol ^[34] ; SiH ₄ = 10.5 kcal/mol ^[25] ; Si ₂ H ₄ = 67.9 kcal/mol ^[11] ; Si H ₄ = 50.2 kcal/mol ^[11] , and Si H ₄ = 20.0 kcal/mol ^[11]				

to produce SiH₂ and SiH₃ with an endothermicity of 53.4 (56.0) kcal/mol; the reaction also occurs barrierlessly without an intrinsic TS. Additionally, there are two TSs of H-shift, TS1 and TS3, from the SiH₃ moiety both having a bridged H-atom with C_1 symmetry giving rise to the same Si₂H₅ structure after rearrangement with noticeably different barriers of 29.6 (29.3) and 37.3 (36.9) kcal/mol.

The above results for the SiH…SiH₄ complex (LM1), SiH + SiH₄, SiH₂ + SiH₃, and H₂SiHSiH₂ (TS1) obtained at the higher levels of theory in the present work are in good agreement with previous estimates of 31.2, 39.0, 53.8, and 29.0 kcal/ mol relative to Si₂H₅, respectively, by Sillars et al. with the CCSD(T)/aug-cc-pVTZ//B3LYP/6–311G(d,p) method.^[12] It should be mentioned that aside from the TSs described above, we have also searched at length, but to no avail, for the existence of a roaming transition state in the bimolecular metathetical process SiH + SiH₄ \iff SiH₃ + SiH₂ at a long separation.

Enthalpies of the formation

For the purpose of validating the relative energies for prediction of rate coefficients, we compare the enthalpies of formation $\Delta_r H^{\circ}$ of some compounds with those of available experimental results based on the calculated enthalpies of the reaction $\Delta_r H^{\circ}$ at 0 K. Furthermore, isodesmic reactions are also used to examine the calculated enthalpies of formation at 0 K, such as ${}^{1}\text{Si}_{2}\text{H}_{4} + {}^{1}\text{C}_{2}\text{H}_{6} \rightarrow {}^{1}\text{Si}_{2}\text{H}_{6} + {}^{1}\text{C}_{2}\text{H}_{4}$ and ${}^{2}\text{HSiSiH}_{2} + {}^{1}\text{C}_{2}\text{H}_{6}$

 \rightarrow $^{1}\text{Si}_{2}\text{H}_{6}$ + $^{2}\text{HCCH}_{2}$. The predicted enthalpies of formation, including ^{2}SiH , $^{1}\text{SiH}_{2}$, HSiSiH₂, and Si₂H₄(C_{2h}) are presented in Table 3, which are derived by the above calculated enthalpies of reaction at the CCSD(T)/6–311++G(3df,2p)//CCSD(T)/6–311+G(d,p) level with published values of $\Delta_{f}H^{\circ}$ (0 K) from the NIST-JANAF Tables^[25] and the relevant literature.^[11,29–34] For instance, $\Delta_{f}H^{\circ}$ (0 K) for Si₂H₄(C_{2h}) could be obtained from the equation as follows,

$$\Delta_{\rm f} H^{\circ}({\rm Si}_2{\rm H}_4) = \Delta_{\rm f} H^{\circ}({\rm Si}_2{\rm H}_5) - \Delta_{\rm f} H^{\circ}({\rm H}) + \Delta_{\rm r} H^{\circ}, \text{ at 0 K.}$$
(11)

These $\Delta_{\rm f} H^{\circ}$ (0 K) results of ²SiH, ¹SiH₂, ²HSiSiH₂, and ¹Si₂H₄(C_{2h}) using $\Delta_{\rm r} H^{\circ}$ (0 K) relevant to Si₂H₅ decomposition reactions are 87.2, 64.9, 98.0, and 68.9 kcal/mol, respectively. In addition, $\Delta_{\rm f} H^{\circ}$ (0 K) results of ²HSiSiH₂ and ¹Si₂H₄(C_{2h}) using $\Delta_{\rm r} H^{\circ}$ (0 K) of isodesmic reactions are 97.3 and 69.4 kcal/mol, respectively. These agree reasonably well with the reported findings of ²SiH (89.6 ± 2.0 kcal/mol, NIST^[25]), ¹SiH₂ (65.5 ± 0.7 kcal/mol, Berkowitz et al.^[29]), ²HSiSiH₂ (98.8 kcal/mol, Curtiss et al.^[30]), and ¹Si₂H₄ (67.9 ± 0.9, Ruscic and Berkowitz.^[11]).

