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Abstract We propose and experimentally demonstrate a
37.3 Gb/s passive optical network using four-band
orthogonal-frequency-division-multiplexing (OFDM) chan-
nels within 10 GHz bandwidth. Here, the required sam-
pling rate and resolution of digital-to-analog/analog-to-
digital (DA/AD) converter are only 5 GS/s and 8 bits to
accomplish the 40 Gb/s OFDM downstream rate. Moreover,
to reduce the power fading and fiber chromatic dispersion
issues, a −0.7 chirp parameter Mach-Zehnder modulator is
used for the four-band OFDM modulation scheme. Down-
stream negative power penalty of −0.37 dB can be obtained
at the bit error rate of 3.8 × 10−3 after 20 km standard single
mode fiber transmission without dispersion compensation.

Keywords 40Gbps PON · Optical OFDM · Multi-band ·
Pre-chirp

1 Introduction

Passive optical network (PON) is the promising access sys-
tem to provide the wide bandwidth to end users economi-
cally [1]. However, in future next generation (NG)-PON, the
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downstream traffic rate of 40 Gb/s or even beyond is required
due to the demand of broadband multi-services [2]. For the
future 40 Gb/s PON, the on-off keying (OOK) modulation
on single wavelength is no longer feasible owing to the con-
strains of fiber chromatic dispersion, polarization mode dis-
persion (PMD), and expensive 40 GHz transceiver [3]. Thus,
there is a great challenge to upgrade the present 2.5 or 10
Gb/s/wavelength PON to 40 Gb/s/wavelength.

To obtain the higher traffic rate cost-effectively, the
high spectral efficiency of orthogonal frequency division
multiplexing–quadrature amplitude modulation (OFDM-
QAM) could be used for accessing networks [4]. Hence, the
optical OFDM-PON has been proposed [2,5,6]. Recently,
40 Gb/s optical OFDM-PON has also been experimen-
tally investigated using broadband OFDM signal [7,8].
However, they required the higher sampling rate (at least
12-GS/s) and resolution of digital-to- analog / analog-to-
digital (DA/AD) conversion for OFDM signal processing.
A multi-band OFDM system separates the signal in several
sub-bands, and each sub-band only requires using the low-
speed DA/AD convertor, and thus, the cost and system would
be easily reduced and implemented [9]. However, the OFDM
subcarriers would also be affected in the higher frequency due
to the chromatic dispersion and RF power fading. Therefore,
using the positive chirp modulator would enhance the effect
of the dispersion and power fading. The pre-chirp technique
can improve the bandwidth in the dispersion channel.

In this paper, we investigate a 40 Gb/s (including 7 % over-
head, and the effective data rate is 37.3 Gb/s) OFDM-PON by
using four-band OFDM channels within 10 GHz bandwidth.
Each OFDM channel is modulated at 16-QAM format. Then,
the four-band OFDM channels are used in 10 GHz band-
width Mach-Zehnder modulator (MZM) with −0.7 alpha
chirp parameter to generate the 40 Gb/s OFDM downstream
rate in the transmitter (Tx). Direct-detection is used to reduce
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Fig. 1 Experimental setup and frequency allocation of each OFDM bands and the electrical spectrum of a channel 1 baseband signal, b channel
2 baseband signal and c up-converted channel 2 signal

the cost of receiver (Rx). Each 16-QAM OFDM channel only
requires the 5 GS/s sampling rate and 8 bits resolution for
DA and AD conversions; hence, the Tx and Rx modules could
be cost-effective for PON. From the experimental results, the
downstream power penalty of −0.37 dB can be measured at
the bit error rate (BER) of 3.8 × 10−3 (forward error cor-
rection (FEC) threshold) [10] after 20 km fiber transmission
due to pre-chirp characteristic of MZM.

