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The operation of a demand responsive transport service usually considers
advanced and real-time requests. Previous studies focused on solution algorithms
for routing and scheduling challenges of a pickup and delivery problem with time
windows, but the operational issues of the overall system performance under a
partially dynamic environment have not been investigated. In this article, we
explore the operating efficiency of a dispatching system with a degree of
dynamism (i.e. a ratio of dynamic requests). It is found that a dispatching system
incurs higher transportation costs and accepts fewer requests when the request
arrivals are partially dynamic, as compared to static or fully dynamic scenarios.
Operational policies are derived for the dispatcher to avoid the inefficient range of
degree of dynamism if future demand can be anticipated.

Keywords: degree of dynamism; demand responsive transport; dynamic; waiting
strategies

1. Introduction

Demand responsive transport (DRT) is a form of shared-ride public transportation service
that is responsive to the requests of passengers. Passengers are picked-up and dropped-off
at specified locations within desired time windows, and the dispatcher plans routes and
designs schedules for a fleet of vehicles starting at a common depot to provide
transportation services. The problem is analogous to the Dial-a-Ride problem (DARP). A
comprehensive review of this problem was given by Cordeau and Laporte (2003a, 2007). If
the system accepts dynamic requests, the vehicle routes are updated and modified in real
time and the system is dynamic. With the development of telematics and vehicle tracking,
dynamic DRT has become more possible and has received greater attention in recent
years. Fu (2002b) discussed the concepts and operations of the dial-a-ride transit system
with offline and online scheduling.

The DARP problem is NP-hard with high complexity, and the solution algorithms can
be divided into exact and heuristic approaches. The exact approach solves for the exact
solution, and usually only works well for small-sized problems (Psaraftis 1980). When the
number of requests is large, the problem may not be solvable for an exact solution in
polynomial time, and heuristic methods are commonly derived to find approximate or
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near-optimal solutions in reasonable time. Some widely used heuristics for static problems
are insertion heuristics (Jaw et al. 1986, Madsen et al. 1995) and regret insertion heuristic
(Diana and Dessouky 2004). Metaheuristics have also been developed for certain problems
(Cordeau and Laporte 2003b).

The solution approaches for dynamic problems are very different from those developed
for static problems. The solution of a static problem is the sequence of requests to be
visited and the routing of vehicle stops. In a dynamic setting, the schedule of a route,
defining the arrival and departure times at each stop along the route, has to be determined.
Some researchers have contributed to the model simulation and solution methodology in
routing and scheduling problems, with the objective of increasing demand acceptance
rates, improving levels of service and reducing operating costs (Fu and Teply 1999, Fu
2002a, Coslovich et al. 2006). The passenger-oriented DRT problem also shares similar
formulation with pick-up and delivery problems with time windows (PDPTW), which
consider commodity transportation and allow for longer travel times and storage of up to
several days. Berbeglia et al. (2010) gave a recent review on dynamic pickup and delivery
problems, and pointed out that some properties and algorithms that are common between
DARP and PDPTW.

For a dynamic dispatching problem, as the temporal pattern of the request arrivals is
of concern, the scheduling of the routes is important to overall operating efficiency.
Mitrovic-Minic and Laporte (2004) developed several waiting strategies to improve the
scheduling of vehicles, taking into consideration the arrival of future requests. The main
principle governing a waiting strategy is to hold a vehicle to wait at a location before
dispatching to the next location, so as to increase the possibility of accepting a dynamic
request and reduce the associated additional routing costs. Waiting strategies were also
investigated for dynamic vehicle routing problems (Branke et al. 2005) and dynamic
DARPs (Yuen et al. 2009). Pureza and Laporte (2008) proposed a vehicle waiting strategy
and a request buffering strategy for PDPTW. While the waiting strategy delays the
dispatching of vehicles, the request buffering strategy postpones the assignment of non-
urgent requests to vehicles in later route planning. For the public transport system
operation, Sáez et al. (2011) developed a real-time control strategy for transit where
uncertain passenger demand was treated as a disturbance, and actions such as holding and
expressing (station skipping) of transit vehicles were demonstrated to be effective. These
headway control strategies can be effective if incorporated with arrival time prediction
models for transit vehicles at stops (Yu et al. 2011).