Rate constant calculations

The present theoretical predictions of rate constants for the reactions were carried out with CVTST by searching for the position of the dividing surface with a maximum ΔG° ($T, s = s^{\dagger}$) for a barrierless process, specifically $Si_2H_5 \stackrel{\leftarrow}{\rightarrow} Si_2H_4(C_{2h}) + H$, $Si_2H_5 \stackrel{\leftarrow}{\rightarrow} SiH_3 + SiH_2$ and the dissociation of LM1 to $SiH + SiH_4$. To reduce the computational expense, the MEPs are computed using the potential energies along the reaction coordinate (Si…H) from about 1.5 to 5.5 Å with a step size 0.2 Å in Si $_2H_5$ $\stackrel{\leftarrow}{\rightarrow}$ Si₂H₄(C_{2h}) + H and the reaction coordinate (Si...Si) from about 2.4 to 5.0 Å with a step size 0.2 Å in $Si_2H_5 \leftrightarrows SiH_3 + SiH_2$ at the UB3LYP/6-311++G(3df,2p) level combined with the cubic spline interpolation method^[35] and the energy is scaled at the CCSD(T)/6-311++G(3df,2p)+ZPE level. The approximate positions of the dividing surface for the barrierless reactions are estimated in Table 4. Furthermore, rate constants of RRKM calculations are based on CCSD(T)/6-311++G(3df,2p)// CCSD(T)/6-311+G(d,p) energies. The MEP for the dissociation of LM1(SiH…SiH₄) \rightarrow SiH + SiH₄ followed by a similar search represented by the can be Morse potential, $V(r) = D_e \{1 - \exp[-\beta_e(r - r_e)]\}^2$ according to the B3LYP/6– 311++G(3df,2p) calculations with the energy scaled at the CCSD(T)/6-311++G(3df,2p)+ZPE level, and obtained parameters of $D_e = 6.76$ kcal/mol, $\beta_e = 2.311$ Å⁻¹, and $r_e = 1.8$ Å. The effective sum of states for all of the TSs is estimated at the energy E and total angular momentum J resolved level using rigid-rotor harmonic oscillator assumptions for the energy

Table 4. The estimated corresponding position of the dividing surface by CVTST method.							
$^{2}\text{Si}_{2}\text{H}_{5} \stackrel{\leftarrow}{\rightarrow} {}^{1}\text{Si}_{2}\text{H}_{4} (\text{C}_{2h}) + {}^{2}\text{H}$							
Т (К)	300-500	600-900	1000-1100	1200	1300-1500	1600-1700	1800-2000
Si…H (Å)	3.45	3.25	3.15	3.1	3.05	3.0	2.95
2 Si ₂ H ₅ \Leftrightarrow 1 SiH ₂ + 2 SiH ₃							
Т (К)	300-600	700-1000	1100-1400	1500-1800	1900-2000		
Si…Si (Å)	4.15	4.05	3.9	3.75	3.65		

Figure 3. Comparisons of high-pressure limit rate constants between $^2Si_2H_5 \rightarrow {}^1Si_2H_4 (C_{2h}) + {}^2H (green —), {}^2Si_2H_5 \rightarrow {}^2SiH_3 + {}^1SiH_2 \rightarrow (blue —), {}^2Si_2H_5 \rightarrow {}^2HSiSiH_2 + {}^1H_2 (brown —), and {}^2Si_2H_5 \rightarrow {}^2SiH + {}^1SiH_4 (black —) versus the inverse of temperature. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]$

levels. The $\langle \Delta E_{\rm down} \rangle$ is assumed to be equal to 400 cm⁻¹. The parameters for the Lennard–Jones collision rate were approximated by $\sigma = 4.717$ Å and $\varepsilon = 213.2$ cm⁻¹ for Si₂H₅^[36] and $\sigma = 3.75$ Å and $\varepsilon = 98.3$ cm⁻¹ for Ar^[37].

Unimolecular Decomposition of Si₂H₅. The PES shown in Figure 2 indicates that the unimolecular decomposition of Si₂H₅ radical may produce SiH + SiH₄, H₂SiSiH + H₂, SiH₂ + SiH₃, and Si₂H₄ (C_{2h}) + H:

$$\begin{array}{rl} \text{Si}_2\text{H}_5 & \rightarrow \text{Si}\text{H}+\text{Si}\text{H}_4 & (1) \\ & \rightarrow \text{HSi}\text{Si}\text{H}_2+\text{H}_2 & (2) \\ & \rightarrow \text{Si}\text{H}_3+\text{Si}\text{H}_2 & (3) \\ & \rightarrow \text{Si}_2\text{H}_4(\text{C}_{2h})+\text{H} & (4) \end{array}$$

