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ABSTRACT 

In a recent work, Hartwig and Putcha obtained a complete characterization of 
those finite matrices which can be expressed as the difference of two idempotents. 
Extending this result to operators on a possibly infinite-dimensional Hilbert space 
seems more difficult. In this paper, we initiate its study and obtain, among other 
things, (1) that not every nilpotent operator is the difference of two idempotents, (2) 
that if T is the difference of two idempotents, then the spectra of T and -T differ 
at most by the two points k 1, and (3) a characterization of differences of two 
idempotents among normal operators. In the second part of the paper, we develop 
some similarity-invariant models of two idempotents. These are analogous to the 
known unitary-equivalence-invariant models for two orthogonal projections. 

*Both authors were partially supported by the National Science Council of the Republic of 

China’ while conducting this research. 
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INTRODUCTION 

The study of the difference of two orthogonal projections on a Hilbert 
space has a long history. The pioneering work was done by C. Davis: he 
obtained in [l] a complete characterization of such differences. The cor- 
responding problem for idempotents was taken up more recently. In [8], 
Hartwig and Putcha were able to characterize differences of two idempotents 
on any finite-dimensional space. The purpose of this paper is to initiate the 
study of this latter problem for operators on infinite-dimensional spaces. 

In the following, we consider only bounded linear operators on a complex, 
possibly infinite-dimensional Hilbert space. (Although many results below 
hold on Banach spaces, we restrict ourselves to Hilbert spaces for ease 
of exposition.) Recall that an operator T is idempotent if T” = T and 
is an (orthogonal) projection if T ’ = T = T *. The problem of character- 
izing differences of idempotents in general is more difficult than its finite- 
dimensional counterpart. Although many assertions in [8] carry over to 
the more general setting, there are some which fail to follow through. In 
particular, we show below that, in contrast to the finite-dimensional case, 
there are nilpotent operators which cannot be expressed as the difference of 
two idempotents. On the positive side, we obtain many necessary or sufficient 
conditions for an operator to be so expressed. In particular, we prove that if T 

is the difference of two idempotents, then the spectra of T and -T differ at 
most by the two points f I. We also obtain a complete characterization of 
such differences among normal operators. All these will be contained in 
Section I below. 

In Section 2, we consider some similarity-invariant models for two idem- 
potents. More precisely, given idempotents E and F, we seek some canonical 
operators E’ and F’ which are simultaneously similar to E and F. With 
certain restrictions on the spectrum of E - F, we can choose E’ and F’ to 
be of one of the following simple forms: 

As an example, we show that if 0 and * 1 are not in the spectrum of E - F, 

then E and F are simultaneously similar to 
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for some unique (up to similarity) o p erator A with spectrum not containing 0 
and 1. Such models simplify many constructions involving two idempotents 
and serve to deepen our understanding of their structures. They are also 
expected to play a role in the characterizations of the difference, sum, 
and product formed by two idempotents. Their counterparts, the unitary- 
equivalence-invariant models, for two projections have been considered for 
decades (cf. [6]). In many cases, our models will lead to the latter ones. 

Before starting, we fix some notation. For two operators T and S, we use 
T =: S to denote that T and S are similar, that is, there is an invertible 
operator X such that XT = SX. For pairs of operators (T,, T2> and (S,, S,), 
CT,, T,) = (S,, S,) denotes that they are simultaneously similar, that is, the 
invertible X is such that XT, = S,X and XT, = S,X. u(T), a,(T), and 
gP;(T) denote, respectively, the spectrum, the essential spectrum, and the 
point spectrum of an operator T; ran T and ker T denote its range and 
kernel. 

1. DIFFERENCE 

In this section, we present some sufficient or necessary conditions for an 
operator to be expressible as the difference of two idempotents. The presen- 
tation is based on [15, Chapter l] with modifications and improvements. The 
theory bears resemblance to that of sums of two square-zero operators (cf. 
[16, Section 21). 

We start with the following lemma. Recall that an operator X is an 
involution if X” = I. 

LEMMA 1.1. Zf T is an operator such that XT = -TX for some inuolu- 

tion X, then T is the diflerence of two idempotents. 

Proof. Let E = i<Z - X). Th en E is an idempotent and TE = (I - 

E)T. Since E is similar to an operator of the form i g , [ 1 we may, for 

convenience, assume that 

ET ’ ’ 
[ 1 0 0 

and also 

T= 
T, T2 

[ 1 T3 T4 . 



260 JIN-HSIEN WANG AND PEI YUAN WU 

Carrying out the matrix multiplications on both sides of TE = (I - E)T, we 
derive that T, = 0 and T4 = 0. Hence 

T=[: :I-[-:.; ii] 
is the difference of two idempotents. n 

We next extend Lemma 1.1 slightly by relaxing the restriction on X. For 
an operator X, we say that a( X) d oes not surround A if h belongs to the 
unbounded connected component of @ \ a(X). It is well known that, in 
general, an invertible operator need not have a square root (cf. [5]), but if 
a(X) does not surround 0, then X has a square root which is an analytic 
function of X (cf. [13, pp. 264-2651). 