Most of the previous studies assumed fully dynamic systems in which all requests are
real-time and unknown, and few of them discussed the operation strategy when the
demand arrival pattern is partially dynamic and predictable. Notably, Lund et al. (1996)
defined the degree of dynamism (i.e. the ratio of immediate requests to the total number of
requests for service) and categorised vehicle routing problems for their impacts and
responses. Residential utility repair services are classified as weakly dynamic, whereas taxi
services and emergency services are strongly dynamic. With the degree of dynamism
increasing, the problemic objective shifts from travel cost minimisation toward response
time minimisation (Larsen et al. 2002).

Recently, there have been several studies into quantifying the value of information and
anticipation of future requests (Ichoua et al. 2006, Tjokroamidjojo et al. 2006). Diana
(2006) considered several characteristics of the information flow, including the percentage
of real-time requests, the interval between call-in and requested pickup time and the length
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of the computational cycle time, in evaluating the effectiveness of how the input is revealed
to the algorithm in dynamic systems. Schilde et al. (2011) studied a partially dynamic
DARP in which an outbound request could cause a corresponding inbound request on the
same day. Based on historical data, such stochastic information can be predicted, and they
investigated whether this information can be utilised in designing vehicle routes. It was
shown that a short look-ahead period of arrival information would be effective (20min in
their case), leading to an average improvement of 15%. These studies suggested that how
future requests presenting themselves in dynamic systems should be taken into account in
the design of solution algorithms.

The objective of this article is to explore a partially dynamic DRT problem and its
operational efficiency under different levels of degree of dynamism, which can represent a
form of information regarding future request arrivals. Operational policies such as
decisions on vehicle fleet size control and rejection of requests are also proposed, when the
arrival of future requests can be anticipated. This article is organised as follows. The
problem definition is given in Section 2. Heuristics for the routing and scheduling
problems are described in Section 3. Numerical experiments and simulation results are
given in Section 4 to explore the problem under several scenarios. Finally, we discuss the
findings and implications for the dispatcher and the operator of the DRT system in
Section 5.

2. Definition of the DRT problem

The DRT problem is a dynamic passenger pick-up and delivery problem. The static
version of the problem can be stated as follows.

. Request: Each request i is characterised by a pickup location (Oi), a delivery
location (Di) and a desired pickup time (DPTi).

. Maximum ride time: The maximum ride time (MRTi) is the maximum time that a
passenger takes to arrive at the delivery location, and can be determined with:

MRTi ¼ maxð�þ ��DRTi, DRTi þWSÞ, ð1Þ

where direct ride time (DRTi) is the direct travel time from Oi to Di, and �, � and
WS are parameters specified by the dispatcher for service quality. The parameters
� and � represent the urgency of the transportation services to be provided to the
passenger and WS is the maximum acceptable time that a passenger needs to wait
at the pickup location.

. Request time windows: Denote the time window of request i at the origin as earliest
pickup time (EPTi) and latest pickup time (LPTi), and denote the time windows at
the destination as earliest delivery time (EDTi) and latest delivery time (LDTi).
Based on the desired pickup time specified by the request and the service quality
parameters specified by the dispatcher, the time windows can be determined with
the relations given below and are illustrated in Figure 1:

EPTi ¼ DPTi, ð2Þ

LPTi ¼ EPTi þWS, ð3Þ
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EDTi ¼ EPTi þDRTi, ð4Þ

LDTi ¼ EPTi þMRTi: ð5Þ

. Vehicles: A fleet of identical uncapacitated vehicles are dispatched to satisfy the
requests, and each vehicle travels along a single route starting and ending at the
same depot.