Interestingly, the last product pair is most endothermic, contrary to the decomposition of C_2H_5 which produces exclusively $C_2H_4 + H$ because of the strong Π -bond energy in ethylene.^[38] In the present case, the production of SiH + SiH₄, reaction Eq. (1), via TS2 (33.4 kcal/mol) and the product pair complex LM1 (31.8 kcal/mol), with 38.8 kcal/mol endothermicity, is most favorable. The dehydrogenation process, reaction Eq. (2), giving H₂SiSiH takes place via TS4 with a barrier of 50.9 kcal/mol and is endothermic by 38.8 kcal/mol, the same as that of the $SiH + SiH_4$ reaction. However, the much higher barrier for the dehydrogenation step makes the process less competitive as one would expect. Similarly reactions Eqs. (3) and (4) with higher endothermicities producing $SiH_2 + SiH_3$ (53.4 kcal/mol) and Si_2H_4 (C_{2h}) + H (61.4 kcal/mol), both predicted to occur without welldefined intrinsic barriers as aforementioned, are expected to be too slow to compete with the most favored process also. The high-pressure limits for the decomposition and the related reverse association reactions are shown in Figures 3 and 4, respectively, for comparison. Their relative importance in the decomposition reactions mainly reflects the enthalpy of activa-

Figure 4. Comparisons of high-pressure limit rate constants between 1Si_2H_4 , $(C_{2h}) + ^2H \rightarrow ^2Si_2H_5$ (green —), $^2SiH_3 + ^1SiH_2 \rightarrow ^2Si_2H_5$ (blue —), $^2HSiSiH_2 + ^1H_2 \rightarrow ^2Si_2H_5$ (brown —), and $^2SiH + ^1SiH_4 \rightarrow ^2Si_2H_5$ (black —) versus the inverse of temperature. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

tion controlled by the corresponding VTS's for radical production and the TS for H₂ elimination. The formation of Si₂H₅ from the recombination processes under the high-pressure condition (Fig. 4) reflects the nature of the interaction between the reaction pair and the entropic changes at VTS's along the MEP at large separations. It should be noted that the negative temperature dependence of the rate constant for HSiSiH₂ + H₂ reaction at high temperatures can be attributed largely to the T^{-3/2}-factor deriving from the rotational and translational partition function ratios of the TS and the reactants.

The least-squares-fitted three-parameter rate constants predicted for various pressures for the temperature range 300–1000 K are summarized in Tables 5 and 6 for kinetic modeling applications.

Related Bimolecular Reactions Involving Si₂H₅ as Intermediate. Under PECVD conditions using SiH₄ as the precursor, SiH_x (x = 1-3) and the two isomers of Si₂H₄ may coexist in the gas phase. We have thus also evaluated the rate constants for the bimolecular processes involving these species in conjunction with Si₂H₅ as the intermediate as fully characterized by the PES shown in Figure 2. The mechanisms of these bimolecular reactions giving the most favorable products are described as follows:

. ²SiH + ¹SiH₄ reactions:
²SiH+¹SiH₄
$$\leftrightarrow$$
²Si₂H^{*}₅ \rightarrow ²SiH₃+¹SiH₂
 \downarrow
²Si₂H₅

ii. 2 HSiSiH₂ + 1 H₂ reactions:

i

$$\label{eq:sigma} \begin{array}{c} {}^{2}\text{HSiSiH}_{2} {+}^{1}\text{H}_{2} {\leftrightarrow}^{2}\text{Si}_{2}\text{H}_{5}^{*} {\rightarrow}^{2}\text{SiH} {+}^{1}\text{SiH}_{4} \\ \downarrow \\ {}^{2}\text{Si}_{2}\text{H}_{5} \end{array}$$

Table 5. Arrhenius parameters ^[a] including high-pressure limit (k_{∞}) and low-pressure limit (k_0) for the ² Si ₂ H ₅ \rightarrow ² SiH + ¹ SiH ₄ and ² Si ₂ H ₅ \rightarrow ² HSiSiH ₂ + ¹ H ₂ reactions.						
	P (Torr)	A	n	E _a /R (K)	T range (K)	
² Si ₂ H	$_{5} \rightarrow {}^{2}SiH + {}^{1}$	SiH ₄				
k_{∞}	∞	$4.98 imes 10^{35}$	-6.92	22146.7	300-2000	
k ₀	-	2.52×10^{33}	-10.21	21795.7	300-2000	
k	0.3	2.21×10^{43}	-10.35	22101.3	300-2000	
k	0.4	$3.32 imes 10^{43}$	-10.36	22135.3	300-2000	
k	0.5	4.41×10^{43}	-10.37	22160.5	300-2000	
k	0.6	$5.65 imes 10^{43}$	-10.38	22184.0	300-2000	
k	1	1.17×10^{44}	-10.40	22261.0	300-2000	
k	10	$1.78 imes10^{45}$	-10.45	22721.0	300-2000	
k	760	1.12×10^{42}	-9.02	22932.8	300-2000	
² Si ₂ H	$_{5} \rightarrow {}^{2}HSiSiH_{2}$	$_{2} + {}^{1}H_{2}$				
k_{∞}	∞	$3.38 imes10^{44}$	-10.44	29284.9	300-2000	
k ₀	-	$6.04 imes10^{19}$	-8.79	25005.2	300-2000	
k	0.3	$6.39 imes 10^{30}$	-9.19	25121.5	300-2000	
k	0.4	$1.63 imes 10^{31}$	-9.26	25150.3	300-2000	
k	0.5	$3.69 imes10^{31}$	-9.33	25177.5	300-2000	
k	0.6	7.90×10^{31}	-9.40	25208.3	300-2000	
k	1	8.11×10^{32}	-9.60	25305.8	300-2000	
k	10	$2.67 imes 10^{40}$	-11.27	26419.5	300-2000	
k	760	3.27×10^{51}	-13.04	29736.6	300-2000	
[a] <i>k</i> ([a] $k(T) = AT^{n} \exp(-E_{a}/RT)$. Unit of the rate constants $k(T)$ is (s^{-1}) and k_{0} is $(cm^{3} \text{ moloculo}^{-1} s^{-1})$.					