PROPOSITION 1.2. If T is an operator such that either 

(1) XT = - TX for some operator X with a( X’) not surrounding 0 or 
(2) T is unitarily equivalent to - T, 

then T is the difference of two idemp0tent.s. 

Proof. (1): Let Y be an analytic function of X ’ and satisfy Y ’ = 
X ‘, and let Z = Xl- ‘. Since X and YP ’ commute, it is easily seen that Z is 
an involution. On the other hand, XT = - TX implies that X ‘T = TX”, 
whence YT = TY and therefore ZT = -TZ. The conclusion then follows 
from Lemma 1.1. 

(2): Let U be a unitary operator such that UT = -TU. By the spectral 
theorem, 7J2 has a square root V which commutes with every operator 
commuting with U ‘. Let Z = W-‘. Then, as above, Z is an involution and 
ZT = - TZ. The conclusion follows. n 

It seems to be unknown whether the similarity of T and - T implies that 
T is the difference of two idempotents. However, the converse is certainly 
false, as T = fZ attests. But if f 1 @ (T(T), then T being the difference of 
two idempotents does imply the similarity of T and -T. This follows from 
the following 

THEOREM 1.3. Let E and F he idempotents. 

(1) Zf *l e a(E - F), th en (E, F) = (F, E) and thus, in particular, 
E= F, E - F = F - E, and EF = FE. Moreover, i;f(~((E - F)“) does not 
surround 1, then the similarity of (E, F) and (F, E) can be implemented by 
an involution. 

(2) Zf 0, +lGa(E-F),then(E,F)=(Z-E,Z-F). 
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Proof. Let X = E - F and Y = Z - E - F. Then it is easily verified 
that X2 + Y2 = I. 

(1): From this identity, + 1 E cr(X) is equivalent to 0 @ cr(Y ). Hence Y 
is invertible. Since YE = Fy and YF = EY, we have (E, F) = (F, E). If 
cr(X2) does not surround 1, then cr(Y “) does not surround 0. Hence Y 2 has 
a square root Y, which is an analytic function of Y 2. Let 2 = YY[ ‘. Then, as 
before, Z is an involution, and ZE = FZ and ZF = EZ. 

(2): Since 0, k 1 P (T(X), both X and Y are invertible. It is easily 
verified that XYE = (I - E)XY and XYF = (I - F)XY, whence (E, F) = 

(I - E, Z - F). n 

In the above proof, the use of the identity (E - F)2 + (I - E - F)’ = 

Z is an old trick. Indeed, for arbitrary idempotents E and F, (E - F)2 

and (I - E - F)” are their associated separation and closeness operators; 
they are the operator analogues of sin” 8 and cos2 8, where 6 is the non- 
obtuse angle between the ranges of E and F (cf. [l] and [ll]). The imple- 
menting involution for E = 

[lo, p. 35, Problem 4.11a]. 
F in the preceding proof appeared before in 

Also note that, for idempotents E and F without the condition f I @ 
(T(E - F), EF and FE may not be similar. An example is 

E= l ’ 
[ 1 0 0 

Combining Proposition 1.2 and Theorem I.3 yields the following 

COROLLARY 1.4. Zf T is an operator with a(T “> not surrounding 1, then 
the following statements are equivalent: 

(1) T is the difirence of two idempotents; 

(2) XT = -TX for some involution X; 

(3) XT = - TXf or some X with cr(X 2, not surrounding 0. 

COROLLARY 1.5. Let T he an operator with a(T) n R = 0. Then T is 

the dijj4erence of two idempotents if and only zf T is similar to - T. 

Proof. The necessity follows from Theorem 1.3. To prove the suffi- 
ciency, let T = T, CB T2, where (T(T~) and (T(T~) are contained in the upper 
and lower (open) half planes, respectively. If 

Xl x2 
x= x 

[ I 3 x4 
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is an invertible operator such that XT = -TX, then a simple computa- 
tion yields that X,T, = -T,X,. Since (T(T,) n a( -T,) = 0, we infer that 
X, = 0 (cf. [12]>. Similarly, we have X, = 0. Hence the invertibility of X 
implies that of X,. From X,T, = -T,X,, we obtain T = T, @ (-T,). This 
latter operator is similar to (- T,) CB T, via the involution 

0 z 1 1 z 0’ 

Hence T is the difference of two idempotents by Lemma 1.1. n 

The next result is another necessary condition for the difference of two 
idempotents. 

THEOREM 1.6. Zf T is the difirence of two idempotents, then a(T) \ 

I&l) = a(-T)\{+l). If, in addition, T is acting on an infinite-dimensional 
separable space, then a,(T) \ { & 1) = a,( - T) \ { 5 1). 

