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The optimal excitation locations of rectangular composite sound radiation plates to produce relatively
smooth sound level pressure (SPL) curves are determined using an optimal design method. In the optimal
design process, the vibration of the plate is analyzed using the Rayleigh-Ritz method, the sound pressure
produced by the plate is calculated using the first Rayleigh integral, and the optimal excitation location is
determined using a global optimization technique. The experimental SPL curves of several sound
radiators were measured to verify the accuracy of the theoretical predictions. In the determination of
the optimal excitation location, the trial radius of the circular excitation force is used in the vibro-acoustic
analysis to predict the theoretical SPL curve of the plate, a SPL discrepancy function is established to
measure the sum of the squared differences between the SPLs at the chosen excitation frequencies and
the average value of such SPLs, and a global minimization technique is used to search for the best
estimate of the radius of the circular excitation force by making the SPL discrepancy function a global
minimum. The optimal excitation locations of several composite sound radiators with different aspect

ratios and layups are determined using the proposed method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The advantages of composite materials such as high stiffness-
to-weight and strength-to-weight ratios have made composite
plates find broad applications in different industries such as
aero-space, aircraft, automobile, and audio industries to fabricate
structures of high performance and reliability. In general, the de-
sign of composite plate structures has to tackle the structural vi-
bro-acoustic issue to achieve the goals and functions of these
structures. For instance, in the audio industry, composite plates
have been used to fabricate composite panel-form sound radiators
or speakers for sound radiation. For a panel-form sound radiator/
speaker, the sound radiation is induced by the vibration of the
plate which is flexibly restrained at its edges and excited by at least
one exciter. Therefore, the vibro-acoustics of composite plates has
become an important topic of research in the design of composite
flat-panel speakers for achieving high quality sound radiation of
the speakers. Recently, several researchers have proposed different
types of composite panel-form sound radiators [1-7] which may
find applications in the consumer electronics. For instance,
Guenther and Leigh [1] proposed the use of a composite sandwich
sound radiation plate comprising carbon fiber reinforced face
sheets and honeycomb core in a flat-panel speaker for attaining
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improved performance at higher frequencies. Kam [6] proposed
the use of a plural number of exciters to excite the composite plate
of a panel-form sound radiator at some specific locations to
produce a smooth SPL curve for the sound radiator. Since the sound
radiation efficiency and quality of a plate are heavily dependent of
the vibration characteristics of the plate, the vibro-acoustics of
plate structures has thus been studied by many researchers. For
instance, many papers [8-20] have been devoted to the vibration
and/or sound radiation analyses of plates with different boundary
conditions and structural configurations subjected to various types
of loads. A number of researchers [21-23] have studied the effects
of attached masses on the sound radiation behaviors of plates with
regular or flexibly restrained boundary conditions. Regarding the
effects of loading conditions on the sound radiation capability of
plates, several researchers have studied the SPL curves of plates
subjected to different types of loads and excited at various
locations [24,25]. As for composite flat-panel sound radiators
consisting of one exciter, which may find important applications
in the audio industry, no work has been devoted to study how
the excitation location affect the sound quality of such sound
radiators, not to mention the determination of the optimal
excitation locations for the sound radiators. Therefore, the sound
radiation behavior of composite flat-panel sound radiation
deserves a thorough investigation if flat-panel speakers with good
sound quality are to be fabricated.

In this paper, an optimal design method is proposed to deter-
mine the optimal excitation locations for composite panel-form
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sound radiators consisting of one exciter to possess relatively
smooth SPL curves. The vibro-acoustics, especially, the SPL curves
of composite panel-form sound radiators are studied via both the-
oretical and experimental approaches. The Rayleigh-Ritz method
together with the first Rayleigh integral is used to study the vi-
bro-acoustic behaviors and construct the SPL curves of the com-
posite plates. The theoretically predicted SPL curves will be
verified by the experimental results obtained in this paper. The
optimal excitation locations of various sound radiators are deter-
mined to produce relatively smooth SPL curves in the given fre-
quency ranges.