iii. ${}^{2}SiH_{3} + {}^{1}SiH_{2}$ reactions:

$$\label{eq:sigma_state} \begin{array}{c} {}^2SiH_3 + {}^1SiH_2 {\leftrightarrow} {}^2Si_2H_5^* {\rightarrow} {}^2SiH + {}^1SiH_4 \\ \\ \downarrow \\ {}^2Si_2H_5 \end{array}$$

Table 6. Arrhenius parameters ^(*) including high-pressure limit (k_{∞}) and low-pressure limit (k_0) for the ${}^2\text{Si}_2\text{H}_5 \rightarrow {}^1\text{Si}_2\text{H}_4$ $(C_{2h}) + {}^2\text{H}$ and ${}^2\text{Si}_2\text{H}_5 \rightarrow {}^1\text{SiH}_2 + {}^2\text{SiH}_3$ reactions.					
	P (Torr)	А	n	E _a /R (K)	T range (K)
² Si ₂ H ₅	\rightarrow ¹ SiH ₂ +	²SiH₃			
k_{∞}	∞	$4.76 imes 10^{26}$	-4.26	26741.9	300-2000
ko	-	$4.15 imes 10^{-6}$	0.15	23615.3	300-2000
k	0.3	$1.12 imes 10^5$	-0.09	23476.1	300-2000
k	0.4	$2.27 imes 10^5$	-0.14	23459.1	300-2000
k	0.5	$4.21 imes 10^5$	-0.18	23448.9	300-2000
k	0.6	$6.86 imes 10^5$	-0.22	23434.5	300-2000
k	1	$3.71 imes 10^{6}$	-0.35	23408.7	300-2000
k	10	6.44×10^{12}	-1.71	23686.6	300-2000
k	760	$8.85 imes 10^{29}$	-5.60	26818.0	300-2000
² Si ₂ H ₅	\rightarrow ¹ Si ₂ H ₄ (0	$C_{2h}) + {}^{2}H$			
k_{∞}	∞	$6.58 imes 10^{39}$	-8.68	33992.1	300-2000
ko	-	$3.23 imes 10^{14}$	-6.36	32558.9	300-2000
k	0.3	$7.99 imes 10^{23}$	-6.36	32504.3	300-2000
k	0.4	1.12×10^{24}	-6.36	32478.9	300-2000
k	0.5	$1.52 imes 10^{24}$	-6.37	32459.7	300-2000
k	0.6	$1.89 imes 10^{24}$	-6.37	32440.4	300-2000
k	1	4.10×10^{24}	-6.40	32389.8	300-2000
k	10	$8.63 imes 10^{26}$	-6.73	32112.8	300-2000
k	760	4.52×10^{38}	-9.08	33070.4	300-2000
[a] $k(T) = AT^{n}exp(-E_{a}/RT)$. Unit of the rate constants $k(T)$ is (s^{-1}) and k_{0} is $(cm^{3} molecule^{-1} s^{-1})$.					

Figure 5. Predicted rate constants as a function of pressure at T = 500 K for ${}^{2}\text{SiH} + {}^{1}\text{SiH}_{4} \rightarrow {}^{2}\text{Si}_{2}\text{H}_{5}$ and ${}^{2}\text{SiH} + {}^{1}\text{SiH}_{4} \rightarrow {}^{2}\text{SiH}_{3} + {}^{1}\text{SiH}_{2}$. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

iv. ${}^{1}Si_{2}H_{4}(C_{2h}) + {}^{2}H$ reactions:

For these bimolecular reactions, the predicted rate constants for energetically most favorable product channels as a function of pressure at T = 500 K and the temperature dependence at different pressures are graphically presented as follows: Reaction I in Figures 5–7; reaction II in Figures 8–10; reaction III in Figures 11–13; and reaction IV in Figures 14–16. All the processes involved in the decomposition and the reverse association reactions are highly pressure dependent due to the small size of the system and the associated high energy changes. For the convenience of modeling application, the three

Figure 6. Arrhenius plots of rate constants for $^2SiH+{}^1SiH_4 \to {}^2Si_2H_5$ at different pressures as labeled versus the inverse of temperature.