Proof. Let T = E - F, where E and F are idempotents, and S = Z - 
E - F. For any complex number A, we can easily verify that (T - hZ)(S - 

T - AZ) = (S + T - AZ)(-T - AZ). Since (S - T)” = (S + T)’ = 

I, S - T - AZ and S + T - AZ are invertible for any A f & 1. From 
the above identity, we deduce that T - AZ is invertible (or is invertible 
modulo compact operators) if and only if - T - AZ is. Our assertions follow 
immediately. n 

As we mentioned in the beginning of this paper, many considerations 
here are motivated by the work [B] of Hartwig and Putcha for the finite- 
dimensional case. The next few results are essentially due to them, some with 
modifications to adapt to the present situation. 

LEMMA 1.7. For an invertible operator T, the following statements are 
equivalent: 

(1) T is the diflerence of two idempotents; 
(2) T-’ is the difference of two idempotents; 
(3) T is similar to an operator of the form 

onH @ K. 

This is [B, Proposition 2 and Corollary 21. 
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Note that (3) 3 (I) above is always true, even without the invertibility 
assumption, as 

shows. This is not the case of (1) 3 (3). Indeed, 

0 1 0 

T= [ 

0 0 0 
0 0 0 1 

is the difference of the idempotents 

while, as can be easily checked, it is not similar to operators of the form 

LEMMA 1.8. Let 

where C is invertible, AC = CA, and a( A2 + BC) does not surround 0. 

Then T is similar to 

( A2 + BC)1’2 0 

0 1 -( A2 + BC)“’ . 
Proof. Let D = (A2 + BC) ‘I2 the analytic square root of A2 + BC, , 

and let 

A-D 1 c . 
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Since both C and (A + D)C - (A - D>C = 2 DC, the “determinant” of X, 
are invertible, [7, Problem 711 implies that X is invertible. Using AC = CA, 
we can easily check that 

TX=X[f :I. 
This completes the proof. n 

PROPOSITION 1.9. Let T be such that u(T’) does not contain 1 and does 
not surround 0. Then T is the dierence of two idempotents if and only if T is 
similar to an operator of the form D @ ( -D). 

Using Lemmas 1.7 and 1.8, this can be proved essentially like [8, 
Proposition 41. 

PROPOSITION 1.10. Let T be an operator with a(T) c { + l}. Then T is 
the diflerence of two idempotents if and only if T is similar to an operator of 
the form (ZH - XY) @ (-ZK + YX), where X: K + H and Y: H + K are 
such that both XY and YX are quasinilpotent. 

Recall that an operator is quasinilpotent if its spectrum is the single- 
ton zero. The preceding proposition is [B, Proposition 51. Note that, in the 
degenerate case, K or H may be the zero space, whence T is +I. Thus, in 
particular, if T is the difference of two idempotents with o(T) = {l}, then 
T = I. 

An operator T is nilpotent if T n = 0 for some n > 1. It is proved in [B, 
Proposition l] that on a finite-dimensional space every nilpotent operator is 
the difference of two idempotents. The corresponding result on infinite- 
dimensional spaces is not true in general. 

PROPOSITION 1.11. 

(1) Every operator T with T2 = 0 is the difference of two idempotents. 
(2) There is an operator T with T 3 = 0 such that T and - T are not 

similar, whence it is not the difference of two idempotents. 

Proof. (1): Since T has the representation 

with respect to the decomposition ker T @ (ker T) ‘, it is similar to - T via 
the involution 

-z 0 
[ 1 0 I’ 



DIFFERENCE OF TWO IDEMPOTENT OPERATORS 

By Lemma 1.1, T is the difference of two idempotents. 
(2): Let E be such that 0 < E < 1, and let 

265 

0 s z 
S= 

[ 1 0 0 s. 
0 0 0 

1 0 
E 

E2 

.I 

and T = 

0 . . 

Obviously, T satisfies T 3 = 0 Assume that there is an invertible operator . 
X = [Xii];, j= r such that XT = - TX. A simple computation yields that 

x,,s = 0, 

x,, + x,,s = 0, 

x,,s = -sx,,, 

x,,s = -sx,, - x,,, 

x,, + x,,s = -sx,,, 

xi, + xi, s = - sx,, - x,, . 

Since S is one-to-one with dense range, we derive from the first three of the 
preceding equations that X,, = X,, = X,, = 0. The next two equations then 
reduce to X,,S = -SX,, and X,,S = -SX,,. Thus we have S2X,, = X,iS2. 
Assume that the matrix representations of Xi, and X3, are [ aijc j= i and 

]b,J ‘= 1, 
for a 1 ‘i 

respectively. A simple computation yields that bjj = l 2(jpi)ajj 
i,j 2 1. Therefore, Xi, + X3, = [(l + E~(~-~%z,~~~=,. On the 

other hand, since S is a Hilbert-Schmidt operator, the equation Xi, + 
X3, = --(Xi, S + SX,,) implies the same for Xi, + X,,. Hence from the 
inequalities 

CI”‘/l2 < X(1 + W))“lUjj12 < cc), 
i,j i,j 

we obtain that Xi, is also Hilbert-Schmidt. This contradicts the fact that 
it is left invertible. Hence T is not similar to -T. In particular, by 
Theorem 1.3(l), T is not the difference of two idempotents. n 

The following finite-dimensional characterization is the main result in [8]. 
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THEOREM 1.12. On a finite-dimensional ,space, T is the difference of two 
idempotents if and only if it is similar to an operator of the form N @ (I - 
XY)@(-I+YX)@D@(-D), h w ere N, XY, and YX are all nilpotent 
and D is such that its spectrum does not contain 0 and + 1. 