2 Experiment and discussions

Figure 1 shows the experimental setup of the proposed PON
architecture by using four-band OFDM channels. The insert
of Fig. 1 is the schematic spectra of the four-band OFDM
channels for downstream transmission. Here, the channel 1
OFDM signal has the bandwidth of 1.526 GHz. The channels
2–4 are with the same bandwidth of 2.813 GHz and are up-
converted in the frequencies of 3.164, 6.055 and 8.945 GHz
by using I–Q modulation, respectively. Here, we used the
4-port IQ mixer from Hittite. And, the RF bandwidths and
conversion losses of IQ mixers from bands 2 to 4 are 1 MHz–
6 GHz, 4–8.5 and 6–10 GHz, and 7, 7.5 and 7 dB, respec-
tively. Moreover, the channel separations are 0.1315, 0.078

Table 1 The detailed parameters of four-band OFDM channels

Parameters of the 40Gb/s OFDM signal

Tx sampling rate (GS/s) 12

Rx sampling rate (GS/s) 50

FFT/IFFT size 512

CP 8

Modulation format 16 QAM

Carrier number of band 1 40 (3rd–42th)

Carrier number of band 2 72 (45th–117th, excluding the
LO of 81th)

Carrier number of band 3 72 (119th–191th, excluding the
LO of 155th)

Carrier number of band 4 72 (193th–265th, excluding the
LO of 229th)

and 0.077 GHz, respectively. The more detailed parameters
are listed in Table 1. In this experiment, due to the limita-
tion of available equipments, the measurement of the four-
band OFDM channels are separated into two parts, as shown
in Fig. 1. In the first part, band 1 and band 2 are gener-
ated by AWG1 and AWG2. In the second part, band 3 and
band 4 share the same AWG2. The total OFDM bandwidth is
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10.3515 GHz, which can fit into the modulation bandwidth
of our 10 GHz MZM. We have stated explicitly that only 2
bands are transmitted at a time due to the limited equipments
of our laboratory. Since the carrier numbers and locations
of each band are setting to orthogonal, there is almost no
interference between each band. The main impact would be
output optical power from the modulator. When the input
continuous-wave (CW) optical power to the optical modu-
lator is fixed, the output optical power of four band signal
would be lower than the two band signal; thus, the receiver
sensitivity would be lower in the case of four band signal.

As shown in Fig. 1, the first part includes band 1 and band
2 (Ch1 and Ch2) signals, and the second part includes band 3
and band 4 signals for the practical downstream OFDM mea-
surements. The four-band OFDM signals are using the same
modulation of 16-QAM with a fast Fourier transform (FFT)
size of 512 and cyclic prefix (CP) size of 8. The OFDM sig-
nals are generated by arbitrary waveform generator (AWG)
by using the Matlab� program. The sampling rate and
DA/AD resolution of 5 Gs/s and 8 bit are used in this exper-
iment, respectively. As shown in Fig. 1, base band OFDM
signal of channel 2, 3 and 4 are IQ modulated by the IQ mixer.

In the first part, the band 1 OFDM signal is generate by
AWG1. It consists of 40 OFDM subcarriers that occupying
1.526 GHz bandwidth from 82 MHz to 1.626 GHz to pro-
duce a total data rate of 6.25 Gb/s. The band 2 OFDM signal
consists 72 subcarriers that occupying 2.813 GHz bandwidth
to generate a data rate of 11.25 Gb/s. In the second part, the
band 3 and band 4 OFDM signals are generated by using
AWG2, and each band also consists of 72 OFDM subcarri-
ers that occupying 2.813 GHz bandwidth producing a data
rate of 11.25 Gb/s. As a result, the total data rate of 40 Gb/s
can be obtained by the proposed four-band OFDM channels.
The OFDM signal is applied to the MZM with the alpha chirp
parameters of −0.7 and the EAM with the alpha chirp para-
meters of 0.53 in turn in the experiment, respectively. Here,
one 3 GHz bandwidth LPFs is used for band 1, four 1.9 GHz
bandwidth LPFs are employed for band 2 to band 4, and three
BPFs with 3.4 GHz bandwidth are used for band 2 to band
4, as shown in Fig. 1. A continuous-wave (CW) optical sig-
nal at 1550.0 nm is launched into the modulator to produce

the optical OFDM signal, as illustrated in Fig. 1. The elec-
trical spectra of different parts have been included in insets
of Fig. 1. After 20 km single mode fiber (SMF) transmission,
the 40 Gb/s OFDM signal is directly detected by a PIN photo
receiver (Rx). It has a 3-dB bandwidth of 12 GHz. It has the
responsivity of 0.9 A/W at wavelength of 1,550 nm. The dark
current is about 5 nA. A real-time scope is used to capture the
received electrical data for off-line analysis. Moreover, there
are two methods that can achieve single side band optical
signal. The first is using optical IQ modulator which is much
expensive than a MZM. The second method is using optical
filter. And the signal needs guard band due to the non-ideal
transition edge of the filter; it would reduce the bandwidth
efficiency and increase the cost of the system.