Figure 7. Arrhenius plots of rate constants for $^2SiH + ^1SiH_4 \rightarrow ^2SiH_3 + ^1SiH_2$ at different pressures as labeled versus the inverse of temperature.

parameter equations for the modified Arrhenius expressions in the temperature range of 300-2000 K at various pressures are presented in Table 7 (for reaction I), Table 8 (for reaction II), Table 9 (for reaction III), and Table 10 (for reaction IV).

The predicted results show that in reactions (II)–(IV), products such as SiH + SiH₄ are dominant at low pressure, while the stabilized adduct Si₂H₅ becomes gradually prevalent as the pressure increases. The other product pairs (SiH₃ + SiH₂, Si₂H₄ (C_{2h}) + H, and HSiSiH₂ + H₂) are energetically inaccessible from SiH + SiH₄. At room temperature and low pressure of silicon CVD environments, the reaction of SiH + SiH₄ to produce Si₂H₅ is predominant, followed in order by SiH₃ + SiH₂, Si₂H₄ (C_{2h}) + H, and HSiSiH₂ + H₂. The predicted rate constant for SiH + SiH₄ at 500 K in the low pressure (~mTorr) range is in close agreement with the estimate of Jasinski et al.,^[4] on the order of 10⁻¹² cm³ molecule⁻¹ s⁻¹. For these bimolecular and the unimolecular dissociation of Si₂H₅, their high-pressure limit

Figure 8. Predicted rate constants as a function of pressure at T = 500 K for ²HSiSiH₂ + ¹H₂ \rightarrow ²Si₂H₅ and ²HSiSiH₂ + ¹H₂ \rightarrow ²SiH + ¹SiH₄. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Arrhenius plots of rate constants for $^2HSiSiH_2+{}^1H_2\rightarrow{}^2Si_2H_5$ at different pressures as labeled versus the inverse of temperature.

rate constants as presented before in Figures 3 and 4, respectively, clearly depict their relative importance.

Concluding Remarks

In the present work, we have investigated the fundamental reactions relevant to the thermal decomposition of Si₂H₅ radical and its related reverse bimolecular reactions with *ab initio* MO calculations based on the B3LYP/6-311++G(3df,2p), CCSD(T)/6-311++G(3df,2p)//CCSD(T)/6-311+G(d,p), and CC SD(T)/6-311+G(d,p)//CBS methods. Based on the predicted values at the CCSD(T)/6-311++G(3df,2p)//CCSD(T)/6-311+G(d,p) level, the lowest energy path leads to the production of SiH and SiH₄ via a transition state (TS2) with a barrier height of 33.4 kcal/mol relative to Si₂H₅. Additionally, to break the H—SiH₂ and Si—Si bonds require 61.4 and 53.4 kcal/mol, respectively. Furthermore, the enthalpies of the formation $\Delta_{\rm f}H^{\circ}$ for the major products at 0 K have been predicted using the

Figure 10. Arrhenius plots of rate constants for ${}^{2}HSiSiH_{2} + {}^{1}H_{2} \rightarrow {}^{2}SiH + {}^{1}SiH_{4}$ at different pressures as labeled versus the inverse of temperature.

Figure 11. Predicted rate constants as a function of pressure at *T* = 500 K for ${}^{2}SiH_{3} + {}^{1}SiH_{2} \rightarrow {}^{2}Si_{2}H_{5}$ and ${}^{2}SiH_{3} + {}^{1}SiH_{2} \rightarrow {}^{2}SiH + {}^{1}SiH_{4}$. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 12. Arrhenius plots of rate constants for $^2SiH_3+{}^1SiH_2\rightarrow{}^2Si_2H_5$ at different pressures as labeled versus the inverse of temperature.

Figure 13. Arrhenius plots of rate constants for ${}^{2}SiH_{3} + {}^{1}SiH_{2} \rightarrow {}^{2}SiH + {}^{1}SiH_{4}$ at different pressures as labeled versus the inverse of temperature.

Figure 14. Predicted rate constants as a function of pressure at T = 500 K for ${}^{1}Si_{2}H_{4}$ (C_{2h}) + ${}^{2}H \rightarrow {}^{2}Si_{2}H_{5}$ and ${}^{1}Si_{2}H_{4}$ (C_{2h}) + ${}^{2}H \rightarrow {}^{2}SiH + {}^{1}SiH_{4}$. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

1000/T (K ⁻¹)

Figure 15. Arrhenius plots of rate constants for 1Si_2H_4 $(C_{2h})+^2H \rightarrow ^2Si_2H_5$ at different pressures as labeled versus the inverse of temperature.

Figure 16. Arrhenius plots of rate constants for ${}^{1}Si_{2}H_{4}$ (C_{2h}) + ${}^{2}H \rightarrow {}^{2}SiH + {}^{1}SiH_{4}$ at different pressures as labeled versus the inverse of temperature.