Moving to infinite-dimensional spaces, we can use the preceding result to 
characterize differences of idempotents among operators of the form I + K 
with K compact. 

PROPOWION 1.13. Let K be a compnct operator on a separable space. 
Then I + K is the difherence of two idempotents if and only if it is simi- 
lar to 0 @ N @ (I - XY) @ (-I + YX) @ D @ C-D), where 0 acts on an 
infinite-dimensional ,space, N, XY, and YX are nilpotent operator-s on 
finite-dimensional spaces, and D on a finite-dimensional space is such that its 
spectrum does not contain 0 and f 1. 

Proof. The sufficiency follows easily from the previous propositions. 
To prove the necessity, assume that I + K = E - F, where E and F are 
idempotents. From (I - E) + K = -F and the compactness of K, we have 
oe( I - E) = - a,(F). Since both a,( I - E) and a,(F) are subsets of (0, l}, 
they must equal {O). Hence 1 - E and F are of finite rank. We may assume 
that they are of the forms (I - E ‘> @ 0 and F’ @ 0, where I - E ’ and 
F’ are idempotents acting on the same finite-dimensional space. Thus I + 
K = (E’ - F’) @ 0, and our assertion follows from Theorem 1.12. n 

Enlarging our consideration, we next come to operators of the form 
AZ + K, where h is a complex number and K is compact. It is easily seen 
that such an operator is the difference of two idempotents only when h = 
0 or t_ 1. Indeed, if this is the case, then a,(XZ + K) U { & l} = (T,( - AZ - 
K) u {kl) by Th eorem 1.6, which is the same as {A, + 1) = { - A, + l}. 
Our assertion follows immediately. In light of Proposition 1.13, we may 
restrict our consideration to the case h = 0. 

PROPOSITION 1.14. A compact operator K on a separable space is 
the d@erence (If two idempotents if and only if K is similar to (I - XY) @ 
(-I + YX) @ K,, where XY and YX are nilpotent operators on a finite- 
dimensional space, K, is compact such that + 1 CC a( K, >, and K, is similar 
to - K, via an involution. 

Proof. The assertion follows, on taking out the eigenvalues + 1 from 
a( K >, from Corollary 1.4, Proposition 1.10, and [B, Lemma 21. W 

This allows us to conclude that the Volterra operator V is not the 
difference of two idempotents, since it is known that V is not similar to -V 
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(cf. [9] or [4]). Hence not every compact quasinilpotent operator is such a 
difference. It is not known whether every compact nilpotent operator is. 

In the remainder of this section, we give a characterization of differen- 
ces of idempotents among normal operators. As we will see, the result is 
consistent with the one for finite-dimensional operators in Theorem 1.12. 
We start with the following lemma, whose proof is similar to that of [B, 
Lemma 21. 

LEMMA 1.15. Let T = 0 CB ZH2 CB (-Z,3) 6B T, on H, ci3 H, ~3 H, @ H4, 
where 0 and f 1 are not eigenvalues of T, and T:. Then T is the dijfference 
of two idempotents if and only if T, is. 

Proof. We need only prove the necessity. Let T2 = Z @ (-I) @ T,. 
Then T, is one-to-one with dense range, and 

0 0 
T= 0 T2’ 

[ 1 
If 

is the difference of two idempotents, then Ej = Fj for j = 1, 2, and 3, and 
TZ = E, - I$. The idempotency of E and F yields that E, = E, E, + E, E, 
and F, = Fl F2 + F2 F4. Hence 

EzTz = E,( E, - F4) = E, E, - F2 F4 

= (E, - E,E,) - (F2 - F,F,) = 0. 

Since T2 has dense range, we infer that E, = F2 = 0. Similarly, we 
have E, = F3 = 0. This shows that T2 = E, - F4 is the difference of two 
idempotents. 

An analogous argument shows that if 

then T, = El, - Fl is also the difference of two idempotents. n 
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LEMMA 1.16. Let T be a normal operator with + 1 E gp(T>. Then T 
is the difirence of two idernpotents if and only if T is unitarily equivalent 
to -T. 