. Objective: The objective of the dispatcher is to design the routes and schedules for
the vehicle fleets to satisfy the requests, with the objective of minimising, in the
order of importance, (a) the number of vehicles and (b) total travel distances of all
vehicles.

The above definitions and settings were used by Jaw et al. (1986) and Diana and
Dessouky (2004) for static problems.

In the dynamic version of the problem, a number of real-time requests, which are not
known to the dispatcher at the time of planning, are revealed gradually over time. All real-
time requests are assumed to be immediate requests, to be picked up as soon as possible.
When a new request appears, the objective of the problem is to assign this request to a
vehicle and serve it at minimum additional cost. This setting of the problem simulation
assumes that all passenger requests must be satisfied and that there is no upper limit for the
number of vehicles. Another problem setting is that the dispatcher aims to maximise the
number of accepted requests if the maximum number of vehicles is fixed and passenger
requests can be rejected.

3. Heuristics algorithms

A heuristics framework for the DRT service problem is presented in this section. The
insertion of requests involves a routing algorithm and a scheduling algorithm. The
routing algorithm is the procedure used to decide the sequence of requests to be
visited and the insertion of service stops along a vehicle route, while the scheduling
algorithm is for determining the arrival and departure times of the stops along
the route.

3.1. Mode of operation

In a partially dynamic environment, the dispatching system accepts both static and
dynamic requests. The advanced requests are received before the day of operation, and

iDRT

WS

iMRT

iEPT iLPT iEDT iLDT

Time 

Figure 1. Determining the time window of a request.
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vehicle routes and schedules are initially constructed. During the day of operation, the

vehicles are dispatched according to the planned routes and schedules. When a real-time

request is received, the dispatcher inserts it into the existing vehicle routes with minimum

incremental costs. If the vehicles cannot feasibly accept the request, a new vehicle is

dispatched for service, or the request is rejected. Each request insertion will modify the

route and schedule of the vehicle for all unvisited stops. As time goes by, the vehicle routes

are dynamically updated and the vehicle drivers are informed of their next destinations.

The flow of the operation is described in Figure 2.

1. Construct vehicle 
routes for all static 
requests by Cheapest 
Insertion and 
post-processing 

2. Schedule vehicle stops 
with a waiting 
strategy 

Stop 

1. Insert the request into 
the route  

2. Update the schedule of 
the vehicle 

Yes 

No 

Yes

Add a new vehicle 
into the existing 
fleet of vehicles 

Start 

Determine the route and 
position with minimum 

incremental distance 

Can request 
be served by  

existing vehicles? 

End of study 
period? 

No 

Dispatch vehicles with 
the planned routes and 

schedules 

On arrival of a 
dynamic request?

No 

Yes

No 

Request is rejected 

No. of vehicles  
reaches maximum? 

Yes 

Figure 2. Flow chart of the dispatching operation.
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3.2. Routing algorithm

Let i 2 Ns and i 2 Nd be the sets of static and dynamic requests, respectively, and k 2 K be
the set of the vehicle fleet. The routing sub-problem assigns the pickup location Oi and the
drop-off location Di of request i to the route of vehicle k with stop j 2 Jk. In this study, the
classic cheapest insertion (CI) heuristic method (Jaw et al. 1986) is adopted. CI is a quick
and simple algorithm, and the basic procedure is to assign each request sequentially into a
vehicle route for a minimum cost. For each request i, each vehicle k is examined for all
feasible ways in which the request can be inserted into the route of the vehicle, and the
corresponding additional costs are recorded. The request is then inserted into the vehicle at
a point where costs are minimised. If it is infeasible to insert the request into any existing
vehicles, a new vehicle is added or the request is rejected. Details and extensions of the
algorithm can be found in Diana and Dessouky (2004). Vehicle capacity constraints can
also be considered in the route construction. However, in the case of the passenger
transportation problem, vehicle capacity is not binding in all tested instances, since the
feasible solutions are constrained by time window requirements which are relatively
stronger (Wong and Bell 2006).