FULL PAPER

Table 7. Arrhenius parameters^[a] including high-pressure limit (k_{∞}) and low-pressure limit (k_0) for the ²SiH + ¹SiH₄ \rightarrow ²Si₂H₅ and ²SiH + ¹SiH₄ \rightarrow ¹SiH₂ + ²SiH₃ reactions.

	P (Torr)	А	n	E _a /R (K)	T range (K)
² SiH -	$+$ ¹ SiH ₄ \rightarrow ² Si	₂ H ₅			
k_{∞}	∞	$1.89 imes10^1$	-3.70	1184.0	300-2000
ko	_	$4.02 imes 10^{15}$	-12.35	3270.2	300-2000
k	0.3	$5.72 imes 10^{25}$	-12.53	3644.3	300-2000
k	0.4	$8.54 imes 10^{25}$	-12.55	3680.4	300-2000
k	0.5	$1.20 imes 10^{26}$	-12.56	3714.0	300-2000
k	0.6	$1.56 imes 10^{26}$	-12.57	3740.7	300-2000
k	1	$3.55 imes 10^{26}$	-12.60	3833.4	300-2000
k	10	$1.05 imes 10^{26}$	-12.11	4006.7	300-2000
k	760	5.35 $ imes$ 10 6	-5.55	1785.0	300-2000
² SiH -	$+$ ¹ SiH ₄ \rightarrow ¹ Si	$H_2 + {}^2SiH_3$			
k	10 ⁶	2.62×10^{-17}	1.24	5890.2	300-2000
k	low $P{\sim}1$	$6.75 imes 10^{-3}$	-2.61	7071.6	300-2000
k	10	9.57×10^{-2}	-2.95	7270.9	300-2000
k	760	6.47×10^{-1}	-3.17	7681.8	300-2000
[a] $k(T) = AT^{n}exp(-E_{a}/RT)$. Unit of the rate constants $k(T)$ is (cm ³ molecule ⁻¹ s ⁻¹) and k_{0} is (cm ⁶ molecule ⁻² s ⁻¹).					

computed enthalpies of the reaction $\Delta_r H^{\circ}$ at 0 K, including the isodesmic reactions at this level. The results are in reasonable agreement with previous experimental values, for example, SiH (87.2 kcal/mol), SiH₂ (64.9 kcal/mol), HSiSiH₂ (98.0 kcal/mol), and Si₂H₄ (68.9 kcal/mol). Finally, the rate constants for Si₂H₅ decomposition into these smaller silicon hydrides and their corresponding reverse reactions via the disilaryl intermediate have been calculated using the variational RRKM theory by solving the master equation. The results indicate that the formation of the energetically most favored products SiH + SiH₄ is predominant under varying P, T conditions. The rate constants predicted under different practically accessible conditions have been evaluated and tabulated for future modeling and optimization of homogenous a-Si:H film growth on large-area substrates.

Table 8. Arrhenius parameters^[a] including high-pressure limit (k_{∞}) and low-pressure limit (k_0) for the ¹SiH₂ + ²SiH₃ \rightarrow ²Si₂H₅ and ¹SiH₂ + ²SiH₃ - ²SiH + ¹SiH₄ reactions.

	P (Torr)	А	n	E _a /R (K)	T range (K)
¹ SiH ₂	$+$ ² SiH ₃ \rightarrow ² Si	₂ H ₅			
k_{∞}	∞	2.17×10^{-7}	-1.80	-1330.4	300-2000
k ₀	-	$5.78 imes 10^{-25}$	-2.04	-2367.0	300-2000
k	0.3	1.63×10^{-14}	-2.28	-2481.3	300-2000
k	0.4	$3.45 imes 10^{-14}$	-2.33	-2490.4	300-2000
k	0.5	6.00×10^{-14}	-2.37	-2505.2	300-2000
k	0.6	1.01×10^{-13}	-2.40	-2514.9	300-2000
k	1	$5.32 imes 10^{-13}$	-2.53	-2536.1	300-2000
k	10	$7.29 imes 10^{-7}$	-3.84	-2224.6	300-2000
k	760	$1.88 imes 10^8$	-6.80	624.4	300-2000
¹ SiH ₂	$+\ ^{2}SiH_{3}\rightarrow \ ^{2}Si$	$H + {}^{1}SiH_{4}$			
k	10 ⁶	1.61×10^{-23}	2.53	-2737.9	300-2000
k	low P \sim 10	$1.17 imes 10^{-6}$	-2.02	-1205.6	300-2000
k	760	1.30×10^{-6}	-2.01	-805.2	300-2000
[a] $k(T) = AT^{n}exp(-E_{a}/RT)$. Unit of the rate constants $k(T)$ is (cm ³ molecule ⁻¹ s ⁻¹) and k_{0} is (cm ⁶ molecule ⁻² s ⁻¹).					