Proof. The sufficiency is a consequence of Proposition 1.2(2). To prove 
the necessity, assume that T = E - F, where E and F are idempotents. 
Since 

(Z-E - F)2 = 1 - T2 = (I - T)(I + T) 

and the latter operator is one-to-one with dense range, the same is true 
for I - E - F. From (I - E - F)T = -T(Z - E - F) we infer that T is 
unitarily equivalent to - T (cf. [2, Lemma 4.11). W 

THEOREM 1.17. A normal operator T is the difference of two idempo- 

tents if and only if T is unitarily equivalent to 0 @ IH2 CB (- ZHJ) @ D @ (-D) 
on H, CB H, CB H, @ H4 CB H,, where D is a normal operator with 0, f 1 P 

u&D>. 

Proof. The sufficiency is clear. For the necessity, let E(e) be the spectral 
measure of T, and let err = (z E C\{+l):Rez > 0 or Rex = 0 and 
Im z > 0} and u2 = {z E C : --z E aI}. Let H, = ker T, H, = ker(T - I>, 
H, = ker(T + I), H, = ran E(a,), and H, = ran E(a,). Then T = 0 CB 
I CB (-I) CB T, @ T, on H, CB H, @ H, CB H, CB H,, where T, = Tl H, and 
T, = TI H,. Since 0, + 1 E cp(T1 @ T,), Lemma 1.15 implies that T, @ T, is 
the difference of two idempotents. By Lemma 1.16, there exists a unitary 
operator 

u, u2 

v=u u 
[ I 3 4 

such that U(T, 63 T,) = -(T, @ T,)U. This yields that V,T, = -T,U,. Since 
the spectral measures of T, and -T, are mutually singular, we obtain 
V, = 0 by [3, Proposition 2.41. Similarly, we have V, = 0. Hence both V, and 
U, are unitary operators. Thus T is unitarily equivalent to 0 @ I @ ( - I) @ 

T, @ C-T,). n 

A special case of the above theorem was obtained in [14, Theorem 21. 

COROLLARY 1.18. If T is the dijference of two idempotents and T > 1, 
then T = I. 
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2. SIMILARITY MODEL 

In this section, we derive various similarity-invariant models for certain 
pairs of idempotents. We start with a two-parameter model. For operators 
B : H + K and C : K + H with Z + CB invertible, let M(B, C) denote the 
idempotent 

THEOREM 2.1. Let E and F be idernpotents. Then E - F is invertible if 
and only if 

(E,F) = ([; ;]Jf(B,C)) 
for some operators B and C with Z + CB invertible. Here B and C are 
unique in the following sense: if 

for another pair B ’ and C ’ with Z + C’B ’ invertible, then there are 
invertible operators X and Y such that XB = B ‘Y and YC = C’X. 

The model given above has a geometric meaning: it can be considered as 
the operator analogue of the following two-dimensional situation. Let L, and 
L, be two lines in the Euclidean plane both passing through the origin. 
Let E be the orthogonal projection of the plane onto its x-axis and F the 
projection along the direction of L, onto points of L,. With respect to the 
x-y coordinates, E and F can be represented as 

-tan 19, 1 

tan 0, tan 0, 

tan 8, 

l-- tan 0, 

tan 19, 

[ 0 1 0 0 1 and l-- tan % : 

-tan 0, 1 

tan 0, 
l-- 

tan 8, 
l-- 

tan 13~ tan 8, 
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where tIr and 8, are the inclinations of L, and L,, respectively. Hence if we 
let B = - l/tan 8, and C = tan Or, then the matrices of E and F coincide 
with those in the model of Theorem 2.1. Note that in this case the con- 
dition of the invertibility of I + CB is equivalent to tan 8, f tan 8, or, 
equivalently, L, # L,. 

Proof of Theorem 2.1. Assume that E - F is invertible and 

X-lEX = ’ ’ 
[ 1 0 0 

for some invertible X. Then, as proved in [8, Proposition 21, 

x-‘(E-F)-‘x= z B 
[ 1 c -1 . 

Since (E - F)-’ is similar to 

I+BC 0 
0 1 l+CB ’ 

I + CB is invertible. Moreover. 

X-‘(E-F)X= 

This latter inverse matrix can be easily checked to be 

I-B(Z+CB)-‘C B(I+CB)-’ 

(I + CB)-‘C -(I + CB)-’ 1 ’ 
Hence we obtain 

X-‘FX = X-‘EX - X-‘(E - F)X = M( B,C). 

(*) 

Conversely, since the matrix (*) is invertible (with inverse i J, 1, the 
[ I 

invertibility of E - F follows immediately. 
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As for the uniqueness, let 

x z 
[ 1 w Y 

be an invertible operator which implements the similarity of 

From 

we derive that 2 = 0 and W = 0. On the other hand, (X @ Y )M( B, C) = 
M( B ‘, C ‘>( X @ Y ) implies that 

XB( z + m-’ = B’( z + C’B’)-lY, 

Y( z + CB)-lC = (I + Clz3l) -lcx, 

Y( z + CB)-’ = (I + C’B’)-lY. 