2. Plate vibration analysis

In this study, a flat-panel sound radiator consisting of a center
exciter is mathematically modeled as an elastically restrained stiff-
ened plate. The stiffened rectangular composite plate of size a
(length) x b (width) x h, (thickness) with a=b is elastically re-
strained along the plate periphery by distributed springs with
translational and rotational spring constant intensities K;; and Kg;,
respectively, and at the center by a spring of spring constant K.
as shown in Fig. 1. The x-y plane of the global x-y-z coordinate
is located at the mid-plane of the symmetrically laminated com-
posite plate which consists of NL orthotropic laminae having dif-
ferent fiber angles with reference to the x-axis. It is noted that
the plate is stiffened symmetrically in x and y directions by a num-
ber of beams on the bottom surface of the plate. Herein, the dis-
placements of the plate and stiffeners are modeled based on the
first-order shear deformation theory [26]. The displacement field
of the plate is expressed as

Up = Ugp(X, ¥, 1) — Zy0xp (X, ¥, 1)
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Fig. 1. Elastically restrained stiffened plate.

where u, v,, and w, are the displacements in x, y, and z directions,
respectively; Uqp, Uop, Wop are mid-plane displacements; 0y, 0y, are
shear rotations. It is assumed that both the plate and stiffeners have
the same shear rotations. The strain-displacement relations of the
plate are expressed as
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The stress-strain relations for the layers in the global x-y-z coordi-

nate system can be expressed in the following general form [27].
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where ¢, T are normal and shear stresses, respectively; @;‘) are the

transformed lamina stiffness coefficients which depend on the
material properties and fiber orientation of the kth lamina. The rela-
tions between the transformed and untransformed lamina stiffness
coefficients are expressed as

Qi1 = Q1 C* +2(Q1; +2Qe6)C°S* + Q8"

Qi2 = (Qi1 + Q2 — 4Q45)C°S* +Q12(CH + 5

Qi6 = (Qi1 — Qiz — 2Qg6)C°S + (Qu2 — Q2 + 2Qe6)CS’
Qe =QuS*+ 2(Qu + 2Q46)C?S* + QppC*

Qa6 = (Qi1 — Qiz — 2Qs6)CS’ + (Q1z2 — Qa2 +2Qs6)C’S @
Qss = (Qi1 + Q22 — 2Q12 — 2Q46)C°S* + Qo6 (C* + 5%

Qus = QuaC® +Qs555%, Qus = (Qss — Qq4a)CS

Qs5 = Qs5C% + QqaS”

with

Qn =175ﬁ§ an%% szzil 75;‘/2] (4b)
Qa4 = G23;  Qs5 = Gi3; Qes = G1a; C=cos;, S=sin o

where Q; are untransformed lamina stiffness coefficients; E;, E, are
Young’s moduli in the fiber and transverse directions, respectively;
Vjj is Poisson’s ratio for transverse strain in the j-direction when
stressed in the i-direction; G;, is in-plane shear modulus in the
1-2 plane; Gy Go3 and are transverse shear moduli in the 1-3
and 2-3 planes, respectively; 0; is the lamina fiber angle of the ith
lamina.
The strain energy, Up, of the plate with volume V,, is

.

3 (Oxx + OyEy + Ty Yy + TxeVyz + TryVy ) AV (5)
Jv,

Using the relations in Eqs. (1)-(4) and integrating through the
plate thickness, Eq. (5) can be rewritten as



C.H. Jiang et al. / Composite Structures 108 (2014) 65-76 67

1 b a
Up = i / / [Allu%‘x + A22 T/%y + 2A]6(UQVXU(),y + Upx Z/O,x)
0 0

+ 2A26(VoxVoy + Uoy Voy) + 2A12UoxVoy

+ Ae (Uoy + ”O,X)z + Aas (Oyp + Wy) (Oxp + Wy)
+ A44(0yp + W.y)z + A55(0Xp + W.x)z

+ 2B11UoxOxpx + 2B 00y 0ypy

+ ZBlﬁ(uo,xgxpy + UO‘XHXP‘X + u0<x9yp,x + uO.ygxp,x)
+ 2B26(Voxbypy + Uoybypy + Voyblxpy + Voybypx)
+ 2B12 (U xOypy + Voy0xpx)

+ 2Bs6 (Vo x0ypx + UoyOypx + VoxOxpy + UoyOipy)
+ DH 0>2(p‘x + Dzzﬁypy + 2D120xp,x0ypy