The advantage of insertion heuristics is its high computational efficiency. It is also
suitable for dynamic requests since decisions regarding request acceptance and route
updating have to be made with a quick response. However, CI is myopic and the solution
may be enhanced when extra computing time is allowed. Therefore, the solution of static
problems based on CI can be further improved by using a post-processing phase. Several
post-processing schemes were suggested by Toth and Vigo (1997). In our study, an
exchange-based procedure is employed after all static requests are inserted, and we
iteratively remove a planned request from its route and find the best position for
reinsertion with a smaller overall cost among all feasible routes. Each move of request
removal and insertion should reduce the total distance travelled. The procedure is also able
to reduce the number of vehicles used by merging a short route into another route.

Real-time passenger requests are usually immediate. When a call is received, a vehicle
must be assigned without a buffer time or the call is rejected. In dynamic implementation,
CI simply assigns the real-time request to a feasible position in an existing route for
minimum additional costs. However, we do not reorder the unserved static requests, which
have already been assigned to vehicle routes. This is because reshuffling pre-planned
requests between vehicles is computationally time-consuming, and in some operations, the
license plate number of the vehicle is notified to the passengers for security reasons if the
appearance of vehicle fleets is not unique.

3.3. Scheduling algorithm

Once the sequences of stops to be visited in a route are determined using the routing
algorithm, the scheduling strategy determines the arrival and departure times for each
stop. With the sequence of stops in a route, we convert the request time windows (i.e.
EPTi, LPTi½ � for the pickup location and EDTi, LDTi½ � for the drop-off location) into the
service time window aj, bj

� �
for each stop j of the vehicle route. The service time window is

the constraint acting on the scheduling problem, and the algorithm determines the arrival
time Aj and the departure time Dj at stop j, which must overlap the service time window in
order to satisfy the time window constraints of requests. Figure 3 illustrates a feasible
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vehicle trajectory, which passes through the service time windows for all stops. The
schedule is not unique, and the dispatcher has the flexibility to allocate the idle times of the
vehicle to different stops for the same travel distances.

The possibility of accepting a dynamic request is dependent on the schedule of the
route, and several scheduling algorithms are introduced and compared. Three waiting
strategies, namely the Drive First (DF) strategy, the Wait First (WF) strategy and the
Modified Dynamic Wait (MDW) strategy, are employed in this study. These waiting
strategies were presented in Yuen et al. (2009) for the dynamic DARP, and they are briefly
described below.

DF strategy: Dispatch a vehicle to depart from its current location to the next location
immediately after the current location is serviced.

WF strategy: Hold a vehicle to wait at its current location for the longest feasible duration,
provided that subsequent stops in the route can be serviced without violating the service
time window constraints.

MDW strategy: Hold a vehicle to wait at its current location for a duration before
dispatching, such that the vehicle can reach the next location at the beginning of its service
time window and the location can be immediately serviced without waiting.

Computing steps and pseudo codes for the three waiting strategies are given in the
Appendix. It is noted that the two extreme strategies DF and WF represent the lower
bound and upper bound of feasible scheduling, i.e. the earliest possible arrival and latest
possible departure times for all stops without violating the service time window
constraints. Any schedule between the lower and upper bounds is feasible.

Both DF and WF are intuitive dispatching rules, and it has been shown that the DF
solution requires longer travel distance but fewer vehicles as compared to WF (Mitrovic-
Minic and Laporte 2004, Yuen et al. 2009). With DF, a vehicle only waits at locations
which are not serviced (i.e. the service time window has not started). So when a vehicle is
idle and a dynamic request is received, the vehicle diverts to the new request pickup and
returns to the previous location which has not yet been serviced. This diversion may incur

Depot 

Time 

Stops in 
the route  1 2 3 4 

a4

b4

a3

b3

a2

b2

a1

b1 A2, arrival time of vehicle at stop 2 

D2 , departure time of vehicle at stop 2 

Vehicle 
trajectory

Figure 3. Trajectory of a vehicle with service time windows and arrival and departure times at stops.
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extra travel distances. MDW is a modification of DF by holding the vehicle at the current

served location for a certain duration before dispatching it to the next planned location,

and waiting times should only be allocated to locations after service but not before service.