Hence 

Xz?(Z + Czp = B'Y(Z + m-l, 

and it follows that XI3 = B’Y. Similarly, YC = C’X. Note that uniqueness in 
this sense is the best we can hope for, since if XB = B’Y and YC = C’X for 
some invertible X and Y, then 

x 0 

[ 1 0 Y 

implements the similarity of 
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The next several corollaries give models for pairs of idempotents with 
various conditions on the spectrum of their difference. 

COROLLARY 2.2. Let E and F be idempotents. Then + 1 e u( E - F) if 
and only if 

(E>F) = ([(: +WW)) 

for some B and C with 1 + CB inuertible. 

Proof. This follows from Theorem 2.1 on replacing F there by Z - F 
and noting that (E - F>’ + (E + F - Z)2 = I. W 

COROLLARY 2.3. lf E and F are commuting idempotents with + 1 G 
o(E - F), then E = F. 

Proof. Obviously, the commutativity of 

z 0 

[ 1 0 0 
and I - M(B,C) 

implies that B = 0 and C = 0, whence 

Z-M(B,C)= t, ; . 
[ I 

It follows that E = F. n 

The preceding corollary generalizes [13, p. 302, Exercise Ill for operators 
on Hilbert spaces. 

COROLLARY 2.4. Let E and F be idempotents. Then a( E - F) c { f l} 
if and only zf 

(E>F) = ([:, $WW)) 

for some B and C with BC and CB yuasinilpotent. 

Proof. In view of Theorem 2.1, we need only show that (T(E - F) & 
{ * 1) is equivalent to the quasinilpotency of BC and CB. This is evident from 
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the relation 

X-‘(E-F)-2X= ’ 
Z + CB 1 

(cf. the proof of Theorem 2.1). n 

COROLLARY 2.5. Let E and F be idempotents. Then E - F is 
quasinilpotent if and only $ 

(E,F) = ([:, ;]J-M(W)) 

for some B and C with BC and CB quasinilpotent. 

Proof. Since (E - F>’ + (E + F - Zj2 = I, E - F is quasinilpotent 
if and only if cr(E f F - Z) c ( f 1). Our assertion then follows from 
Corollary 2.4 on replacing F there by Z - F. n 

Combining the previous results, we obtain various similarity-invariant 
models for operators with “decomposable” spectrum (e.g., normal operators 
or operators on a finite-dimensional space). Rather than going into details, we 
next proceed to consider a one-parameter model which is more adapted to 
problems involving products of two idempotents. 

THEOREM 2.6. For idempotents E and F, the following statements are 
equivalent: 

(1) 0, +1 @ a(E - F); 

(2) (E, F) = ([6 $[: ::;I) for some operator A with 0,l @ u ( A); 

(3) EF = ; ; 
[ I 

for some A with 0,l G r(A), 

In this case, the operator A in (2) or (3) is unique up to similarity. 

The proofs of (1) * (2) and (3) 3 (2) of the preceding theorem depend, 
respectively, on the following two lemmas. 

LEMMA 2.7. Zf E and F are idempotents with 0 and + 1 not in 
u(E - F), then there exists an operator A, unique up to similarity, with 0 
and 1 not in (T(A) such that for any invertible operator D commuting with A 
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Proof. By Theorem 2.1, 

for some B and C with I + CB invertible. Let A = CB(I + CB)-’ and 
X = C @ [-A(1 - A)D-‘(I + CB)]. Note that 

and the assumption that * 1 @ a(E - F) imply the invertibility of BC and 
CB, whence that of B and C. Thus 0,l g a( A) and X is invertible. On the 
other hand, since D commutes with A, it also commutes with CB. Using 
this, we can easily check that 

and 

XM(B,C) = 
A D 

A(Z -A)D-’ Z-A ‘* I 

It follows that 

For the uniqueness of A, assume that A’ is an operator having the same 
property as A. Then, in particular, 
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whence their respective products 

[{ Ii’] and [$ ‘iA’] 

are also similar. However, the former is similar to [t :] (tia [i Ar’]), and 

the latter to [ “,’ i] (via [ 6 A’y’]). Hence 

[;’ :] and [:o’ i] 
are similar. It follows easily that A and A’ are similar. n 

LEMMA 2.8. Forj = 1,2, let Ej and 5 be idempotents with 0 and 5 1 
not in o<Ej - 5). Then (E,, F,) = (E2, F2) ifand only ifE,F, = E,F,. 

Proof. The necessity is trivial. To prove the sufficiency, we have 

for some Aj with 0,l G a(A,), j = 1,2, by Lemma 2.7. Hence 

Our assumption implies that 

whence A, = A, as before. If X is an invertible operator implementing the 
similarity of A, and A,, then 

x 0 

[ I 0 x 
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does the same for 

It follows that (E,, F,) = (E2, Fz). 

Proof of Theorem 2.6. To complete the proof, we need only show that 
(2) * (1) and (3) j (2). 