+ 2D16 (Oxp xOypx + OxpxOxpy) + 2D26(0ypyOyp.x + OypyOxp.y)

+D66(6xp‘y + Gyp.x)z] dXdy (6)

where the subscript comma denotes derivative; Ay, Bjj, and D;; are
material components which are given by

h
p—

(A, B, Dy) = Q '(1,2,2%)dz, (i,j=1,2,6) (7)

and
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where k, is shear correction factor which can be evaluated from the
following expressions given by Whitney [28].
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In Eq. (9), @™ are constants determined from interface continu-
ity conditions and the requirement that transverse shear stress
vanish on the bottom surface of the plate; S{7’ and SU are the
shear compliances. It has been shown that the use of the above ex-
act expressions for evaluating shear correction factors in the vibra-
tion and buckling analyses of cross-ply and angle-ply composite
plates can yield very good results, as demonstrated in Refs. [29-
31].

The kinetic energy, T}, of the plate is

1 G
T, :i/vp pp (12 + 82 -+ W) dV, (10)

where p,, is plate mass density. In view of Eq. (1), the above equa-
tion can be rewritten as
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Considering the deformation of the stiffeners, the displacement
field of a typical stiffener, for instance, a bottom stiffener oriented
in x-direction is:

h
Up, = Ugp(X, ) + 7” Oxp (X, 1) + Zp0xp (%, £)

by, =0 (12)
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where up, #, wp are stiffener displacements. Here the lateral
displacement of the stiffener is neglected and treated as zero. The
strains and strain energy of the stiffener are given, respectively, as
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where E, is stiffener Young’s modulus, L, length, h, height, t;
thickness, G, shear modulus, and K}, shear correction factor. Here,
without loss of generality and causing much adverse effects on plate
responses, it is assumed that K, =5/6. The kinetic energy of the
stiffener is

OMlop _p Wy 00\ (OWep\?
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where p,, is stiffener mass density.
The strain energy, Us, stored in the elastic restraints is written as
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It is noted that since the interior support is relatively flexible,
the use of a spring is sufficient to simulate the effects of the interior
support on the dynamic behavior of the plate. The total strain en-
ergy U and total kinetic energy T of the elastically restrained stiff-
ened plate are written, respectively, as

Np

U=Up+ > Us+Us (17)
i=1

and
Np

T=T,+) Ty (18)
i=1

where N, is number of stiffeners.

The Rayleigh-Ritz method is used to study the free vibration of
the elastically restrained stiffened plate. The displacements of the
plate are expressed as

up(x,y,t) = U(x,y) sin wt

vo(x,y,t) = V(x,y) sin wt

wo(x,y,t) = W(x,y) sin wt (19)
Ox(x,y,t) =
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where Cj; are unknown constants. Legendre’s polynomials are used
to represent the characteristic functions, ¢ and . Let ¢ = (2x/a) — 1
and 7 = (2y/b) — 1. The normalized characteristic functions, for in-
stance, ¢;)(&), are given as
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Extremization of the functional IT=T — U gives the following
eigenvalue problem.

K — ?M|C =0 (23)

where K and M are structural stiffness and mass matrices; w is cir-
cular frequency. The solution of the above eigenvalue problem can
lead to the determination of the natural frequencies and mode

shapes of the stiffened plate. The terms in K and M are listed in
the appendix.

3. Plate sound radiation analysis

The equations of motion for the sound radiation plate subjected
to forced vibration derived via a variational approach can be ex-
pressed in the following algebraic form.

MC +DC +KC=F (24)

where F is the force vector and D is damping matrix. For a sound
radiation panel excited by an electro-magnetic transducer with a
cylindrical voice coil, the harmonic driving force F(t) = F,sin wt is
distributed uniformly around the periphery of the voice coil. The
amplitude of the harmonic force is F, = BLI with B = magnetic flux,
L = wire length, and I = electric current. The force vector F then con-
tains the following terms.

o F, 2 2rc 2rc .
Frn = re /O Om (T cos 0) @, (T cos 9) dosin wt,
PO (25)
n=1+4+D,...,]

form:l—i—f,...j;
=0 for otheri,j

The damping of the sound radiator is assumed to be
proportional.