Therefore, a schedule employing the MDW strategy is expected to increase the feasibility

of accepting a future request and reduce travel distances.

4. Numerical experiments

4.1. Simulation settings

To explore the effect of system dynamism of request arrivals on the operating efficiency,

the degree of dynamism (dod) is used as an index throughout the numerical simulations.

The degree of dynamism is defined as the ratio of the number of dynamic requests to the

number of total requests in the system:

dod ¼
Number of dynamic requests

Number of total requests
, ð6Þ

in which the number of total requests is the sum of the number of advanced requests and

the number of dynamic requests received within a study period.
In the simulation, we generate passenger requests with several assumptions. The

attributes of the passenger requests are randomly generated, such that the pickup and

delivery locations are uniformly distributed over a service area of 20� 20 km2, and the

desired pickup time follows a Poisson distribution over a study period of 480min.

The arrivals of the static and dynamic requests are independent, and given a number

of total requests and a dod, the number of static requests and dynamic requests are

determined. All of the requests of each type are Poisson arrivals over the study

period, and therefore the inter-arrival times of the requests are exponentially

distributed with a mean equal to the study period divided by the number of requests

of that type.
A constant vehicle speed of 30 kmh�1 and Euclidean distances are assumed in

calculating the travel times between locations. To determine the time windows of requests,

the parameters �, � and WS in Equation (1) are assumed to be 2, 20 and 30min,

respectively. The simulation result shows that the maximum number of passengers on a

vehicle at the same time is not greater than 5, and therefore, for a vehicle with a seating

capacity of eight seats, it is equivalent to assuming that the vehicles are uncapacitated.
To average out the effects of randomness in request generation, we randomly

generate 30 instances with different seat numbers for each problem scenario, and present

averaged results of all solutions found for each instance. When we compare the results of

the three waiting strategies, the problem instances to be solved by each strategy are

identical. Using a PC with an Intel Quad 2.4GHz processor and 4GB memory, it takes

approximately 2min to solve a problem instance with 1000 requests, and a problem

instance with more static requests will take a longer computational time due to post-

processing for static route improvement. On average for all scenarios solved, the post-

processing phase improves the solutions by 3.1% for vehicles used and 5.2% for travel

distances.
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4.2. System efficiency and degree of dynamism

We are interested in investigating the efficiency of dispatching strategies and the
characteristics of the system under different scenarios in a partially dynamic environment.
Two types of simulation analysis are performed. The first simulation is to evaluate the
costs of the dispatching systems in order to fulfil a certain number of requests, and the
second simulation is to determine the number of requests that can be accepted for a fixed
number of vehicles.

4.2.1. System costs

For a fixed number of total requests received in the study period, we vary the dod from 0%
to 100% to generate different numbers of static and dynamic requests. We also vary the
number of total requests at a demand level of 100, 500 and 1000 to see the behaviour of the
system under different operation scales. The problems are solved using DF, WF and
MDW for scheduling. The incurred system costs, including number of vehicles and travel
distances, are shown in Tables 1–3 for different demand levels.

We first compare the performances of the DF, WF and MDW strategies. In general,
the results in Tables 1–3 show that the number of vehicles required by the MDW and DF
are about the same. MDW requires less distances compared to DF in almost all cases,
which is indicated by negative values in the MDW versus DF column in the table, ranging
from �1% to �3%. Furthermore, WF requires more vehicles compared to DF and MDW
for all demand levels, which is indicated by positive values in the WF versus DF column
and a negative value in the MDW versus WF column. However, WF requires much less
distances for the low demand case (i.e. 100 requests), which implies that WF can be useful
when the demand intensity is low and the inter-arrival time between request arrivals
is large.