Assume that (2) holds. Then E - F is similar to 

I-A A-l 
-A 1 A-l ’ 

Since both A and the “determinant” (I - AX A - Z) - (A - I)( - A) = 
A - 1 are invertible, [7, Problem 711 implies the invertibility of 

I-A A-l 
-A A-l I 

and hence that of E - F. Similar arguments yield the invertibility of E - 
F + I. This proves (1). 

If (3) holds, then we have 

Since 0 and * 1 are not in the spectrum of 

as above, (2) follows from Lemma 2.8. n 

For idempotents on a finite-dimensional space, additional equivalent 
conditions can be added to the list in Theorem 2.6. 

THEOREM 2.9. Let E and F be idempotents on a finite-dimensional 
space. Then the following statements are equivalent to Cl), (2), and (3) in 
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A 
(A A’)“’ 

(A - A’)l” 
for some A with 0,l CC 

I-A 

(5) (E, F) = ([: :I:]>[ “s -iI-$])forsome 

(6) (E, F) = 
I 

’ 
(s _ sg)“z 

II 

s 
(S - s2)1’2 I-S ’ _ (S _ p)l’* 

with 0, f, 1 E (T(S); 

(7) E - F = ; [ 1 _OD for some D with 0, + 1 e 

S with 0, f, 1 e (T(S); 

-(S _ s2)1’2 I) for some s 
I-S 

UC Dk 

(8) E -t F = “b”’ 
1 

O I D’ I for some D’ with 0, f 1 e cr(D’); 

(9) ran E I? ran F = ker E C’J ker F = ran E n ker F = ker E fl ran 
F = {O}. 

In (41, A is unique up to similarity. In (5) and (6), we may further require S 
to satisfy a(S)co,={zE@:Rez>i or Rez=i and Imz>Ol, 
in which case S is unique up to similarity. In (7) and (81, we may require D 
and D’ to satisfy a(D), a(D’> c uz = {z E Cc : Re z > 0 or Re z = 0 and 
Im z > O}, in which case D and D’ are unique up to similarity. 

Note that when E and F are projections (even on infinite-dimensional 
spaces), the condition (9) above defines the notion of subspaces in generic 
position (cf. [6]). H ence what we do here is to develop a series of equivalent 
conditions for two “generic” idempotents (on finite-dimensional spaces). 

We first prove (1) =+ (5). For convenience, we will let 

M,(S) = [i : 1 i] and M,(S) = [ “, -~z_m~‘] 
for any operator S. 

LEMMA 2.10. Zf E and F are idempotents with a((E - F>‘> not con- 
taining 0 and not surrounding 1, then there exists an operator S with 
0, $, 1 P o(S) and C(S) C-I a(Z - S> = 0 such that (E, F) = (M,(S), 
M,(S)). ZfE and F are acting on a finite-dimensional space, then we may 
further require that u(S) c ul, in which case S is unique up to similarity. 

Proof. Assume that 

for some invertible X. 
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Since (E - F)2 + (E + F - I>” = I, our assumption on the spectrum of 
(E - F>’ implies that 0, _+ 1 6 a(E + F - Z). Hence, as proved in 18, 
Proposition 21, we have 

X-‘[F-(Z-E)]-IX= ; fz . 
[ 1 

Note that, since (E + F - Z)2 is similar to 

[; !Yz12 = [‘+(y z :,,I; 
we can infer from + 1 G a( E + F - I) that B and C are invertible. 
Moreover, that a((E - F 1’) does not surround 1 implies that a((E + F - 
Z)2) does not surround 0, whence Z + BC has a square root D with 
0, +l E a(D) and cr(D) n o(-D) = 0. Let 

S = ;(I - 0-l) and y = ’ CD It” I 
Then 0, i, 1 P u(S) and o(S) n cs(Z - S) = 0. Since both C and (I - 
D)C - (I + D)C = -2DC, the “determinant” of Y, are invertible, [7, 
Problem 711 implies that Y is invertible. Now it is routine to check that 

X-‘FXY = 

and 

X-IEXY = X-‘( E + F - Z)XY + X-‘( Z - F)XY 

I - B( Z + CB)-k B(Z + CB)-’ 
= 

(I + CB)-‘C I - (I + CB)-1 1 

Y 

D-* D-“B = 
i CD-2 CD-“B ’ I 

= YM,( S). 

This proves (E, F) = (M,(S), M,(S)). 
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Next assume that E and F are acting on a finite-dimensional space. Then 
S is similar to S, CB S, with cr(Si) c cri and cr(S,) c C \ (pi. Hence we 
have 

with fl([: A]) contained in ui and not containing 0, i, and 1. 

For the uniqueness, assume that (M,(S), M,(S)) = (M,(S’), M,(S’)) for 
some operator S’ with cr(S’) c or. Taking the sum of each pair, we obtain 
2S CB 2(Z - S) 2: 2s’ CB 2(Z - S’). The conditions on V(S) and a(S’) 
ensure that S = S’. n 

The model in Lemma 2.10 is more suitable for considering sums and 
differences of two idempotents, as the following lemma shows. 