In this measurement, the signal processing of the OFDM
transmitter (Tx) constructed by serial-to-parallel conver-
sion, QAM symbol encoding, inverse fast Fourier trans-
form (IFFT), CP insertion, and DA conversion. The received
downstream OFDM signal is captured by using Matlab� pro-
grams for signal demodulation. To demodulate the vector sig-
nal, the off-line DSP program is employed. And the demod-
ulation process includes the synchronization, FFT, one-tap
equalization, and QAM symbol decoding. As a result, the
bit error rate (BER) would be calculated according to the
observed signal-to-noise ratio (SNR) of each OFDM subcar-
rier. Due to the limitation of available equipment, the channel
3 and channel 4 are generated simultaneously. We copy the
base band real and imaginary signal by the electrical splitter
and then up-convert them by two different IQ mixers. At the
receiver side, the signals are sampled by the scope with sam-
pling rate of 50 GS/s, and the each channel is down convert
and filtered by the digital low-pass filter in the Matlab. Only
the channel 1 is generated with real value OFDM signal. Each
OFDM band is demodulated separately and independently.

As we know, the SNR of OFDM subcarrier would drop
seriously in high frequency after fiber transmission due to
the RF fading [7]. Here, to realize the relationship of chirp
effect and OFDM signal, first we use a 0.53 chirp parameter of
EAM to experiment. Figure 2a shows the measured electrical
power of bands 3 and 4 with 16-QAM OFDM modulation at
the received power of −10 dBm at the back-to-back (B-t-B)

Fig. 2 Using MZM with 0.53
chirp parameter. a Electrical
spectrum of four-band OFDM
channels at B-t-B and after
20 km single mode fiber, and
b SNR of each OFDM
subcarrier at received power of
−10 dBm
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Fig. 3 Using MZM with −0.7
chirp parameter. a Electrical
spectrum of optical
back-to-back and after 20 km
single mode fiber and b SNR of
each OFDM subcarrier at
received power of −10 dBm

status and 20 km fiber transmission. And Fig. 2b presents the
measured SNR of each OFDM subcarrier. After 20 km trans-
mission, the measured electrical power and SNR of bands
3 and band 4 become worse due to the fiber chromatic dis-
persion. As shown in Fig. 2b, the SNR cannot achieve the
forward error correction (FEC) threshold (SNR = 16.5 dB;
BER of 3.8 × 10−3), when the OFDM subcarrier frequency
is larger than 7.2 GHz. Therefore, the total downstream rate
cannot accomplish 40 Gb/s in 20 km fiber transmission due
to the worse SNRs of bands 3 and band 4.

In order to upgrade to 40 Gb/s PON while maintaining
the 20 km reach of the standard PON, a 10 GHz MZM with
−0.7 chirp parameter is used as the Tx. The MZM (from
Eospace) is Z-cut with a fixed pre-chirp alpha chirp parame-
ter of −0.7. The insertion loss and the Vpi of the MZM are
3 dB and 4 V respectively. Figure 3a, b show the four-band 16-
QAM OFDM electrical spectrum and SNR of each OFDM
subcarrier at the B-t-B and 20 km fiber transmission when the
received power is −10 dBm. Due to the pre-chirp of MZM in
the experiment, the power gain in the OFDM signal of bands
3 and 4 can be enhanced after 20 km fiber transmission, as
shown in Fig. 3a. Moreover, after 20 km transmission, the
measured SNRs of OFDM subcarriers in band 3 and band 4
are better than that of B-t-B, as seen in Fig. 3b. The measured
SNRs of all the four-band OFDM channels are larger than
FEC level.

Here, the RF power fading of 0.53, 0 and −0.7 chirp para-
meters are also numerical analyzed, respectively. Figure 4
presents the numerical result of the power fading under the
frequencies from 0 to 10 GHz, when the chirp parameter is
0.53, 0 and −0.7, respectively, after 20 km fiber transmis-
sion. As shown in Fig. 4, the RF fading can be improved
in the higher frequency when the negative chirp parameter
is used. When the frequency is 10 GHz under the 0.53, 0
and −0.7 chirp parameters, respectively, the RF fading can
be observed in −28.8, −10.1 and −3.8 dB. If only consid-
ering the fading effect, the chirp of 0 is enough for 20 km
transmission experiment. However, the channel responses of
high-frequency bands are worser than that of low-frequency
bands. Hence, the gain of the transmission response of the
negative chirp is important for improving the SNR and sen-
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sitivity. As a result, the pre-chirp MZM is very crucial for the
proposed multi-band OFDM-PON to mitigate power fading
in 20 km standard reach SMF transmission.