We also look at the number of vehicles and distance travelled at different levels of dod
for each of the strategies. For the case of 100 demand requests, as shown in Table 1, the
required vehicles and distances are generally increasing for dods of 0% to 60%, and then
the values fluctuate slightly for dods of up to 100%. The solutions for the three waiting
strategies show similar trends. At a demand level of 500, as seen in Table 2, the number of
vehicles and the distance travelled increase from a dod of 0% up to a peak at 70% (for DF
and MDW) and 80% (for WF), and decrease afterwards. Specifically, for the MDW
strategy, both veh(dod¼ 100%) and dist(dod¼ 100%) are about 5% less than
veh(dod¼ 70%) and dist(dod¼ 70%), respectively. This phenomenon also exists at the
high demand level of 1000 requests.

Suppose that pre-booking is a piece of information available in advance. For a fixed
number of requests, an increase in the dod means fewer requests are known beforehand
and therefore less information is known to the system. Therefore, a common intuition that
‘more resources are needed when less information is known’ (and vice versa) does not
apply in this situation, as less vehicles and distances (less resources) are needed when there
are more dynamic requests (less information) in the fully dynamic case. In this study, we
name this observation the ‘dilemma zone’ of the degree of dynamism for describing this
counter-intuitive phenomenon. When the system is highly (but not fully) dynamic, there
are some pre-booking requests assigned to the routes. A route with assigned stops will be
less flexible for rerouting, and the detour to accept dynamic requests is constrained by the
locations and time windows of the assigned stops. In contrast, in a fully dynamic system,
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vehicles without any pre-planned stops can be dispatched with higher flexibility. The
results of the simulation also show that the dilemma zone phenomenon exists for all three
strategies we employed, and thus we will focus on the MDW strategy in the following
experiments.

4.2.2. Requests acceptance rate

The dilemma zone can also be demonstrated by an experiment in which the vehicle fleet
size is fixed and we evaluate the number of requests that can be accepted. This is closer to a
real-world situation. Using the MDW strategy, we simulate the scenarios with 500
requests, assuming maximum vehicle fleet sizes of 10, 15 and 20, and the results are shown
in Table 4. The range of maximum vehicle fleets is chosen because the number of vehicles
required to satisfy all 500 requests is between 18.77 and 23.20 for different dods, as shown
in Table 2.

As the maximum numbers of vehicles are less than the numbers required in Table 2,
not all of the requests can be accepted. For instance, with only 10 vehicles, the dispatching
system can only accept about 300 requests. The system can accept about 420 requests with
15 vehicles, and about 490 requests with 20 vehicles. In general, the number of accepted
requests is higher when the dod is low, and the number decreases as the dod increases to
70% (for Max. Veh.¼ 20) and 80% (for Max. Veh.¼ 10 and 15). Consistent with the
findings in the previous experiment, the system at full dynamism (i.e. dod¼ 100%) can
accept more requests than a system at partial dynamism (dod¼ 80%) by about 1–5%. This
supports our discussions on the dilemma zone.

The dilemma zone can also be explained by an analogous situation in the market for
taxi services (Bell et al. 2005, Sirisoma et al. 2010), which can be considered as a special
case of DRT without shared riding. A taxi driver has customer-searching behaviour
aiming to maximise the profit (i.e. the occupied time). A driver is willing to accept a pre-
booked request only if the customer demand is low. If the demand level is high, such that a
taxi can pick up customers with ease, the driver may not accept pre-bookings as that would
increase the customer searching cost (i.e. waiting time and vacant taxi movement).

4.3. Scale of operation

We further explore the effects on costs due to changes in the scale of operations of the
dispatcher, where the scale is defined as the number of static requests that the dispatcher
typically receives in a day. For a given operation scale, a stress test is performed for the
dispatcher to accept a certain number of dynamic requests, and the required additional
costs are evaluated. This can be useful for the dispatching operator to evaluate the
marginal operating costs to the system due to the dynamic requests, and to make decisions
in adjusting the vehicle fleet size.