LEMMA 2.11. For j = 1,2, let Ej and 5 be idempotents on a jkite- 
dilnensional space with 0 and k 1 not in a( Ej - 5.). Then the following 
statements are equivalent: 

Prooj. We need only check (2) = (1) and (3) 3 (1). 
To prove (2) =c. (1) we have, by Lemma 2.10, (Ej, F,) = (M,(S,), M,(S,)) 

for some Sj with (T(S~) c cri, j = 1,2. Hence E3 + 5 = 2Sj @ 2(Z - 

Sj>. Our assumption (2) implies that S, @ (I - S,) = S, @ (I - S,). Since 
&i) n a(Z - S,) = o(Sz) n CT(Z - S,) = 0, we infer that S, = S,, 
whence (E,, F,) =: (E,, F,). 

If (3) holds, then E, + (I - F,) = E, + (I - F,). Since 0 and + 1 are 
not in a( E. - (I - F,)), j = 1,2, by the identity ( Ej - 5)” + ( E3 + Z$ - 
Z)” = I and our assumption on u(Ej - F;), statement (1) follows from the 
implication (2) 3 (1). n 

The next lemma is a generalization of Lemma 2.10 for finite-dimensional 
idempotents. 

LEMMA 2.12. Zf E and F are idempotents on a finite-dimensional space 
with v( E - F) not containing 0 and f 1, then there exists an opera- 
tor S with 0, k, 1 not in u(S) such that for any invertible operator G 
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(E,F) = 
S -G 

S(Z-S)G-' Z-S ’ 

Moreover, we may require that S satisfy u(S) 5 (TV, in which case S is 
unique up to similarity. 

Proof. By Lemma 2.10, we have 

for some operator S with 0, k, 1 E a(S) and U(S) c or. Let 

G 

1 

S -G 

z-s and F, = 
I -S(Z-S)G-’ Z-S ’ 

Then 

E, - F, = 2 
S(Z 

This latter matrix is similar to 

0 G 
- I S)G-’ 0 * 

2 I (S - s2y2 

lo - 

0 

(S - sy2 
1 

by Lemma 1.8. Thus a(E, - F,) = {+2h: h E cr((S - S2)1/2)}. From our 
assumption on a(S), we easily infer that 0 and + 1 are not in U( E, - 
F,). Since E + F = 2s @ 2(Z - S) = E, + F,, Lemma 2.11 implies that 
(E, F) = (E,, F,), as asserted. The uniqueness of S can be proved as before. 

n 

The next lemma complements Theorem 2.1 and Corollary 2.2 in the 
finite-dimensional case. 
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LEMMA 2.13. Let E and F be idempotents on a finite-dimensional space. 

(1) E - F is invertible if and only if ran E n ran F = ker E n ker 
F = (01. 

(2) +~~c(E-F) if and only if ran E I? ker F = ker E n ran 
F = (0). 

Proof. (1): Assume that E - F is invertible. If x E ran E f’ ran F, then 
r = Ex = Fx. Hence (E - F)x = 0, and therefore r = 0. If y E ker E n 
ker F, then Ey = Fy = 0. We infer as above that y = 0. 

Conversely, assume that (E - F)x = 0. Then Ex = Fx belongs to ran 
E n ran F = {O}. We obtain that x E ker E n ker F = {O}. It follows that 
E - F is one-to-one and hence invertible. 

(2): This follows from (1) on replacing F there by Z - F and noting that 
(E - F>’ + (E + F - 1)’ = I. w 

Proof of Theorem 2.9. Since on a finite-dimensional space every invert- 
ible operator has a square root, (1) * (4) follows from Lemma 2.7 on letting 
D = (A - A’)l/‘. Similarly, (1) * (5) is proved in Lemma 2.10, and (1) j 
(6) follows on letting G = (A - A2)l12 in Lemma 2.12. (4) * (3) is obvious. 
(5) or (6) implies (7) by Lemma 1.8, while the implications (5) 3 (8) 
(6) = (8) and (7) * (1) are all obvious. (8) implies that 0, 1, and 2 are not in 
a( E + F), whence (1) follows by the identity (E - F)’ + (E + F - I)’ = I. 

Finally, the equivalence of (1) and (9) 1s a consequence of Lemma 2.13. This 
completes the proof. n 

Note added in proof. After this paper was accepted, we discovered that 
Proposition 1.11 (2) had b een proved before by C. Apostol (cf. C. Apostol, 
L. A. Fialkow, D. A. Herrero & D. Voiculescu, Approximation of Hilbert 
space operators, Vol. II, Pitman, Boston, 1984, pp. 71-73). In fact, he 
constructed an operator T with T3 = 0 such that T is not similar to hT for 
any scalar A # 1. 
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