Table 9. Arrhenius parameters^[a] including high-pressure limit (k_{∞}) and low-pressure limit (k_0) for the ²HSiSiH₂ + ¹H₂ \rightarrow ²Si₂H₅ and ²HSiSiH₂ + ¹H₂ \rightarrow ²SiH + ¹SiH₄ reactions.

	P (Torr)	А	n	E _a /R (K)	T range (K)
² HSiS	$iH_2 + {}^1H_2 \rightarrow {}^2S$	Si ₂ H ₅			
k_{∞}	∞	$2.22 imes 10^{15}$	-9.23	8436.0	300-2000
ko	-	$1.27 imes 10^{8}$	-13.09	6960.2	300-2000
k	0.3	9.72 $ imes$ 10 ¹⁸	-13.44	7061.2	300-2000
k	0.4	$2.40 imes 10^{19}$	-13.51	7089.4	300-2000
k	0.5	5.27 $ imes$ 10 ¹⁹	-13.58	7116.0	300-2000
k	0.6	$1.02 imes 10^{20}$	-13.63	7138.9	300-2000
k	1	$9.86 imes 10^{20}$	-13.83	7234.8	300-2000
k	10	$1.26 imes 10^{28}$	-15.35	8301.2	300-2000
k	760	$1.79 imes 10^{36}$	-16.18	11205.7	300-2000
² HSiS	$iH_2 + {}^1H_2 \rightarrow {}^2S_2$	$SiH + {}^{1}SiH_{4}$			
k	10 ⁶	$2.17 imes 10^{-5}$	-3.66	6501.6	300-2000
k	low $P{\sim}10$	$2.22 imes 10^{15}$	-9.23	8436.0	300-2000
k	760	1.14×10^{17}	-9.70	9249.9	300-2000
[a] $k(T) = AT^{n}exp(-E_{a}/RT)$. Unit of the rate constants $k(T)$ is $(cm^{3} mole-cule^{-1} s^{-1})$ and k_{0} is $(cm^{6} molecule^{-2} s^{-1})$.					

Table 10. Arrhenius parameters^[a] including high-pressure limit (k_{∞}) and low-pressure limit (k_0) for the ${}^{1}\text{Si}_2\text{H}_4$ (C_{2h}) + ${}^{2}\text{H} \rightarrow {}^{2}\text{Si}_2\text{H}_5$ and ${}^{1}\text{Si}_2\text{H}_4$ (C_{2h}) + ${}^{2}\text{H} \rightarrow {}^{2}\text{SiH}_5$ and ${}^{1}\text{Si}_2\text{H}_4$ (C_{2h}) + ${}^{2}\text{H} \rightarrow {}^{2}\text{SiH}_5$ and ${}^{1}\text{SiH}_4$ reactions.

	P (Torr)	А	п	E _a /R (K)	T range (K)		
¹ Si ₂ H	${}^{1}\text{Si}_{2}\text{H}_{4} (\text{C}_{2\text{h}}) + {}^{2}\text{H} \rightarrow {}^{2}\text{Si}_{2}\text{H}_{5}$						
k_{∞}	∞	$5.41 imes 10^{14}$	-8.31	2438.8	300-2000		
k _o	-	$2.26 imes 10^{-7}$	-7.88	1477.1	300-2000		
k	0.3	7.27×10^{2}	-7.89	1423.8	300-2000		
k	0.4	$1.01 imes 10^3$	-7.89	1415.4	300-2000		
k	0.5	$1.27 imes 10^3$	-7.89	1405.1	300-2000		
k	0.6	$1.55 imes 10^3$	-7.89	1396.6	300-2000		
k	1	$2.67 imes 10^3$	-7.90	1362.2	300-2000		
k	10	$8.10 imes 10^4$	-8.01	1005.7	300-2000		
k	760	$3.54 imes 10^{20}$	-11.42	1944.2	300-2000		
¹ Si ₂ H	$_4 (C_{2h}) + {}^2H \rightarrow$	2 SiH + 1 SiH ₄					
k	10 ⁶	$8.25 imes 10^4$	-5.63	1981.6	300-2000		
k	low P \sim 760	5.41×10^{14}	-8.31	2438.8	300-2000		
[a] $k(T) = AT^{n}exp(-E_{a}/RT)$. Unit of the rate constants $k(T)$ is (cm ³ molecule ⁻¹ s ⁻¹) and k_{0} is (cm ⁶ molecule ⁻² s ⁻¹).							

Acknowledgments

The authors deeply appreciate a partial support of this work by the Ministry of Economics under contract no. 98-EC-17-A-07-S2-0043. M.C.L. wants to thank the National Science Council of Taiwan for the support of this work and for the distinguished visiting professorship at the National Chiao Tung University in Hsinchu, Taiwan.