We approach this problem by answering the following question with a simulation:
what is the additional cost to a dispatching system to accept another 100 unexpected
dynamic requests, if the size of the system is designed for a given number of advanced
requests? We simulate a scenario with different dods by varying the number of static
requests Ns and the number of dynamic requests Nd. The scheduling is solved via the
MDW strategy, and the results are displayed in Table 5. For instance, a dod of 40% would
mean that the system accepts 150 requests in advance and 100 dynamic requests on the day
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of operation. In addition to the operating costs of handing the advanced requests (8.63

vehicles and 1518.71 km), it would require an additional cost to handle the dynamic

requests (6.17 vehicles and 1308.71 km).
The number of static requests can be used as an indicator of the scale of operations of

the dispatcher. In general, as Ns increases, fewer additional vehicles and less distances are

needed to handle the dynamic requests. This is because a system with a larger scale of

operations (with a higher value of Ns relative to Nd) has greater flexibility in its routes, and
this reflects the economies of scale in the dispatching system. Therefore, a dispatcher with

a large fleet size has a better capacity to lower its average cost to accept dynamic requests.

5. Concluding remarks and implications

In this article, we have investigated how the operational efficiency of a dynamic demand
responsive transportation (DRT) system can be affected by the dynamism of demand

arrivals. Contrary to fully dynamic dispatching and assignment problems, the DRT system

studied is characterised by a partial dynamic environment, in which the dispatching

operator accepts static (advanced booking) requests and dynamic (real-time) requests. For
dynamic dispatching problems with medium to high intensity of demand, we identified the

‘dilemma zone’ of the degree of dynamism (dod). The transportation cost is not linear

relative to the dod; instead, it is highest (and the request acceptance rate lowest) when the
system is partially dynamic. In our numerical analysis, this inefficient peak was at around

70% dod, and this observation was consistent across several solution heuristics for the

routing and scheduling problem.
The dispatching operator can potentially adjust the dod so as to reduce its

transportation costs and increase the total number of requests to be accepted. The dod

of the system can be increased by rejecting some static requests and accepting more

dynamic requests. Similarly, the dod can be reduced by accepting more static requests and
rejecting some dynamic requests. If the predicted dod is above the range of the dilemma

Table 5. Extra numbers of vehicles and travel distances for accepting 100 dynamic requests at
different operation scales.

Costs for all
static requests

Additional costs for
dynamic requests Total costs

dod (%) Ntotal Ns Nd Veh. Dist. Veh. Dist. Veh. Dist.

100 100 0 100 0 0 8.60 1539.06 8.60 1539.06
90 111 11 100 1.90 187.88 6.90 1477.00 8.80 1664.88
80 125 25 100 3.03 368.09 6.93 1410.99 9.97 1779.07
70 143 43 100 4.03 561.57 6.60 1404.75 10.63 1966.32
60 167 67 100 5.40 819.91 6.43 1345.64 11.83 2165.55
50 200 100 100 6.83 1130.80 6.03 1307.87 12.87 2438.67
40 250 150 100 8.63 1518.71 6.17 1308.71 14.80 2827.42
30 333 233 100 11.63 2130.66 5.70 1222.98 17.33 3353.64
20 500 400 100 16.40 3214.05 5.33 1198.56 21.73 4412.61
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zone, the operator can increase the dod by accepting fewer advanced calls, and reserve the
vehicle capacity of the existing fleet for dynamic requests on the day of operation.