[D] = o[M] + S[K] (26)

with o = {w and B = 2{/w where { is damping ratio at the first reso-
nant frequency of the elastically restrained plate. Eq. (24) can be
solved using the modal analysis method.

Referring to the baffled plate with area S shown in Fig. 2, if the
effects of air loading on the plate vibration are neglected, the sound
pressure p(r, t) resulting from the c of the plate can be determined
using the first Rayleigh integral.

AS;

p(T. t) _ —pro ZAiej(ZcUIJrOi—Icri) (27)
2n 4 R

1

where py is air density; k is wave number (=w/c) with ¢ being speed
of sound; rp, is the distance between the plate center and the point
of measurement; R; = |r, — 13| the distance between the observation
point and the position of the surface element at r;; 0 is phase angle;
AS; is differential area; j = v/—1. For air at 20 °C and standard atmo-
spheric pressure, po = 1.2 kg/m® and ¢ = 344 m/s. The SPL produced
by the plate is calculated as

SPL = 20log,, <ﬂ> dB (28)
2 x

10°°
with

Fig. 2. Sound pressure measurement of baffled plate.
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1 i 1/2
Pons = {T [ o dr} (29)

-T2

It is noted that both Eqs. (27) and (29) are calculated
numerically.

4. Optimal excitation location

For a sound radiator having good sound quality, it is essential
that the SPL curve of the sound radiator be relatively smooth.
Therefore, one of the objectives in designing a sound radiator for
attaining high sound quality is to make the sound radiator possess
a relatively smooth SPL curve. Herein, the problem of determining
the optimal size of the circular excitation force for a laminated
composite sound radiator to produce a smooth SPL curve in a spe-
cific frequency range, [f;, ful, is formulated as the following minimi-
zation problem.

Nf
Minimize : e(rc) = miny (S, — S)*
n=1

Subject to: rE <. <Y (30)
. _ S
with Se = N

where S, are SPLs at the chosen frequencies in the given frequency
range; Nf is number of chosen frequencies; S, is the average of the
predicted SPLs at the chosen frequencies; e(r,) is the deviation func-
tion measuring the sum of the square differences between the cho-
sen SPLs and S,; £t and rV are the lower and upper bounds of the
radius of the circular force, respectively. In general, the length of
the short side of the plate is set as r¥ while the radius of the magnet
of the exciter is set as r/. Without loss of generality, the frequency
range, [f, fu], considered in the optimal design covers the frequency
of one of the major SPL dips. For instance, consider the frequency of
the first major SPL dip f;,. The distance between any two neighbor-
ing sample frequencies, which are less than or equal to fis, is calcu-
lated as (fs — fi)/ where « is number of intervals on the left of f;s.
Similarly, the distance between any two neighboring sample fre-
quencies, which are larger than or equal to fi, is calculated as
(fu — f1s)|(Nf — o« — 1). The above problem of Eq. (30) is then con-
verted into an unconstrained minimization problem by creating
the following general augmented Lagrangian.

V(re, 1,1, 1p) = e(re) + (UZ+ 12 +77¢+rp¢2) (31)

with

Z = max {g(rc),%}
p

g(rc) :rc*rg <0

where pu, 1, 1, are multipliers; max[«, ] takes on the maximum
value of the numbers in the bracket. The previously proposed sto-
chastic global optimization method [32-34] is then used to solve
the above unconstrained minimization problem to find the best
estimate of the radius of the circular load. It is noted that in the
adopted optimization method several starting points are randomly
generated and for each starting point the lowest local minimum is
searched. The solution converges when the probability of obtaining
the global minimum reaches 0.95.

5. Experimental investigation

The sound radiation characteristics of two square panel-form
sound radiators, namely, Radiators A and B, consisting of [0°],4 Car-
bon/Epoxy laminated composite plates of lengths 110 mm and
30 mm, respectively, were investigated experimentally. In each
sound radiator, the plate used for sound radiation was peripherally
suspended by a flexible surround and excited at the plate center by
a circular electro-magnetic type exciter. The material properties of
the Carbon/Epoxy lamina determined experimentally are given as
follows.

E; =115.05GPa,
Vi3 = 0.306,
G2 =4.10GPa, Gy3 =0.674 GPa,

p =1403 kg/m?, t=0.145 mm

E, = 7.870 GPEI7 Vip = 0306, Vo3 = 0250,

Gi3 =4.10 GPa,

(33)

The voice coil of the exciter was adhesively attached to the bot-
tom surface of the plate. The properties of the exciter are given as
follows.