Keywords: $Si_2H_5 \cdot a$ -Si:H thin film $\cdot ab$ *initio* \cdot chemical kinetics \cdot plasma enhanced chemical vapor deposition

How to cite this article: S.-Y. Wu, Y.-M. Lee, J. S. Wu, M. C. Lin. *Int. J. Quantum Chem.* **2014**, *114*, 278–288. DOI: 10.1002/qua.24557

[1] J. K. Rath, Sol. Energy Mater.Sol. Cells 2003, 76, 431.

[2] A. Matsuda, Jpn. J. Appl. Phys. 2004, 43, 7909.

- [3] S. Nishizaki, K. Ohdaira, H. Matsumura, Thin Solid Films 2009, 517, 3581.
- [4] J. M. Jasinski, R. Becerra, R. Walsh, Chem. Rev. 1995, 95, 1203.
- [5] S. Nakamura, K. Matsumoto, A. Susa, M. Koshi, J. Non Cryst. Solids 2006, 352, 919.
- [6] A. A. Onischuk, V. N. Panfilov, Russ. Chem. Rev. 2001, 70, 321.
- [7] U. V. Bhandarkar, M. T. Swihart, S. L. Girshick, U. R. Kortshagen, J. Phys. D Appl. Phys. 2000, 33, 2731.
- [8] H. K. Motfat, K. F. Jensen, R. W. Carr, J. Phys. Chem. 1992, 96, 7695.
- [9] K. Tonokura, T. Murasaki, M. Koshi, J. Phys. Chem. B 2002, 106, 555.
- [10] S. Y. Wu, P. Raghunath, J. S. Wu, M. C. Lin, J. Phys. Chem. A 2010, 114, 633.
- [11] B. Ruscic, J. Berkowitz, J. Chem. Phys. 1991, 95, 2416.
- [12] D. Sillars, C. J. Bennett, Y. Osamura, R. I. Kaiser, Chem. Phys. 2004, 305, 141.
- [13] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [14] A. D. Becke, Phys. Rev. A 1998, 38, 3098.
- [15] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [16] (a) J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968; (b) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
- [17] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- [18] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. A 1990, 94, 5523.
- [19] K. A. Peterson, D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1994, 100, 7410.
- [20] D. E. Woon, Jr., T. H. Dunning, J. Chem. Phys. 1995, 103, 4572.
- [21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Suseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. K. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.

- Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, **2004**.
- [22] B. C. Garrett, D. G. Truhlar, J. Phys. Chem. 1979, 83, 1052.
- [23] C. -C. Hsu, A. M. Mebel, M. C. Lin, J. Chem. Phys. 1996, 105, 2346.
- [24] A. Fernández-Ramos, J. A. Miller, S. J. Klippenstein, D. G. Truhlar, Chem. Rev. 2006, 106, 4518.
- [25] M. W. J. Chase, NIST-JANAF thermochemical tables, 4th ed.; J. Phys. Chem. Ref. Data Monogr. 9, Parts I and II, NIST, Washington DC, USA. 1998.
- [26] T. Baer, W. L. Hase, Unimolecular Reaction Dynamics Theory and Experiments; Oxford University Press: New York, 1996.
- [27] C. -C. Hsu, M. C. Lin, A. M. Mebel, C. F. Melius, J. Phys. Chem. 1997, 101, 60.
- [28] S. J. Klippenstein, A. F. Wagner, R. C. Dunbar, D. M. Wardlaw, S. H. Robertson, VariFlex, Version 1.0; Argonne National Laboratory: Argonne, IL, 1999.
- [29] J. Berkowitz, J. P. Greene, H. Cho, B. Ruscic, J. Chem. Phys. 1987, 86, 1235.
- [30] L. A. Curtiss, K. Raghavachari, P. W. Deutsch, J. A. Pople, J. Chem. Phys. 1991, 95, 2433.
- [31] A. F. Sax, J. Kalcher, J. Phys. Chem. 1991, 95, 1768.
- [32] A. M. Doncaster, R. Walsch, Int. J. Chem. Kinet. 1981, 13, 503.
- [33] N. S. Shuman, A. P. Spencer, T. Baer, J. Phys. Chem. A 2009, 113, 9458.
- [34] A. Bodi, J. P. Kercher, C. Bond, P. Meteesatien, B. Sztray, T. Baer, J. Phys. Chem. A 2006, 110, 13425.
- [35] R. L. Burden, J. D. Faires, Numerical Analysis, 8th ed; Thomson Brooks/ Cole, Boston, USA, 2005.
- [36] M. E. Coltrin, R. J. Kee, J. A. Miller, J. Electrochem. Soc. 1986, 133, 1206.
- [37] A. Barbato, C. Seghi, C. Cavallotti, J. Chem. Phys. 2009, 130, 074108.
- [38] M. C. Lin, K. J. Laidler, Can. J. Chem. 1968, 46, 973.

Received: 14 June 2013 Revised: 1 August 2013 Accepted: 10 September 2013 Published online 7 October 2013