Figure 5 presents the BER performances of each 16-QAM
OFDM band at the B-t-B and 20 km SMF transmission,
respectively, using the proposed scheme with −0.7 alpha
chirp parameter MZM. In Fig. 5, we can obtain the receiver
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Fig. 6 Average BER measurement of the 4-OFDM bands for the pro-
posed 37.3 Gb/s multi-band OFDM signals at B2B status and 20 km
fiber transmission, respectively. The insets are the corresponding con-
stellation diagrams at the FEC threshold

sensitivities of −18.33, −17.47, −17.09 and −16.5 dBm at
the FEC threshold (BER of 3.8 × 10−3) at the B-t-B status
for the OFDM band 1 to band 4. After 20 km SMF trans-
mission, there are almost no power penalties for the band 1
and band 2, and the power penalties of band 3 and band 4
are measured at −0.59 and −0.48 dB, respectively. The mea-
sured negative penalty is due to the pre-chirp characteristic
as discussed before.

Figure 6 shows the BER performances of total 37.3 Gb/s
OFDM signal at the B-t-B status and 20 km SMF trans-
mission. The receiver sensitivity of B-t-B status and 20 km
SMF transmission are −17.42 and −17.05 dBm, respec-
tively. Besides, the insets are the corresponding constellation
diagrams at B-t-B and 20 km transmission at FEC level. The
negative power penalty of −0.37 dB is observed after 20 km
fiber transmission by using a −0.7 chirp parameter of MZM.
The optical power of the Tx is 6 dBm, the total fiber loss is 4
dB, and the proposed scheme can support 64 ONUs (18 dB
loss emulated by the optical attenuator as shown in Fig. 1).

The sampling rate of AD/DA convertor in the ref. [8] was
at least 12 GS/s. However, the sampling rate of AD/DA con-
vertor in our purposed multi-band architecture is only 5 GS/s.
Moreover, the modulation/demodulation DSP process can
deal with in 4 lower speed parallel way. By comparing with
ref. [8], the proposed multi-band operation needs more elec-
trical components, but the cost of the electrical components
could be much lower. Hence, the cost of the multi-band archi-
tecture would be more cost-effective, because the multi-band
channel can use mature and low-cost electrical components.

Moreover, the ONU in the proof-of-concept demonstra-
tion would be complex and costly since the processing of
aggregated 40 Gb/s signal is need. However, we believe

that the idea of using lower- speed electronic processing to
decompose part of the RF spectrum, such as that reported in
ref. [11], could be used in our scheme. In our scheme, each
wavelength carries 4-band OFDM signals; it is similar to the
ref. [11], in which the FDM has 4 channels. For the OLT side,
the data rates of sub-band are fixed in our proposal OLT, but
the FDM bandwidth and subcarrier (SC) frequency could be
varied in ref. [11].

3 Conclusion

We have proposed and experimentally investigated a 37.3
Gb/s OFDM-PON by using four-band OFDM channels in
10 GHz bandwidth. Here, each OFDM channel is modulated
at 16-QAM format. And the four-band OFDM channels are
applied to a 10 GHz bandwidth MZM with −0.7 chirp para-
meter to generate the 37.3 Gb/s OFDM downstream traf-
fic rate. In the measurement, the direct-detection is used to
reduce the cost of Rx. And each 16-QAM OFDM channel
only requires the 5 GS/s sampling rate and 5 bits resolution
for the DA and AD conversion. Negative penalty of −0.37
dB is measured experimentally at the BER of 3.8 × 10−3

after 20 km fiber transmission, when a −0.7 chirp parame-
ter of MZM is used in the proposed four-band OFDM-PON.
Experimental and numerical analysis of using commercially
available EAM and MZM with 0.53 and −0.7 alpha chirp
parameter are performed, respectively, showing the pre-chirp
MZM is very crucial for the proposed OFDM-PON to mit-
igate RF power fading in 20 km standard reach SMF trans-
mission.
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