Voice coil:

re=12.75mm, h,=20mm, t, =0.15mm, E = 0.159 GPa,

v=033, p=5763kg/m’>, L=7.63x10°mm, R=80hm
(34)
Magnetic assembly:
B =0.263 Guass (35)

The experimental setup for measuring the sound radiation of
the plate is shown schematically in Fig. 3 and the test was con-
ducted in a semi-anechoic chamber. The sound pressure generated
from the plate under an input electric power of one Watt was mea-
sured using a microphone placed at a location one meter directly
from the center of the front surface of the sound radiator. The
sound pressure signals were then processed using LMS [35] to pro-
duce the SPL curve of the plate.

6. Results and discussions

The proposed method is first applied to the prediction of the SPL
curves of the composite flat-panel sound radiators which have
been tested. In this study, the voice coil of each sound radiator is
modeled using four beam-type stiffeners. The stiffeners of cross-
sectional size 2.0 x 0.15 mm? used to model the voice coil have
their end points located, respectively, at [10.01,10.01],
[-10.01,10.01], [10.01,-10.01], and [-10.01,-10.01] mm. It is
noted that the perimeter of the voice coil is the same as the total
length of the four beams. In using the present Rayleigh-Ritz

SPL spectrum

—

1 Mic. 1

=[] - -
— 1 1
1 1

L : !
LMS system = = Ay = e -

I Composite panel

Fig. 3. Sound measurement apparatus.
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method for free vibration analysis of the sound radiators, the con-
vergence test has shown that the use of 15 terms of the character-
istic functions for each displacement components to predict the
natural frequencies of the radiators below 5kHz can produce
acceptable results with errors less than 6% when compared with
the finite element solutions obtained using the commercial code
ANSYS [36]. It is noted that in the finite element formulation of
the flat-panel sound radiator, plate elements (Shell 99) have been
used to model the plate as well as the voice coil and spring ele-
ments (Combin 4) to model the flexible surround [37]. First con-
sider the SPL curve of Radiator A with peripheral spring constant
intensity K; = 2030.52 N/m? and central spring constant intensity
Kc=1807.10 N/m?2. The experimental and theoretical SPL curves of
the sound radiator in the frequency range below 3 kHz are shown
in Fig. 4 for comparison. It is noted that both SPL curves are in fairly
good agreement. In particular, the first and second major dips of
the theoretical SPL at 180 and 600 Hz, respectively, can approxi-
mately match their experimental counterparts at 180 and
630 Hz, respectively. The discrepancies between the two SPL
curves may be due to the uncertainties in the properties of the
sound radiator. It is also noted that the first and second major
SPL dips of magnitudes 10 and 7 dB, respectively, are induced by
the second and fourth modes, respectively, as shown in Fig. 5. For
instance, considering the first major SPL dip caused by the 2nd
mode shape, it is noted that the plate is symmetrically divided into
two regions of opposite phases, namely, the end and center regions
and the interference of the sounds radiated from these regions is the
cause of the SPL dip. Next, consider the SPL curve of Radiator B with
peripheral spring constant intensity K; =906.6 N/m? and central
spring constant intensity Kc=807.10 N/m?. The experimental and
theoretical SPL curves of the sound radiator in the frequency range
below 3 kHz are shown in Fig. 6 for comparison. Again, it is noted

dBSPL
95
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that both SPL curves are in good agreement and the discrepancies
between the two SPL curves may be due to the uncertainties in
the properties of the sound radiator. It is also worthy to note that
the first major SPL dip associated with the 2nd mode shape as well
as the other SPL dips in the higher frequency range which have
occurred on the SPL curve of Radiator A disappear in this case. The
reason for obtaining a relatively smooth SPL curve for Radiator B will
be explained in the optimal design of flat-panel sound radiators as
described subsequently.

The optimal design of Radiator A is first considered. The param-
eters used in the optimal design are given as

fu=100Hz, f,=15kHz, X =12.75mm,
X/ =110mm, Nf =8, a =2

The radius of the optimal excitation location has been obtained
as I, = 51.65 mm and the ratio of optimal voice coil diameter to
plate width is 2r,/b = 0.94. The SPL curve of the sound radiator ex-
cited at the optimal excitation location is shown in Fig. 7 in com-
parison with the experimental SPL curve of the original design. It
is noted that the SPL curve of the optimal design becomes much
smoother than the one of the original design. In particular, on
the optimal SPL curve, the first major SPL dip at 180 Hz disappears
and the magnitude of the second major one at 600 Hz becomes
approximately 2 dB comparing with the 8 dB drop of the original
SPL curve. The vibration shapes of the plate at the two major SPL
dip frequencies before and after the optimal design process are
listed in Table 1 for comparison. It is noted that the original vibra-
tion shapes are similar to the mode shapes of the plate before opti-
mization. These vibration shapes, however, change when the plate
is excited at the optimal location. The shape changes imply the
suppression of the mode shapes which are detrimental to sound
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Fig. 4. Theoretical and experimental SPL curves of Carbon/Epoxy [0°], plate (Radiator A).

Frequency ‘ 67Hz ‘ 146Hz

284Hz ‘

372Hz ‘ 564Hz ‘ 876Hz

Mode shape

1]

U

d| =

e— 1
—

- \ |
-

Fig. 5. Mode shape associated with SPL dip of Radiator A.



C.H. Jiang et al. / Composite Structures 108 (2014) 65-76 71

dBSPL
5

SPL vs Freq

90 | ———  Experimental

8 | - — — — Theoretical
80

75
70
65

60
55

50
45

40

35

Jig b

10 Hz 20 50 100 200

500 1K 2K 5K 10K

Fig. 6. Theoretical and experimental SPL curves of Carbon/Epoxy [0°], plate (Radiator B).

dBSPL
5

SPL vs Freq

85
80
75
70
65
60
55
50
45

n\/\

Ty ot IR
(RS

40
35
30

Experimental

Optimal

25

10 Hz 20 50 100 200

500 1K 2K 5K

Fig. 7. SPL curves of Radiator A excited at the different locations.

radiation. For illustration purpose, the excitation locations are also
plotted as dotted circles on the vibration shapes before and after
optimization, respectively, in the figure. In particular, for the vibra-
tion shape (2nd mode shape) associated with the first major SPL
dip, it is noted that the nodal lines of the shape intersect the y-axis
at two nodes with y =33.5 mm and -33.5 mm, respectively, and
the shortest distance between each node and the excitation loca-
tion (voice coil) changes from 20.75 mm before optimization to
—18.125 mm after optimization. The meaning of negative distance
is that the nodes are inside the circular force. Such excitation loca-
tion change helps suppress the detrimental effects on the sound
radiation of the plate at that frequency and thus improve the
smoothness of the SPL curve.

Next consider the optimal design of Radiator B. The parameters
used in the design are given as

fu=150Hz, f;=2kHz, x;=10mm, x;=30mm, Nf =5, a=2

The radius of the optimal excitation location has been obtained
as I, = 13.32 mm and the ratio of optimal voice coil diameter to
plate width is 2r./b=0.89. The SPL curve of the sound radiator
with the optimal excitation location is shown in Fig. 8 to compare

with the experimental one produced by Radiator B. It is noted that
the close agreement between the two SPL curves is due to the fact
that the initial excitation location is very close to the optimal one.
For comparison purpose, the SPL curve of the sound radiator ex-
cited by a voice coil of radius r. = 6 mm is also shown in the figure.
It is noted that when the radius becomes small, a big dip is induced
on the SPL curve at around 1.6 kHz. The vibration shapes excited at
different locations are also listed in Table 2 with the dotted circles
denoting the excitation locations. It is noted that if the sound radi-
ator is not proper excited such as the case of r.=6 mm, big dips
may be induced on the SPL curve. As for the case of optimal exci-
tation location, the actual vibration shapes are different from the
mode shapes which can cause SPL dips. These shape differences
thus imply the suppression of all the mode shapes detrimental to
sound radiation in the chosen frequency range.

The optimal excitation locations of Radiator A with different as-
pect ratios or lamination arrangements are determined using the
proposed optimal design method. First, consider the effects of as-
pect ratio on the optimal excitation location of the sound radiator.
The optimal radii of the excitation locations for the sound radiators
with aspect ratios of a/b=1.25 and 1.6, under the condition that
the areas of these plates are equal to that of Radiator A, are
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Table 1
Vibration shapes of Radiator A with different voice coil radii.

Frequency (Hz) Vibration shape (r.=12.75 mm)
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Fig. 8. SPL curve of Radiator B excited at different locations.

28.47 mm (2r,/b=0.58) and 38.75 mm (2r./b=0.89), respec-
tively. The SPL curves of the sound radiators with a/b=1.25 and
1.6 are shown in Fig. 9 in comparison with the case with a/b=1.
It is noted that amongst the three cases under consideration, the
case with a/b =1.25 produces the smoothest SPL curve on which
the dips are the smallest. Next, consider the effects of lamination
arrangement on the optimal excitation location of Radiator A with

a/b = 1. The optimal radii of the excitation locations for the sound
radiators with layups of [45°/—45°]; and [0°/90°]s; are 48.80 mm
(2r4/b=0.89) and 52.03 mm (2r/b = 0.95), respectively. The SPL
curves of the [45°/—45°]; and [0°/90°]; sound radiators are shown
in Fig. 10 in comparison with the one of the original sound radiator
with layup [0°/0°];. It is noted that amongst the three sound radi-
ators, the one with the layup of [45°/—45°]s can produce a SPL
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Table 2
Vibration shapes of Radiator B with different voice coil radii.

Vibration shape (r,= 6 mm)

Vibration shape (1., = 13.3 mm)

Frequency (Hz) Mode shape
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Fig. 9. SPL curves of Radiator A with different aspect ratios.

curve with the best smoothness. In particular, the major dip on the
SPL curve of the [45°/—45°]s sound radiator becomes smaller and
occurs in higher frequency range. In view of the above results for
Radiator A with different aspect ratios and lamination arrange-
ments, it is clear that both aspect ratio and lamination arrange-
ment have significant effects on the smoothness of the SPL curve
of a composite flat-panel sound radiator. Therefore, in addition to
excitation location, aspect ratio and lamination arrangement
should also be taken into consideration in the optimal design of
composite flat-panel sound radiators.

7. Conclusion

An optimal design method has been proposed to design the
optimal excitation locations for composite flat-panel sound radia-

tors consisting of a circular exciter to obtain relatively smooth
SPL curves in specific frequency ranges. The optimal design method
consisting of three main parts, namely, the Rayleigh-Ritz method
for vibration analysis, the Rayleigh first integral technique for
sound radiation analysis, and a global optimization technique for
determining the optimal excitation location, can solve the optimal
design problem in an efficient and effective way. The proposed
method has been used to design the excitation locations of several
rectangular laminated composite flat-panel sound radiators with
different aspect ratios and lamination arrangements. It has been
shown that the sound radiators excited at the optimal locations
can produce relatively smooth SPL curves. For the square [0°],,
[45°/—-45°];, and [0°/90°]; Carbon/Epoxy laminated composite
sound radiators of length 110 mm, it has been shown that the
ratios of optimal voice coil diameter to plate width are
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Fig. 10. Optimal SPL curves of Radiator A with different lamination arrangements.

2re/b =0.89, 0.89, and 0.95, respectively, and comparatively the
[45°/—45°]s sound radiator can produce the smoothest SPL curve.
For the [0°]4sound radiators with same area but different aspect ra-
tios, it has been shown that the ratios of optimal voice coil diame-
ter to plate width are 2r,,/b = 0.89, 0.58, and 0.89, respectively, for
aspect ratios a/b=1.0, 1.25, and 1.6, respectively, and compara-
tively the sound radiator with a/b = 1.25 can produce the smooth-
est SPL curve. As for the square [0°]4 sound radiators of size 30 mm,
it has been shown that the ratio of optimal voice coil diameter to
plate width is 2r/b = 0.89 which is the same as that of the square
sound radiator of length 110 mm. Furthermore, it has been shown
that a relatively smooth SPL curve can be obtained if the excitation
location is close to the nodal lines of the mode shapes that can in-
duce SPL dips. Therefore, the role of the optimal excitation location
is to minimize the adverse effects of the mode shapes that can in-
duce SPL dips. The suitability of the optimal design method has
also been validated by experimental results.
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