This is useful to operators with limited vehicle capacity to dispatch more efficiently
when the arrivals of dynamic requests are more than expected. However, if the demand for
dynamic requests is not high, one may reconsider the trade-off between the benefits gained
from reduced operating costs and losses due to rejecting some requests. In practice, it may
not be feasible to reject advanced requests from a policy viewpoint, and the dispatcher can
turn those requests into dynamic ones and reconsider them for possible insertion later. It is
worth noting that increasing dod by rejecting advanced requests is an unstable policy, as
the average operation cost reduction observed between the dilemma zone and full
dynamism was only 5%. In contrast, lowering the dod is a more attractive policy. If the
predicted dod is close to the dilemma zone from below, the dispatcher can decrease the dod
by rejecting some of the dynamic requests if the system is near capacity.

If the dynamic demand is not high enough, adding new vehicles for the service to
accommodate a few dynamic requests could trigger a higher average operational cost to
the system, as the added vehicle may not be fully utilised. In this case, it is suggested that
no vehicle should be added. Practically, the operation can be in mixed vehicle types, and
the rejected static or dynamic requests can be transported by some hired vehicles on trip
basis at higher unit costs, such as taxis (Wong and Bell 2006). The discussed policies and
actions for the operator to avoid the dilemma zone are summarised in Table 6.

Avoiding the inefficient dilemma zone can achieve a reduction in average operating
cost, but the consequences of the suggested policies and actions controlling the fleet size
and call rejection have to be considered. Furthermore, for strategic decisions taken by the
dispatching service, the uncertainty and predictability of demand arrivals have to be taken
into account. The variability of demand under conditions such as weather and seasonal
effects can also be considered.

Table 6. Actions for the dispatching operator to avoid the dod dilemma zone.

Situation
Policies to avoid dilemma

zone Actions of operator

Approaching dilemma
zone from a high dod

Increase dod by accepting
fewer static requests

� Set an upper bound for the
number of static requests to
be accepted

� Reclassify the rejected static
requests as dynamic

Increase dod by accepting
more dynamic requests

� Attract more dynamic
requests

Approaching dilemma
zone from a low dod

Reduce dod by accepting
more static requests

� Attract more static requests

Reduce dod by accepting
fewer dynamic requests

� Keep existing fleet size by
not adding new vehicles for
dynamic requests

� Reject dynamic requests if
the system is full, or use
rental vehicles (e.g. taxis)
instead.
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The findings of this study were based on simulation tests. The effects of the degree of
dynamism on the operational efficiency could also be dependent on spatial distributions
and the temporal arrival patterns of requests. The conclusions of this study are limited by
the assumptions of uniformly distributed locations and Poisson arrivals. Cases with other
distributions, such as clustered (or scattered) passenger locations and peak arrivals,
deserve further investigation.
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Appendix

Let j 2 Jk be the stops to be visited by vehicle k and aj, bj
� �

be the service time windows of stop j. The
computations of a schedule with the three different waiting strategies are described below.

A1. DF strategy

Denote Aj and Dj as the arrival and departure times at stop j planned with the DF strategy, and
WTj ¼ Dj � Aj as the corresponding waiting time at the stop. If Aj is earlier than aj, the vehicle has
to wait at location j until aj to start the service and then depart at Dj ¼ aj. On the other hand, if Aj is
later than aj, the vehicle starts the service upon arrival and departs immediately without waiting, i.e.
WTj ¼ 0. The vehicle movement has the relationship that the arrival time at a stop equals the
departure time of the previous stop plus the travel time between the two stops, i.e.
Aj ¼ Dj�1 þ t j�1ð Þ, j, where t j�1ð Þ, j is the travel time from stop j� 1 to stop j. Starting from the first
stop (i.e. the depot) of the route, we can repeat the steps recursively to determine the schedule of all
stops. The pseudo code for the DF strategy is given in Table A1.
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A2. WF strategy

Denote Aj and Dj as the arrival and departure times at stop j planned with the WF strategy, and
WTj ¼ Dj � Aj as the corresponding waiting time. As the vehicle stays as long as it can, the
departure time at the current location j would depend on the travel time from j to the next location
jþ 1 and the latest possible arrival time at the next location, i.e. Dj ¼ Ajþ1 � tj, jþ1ð Þ, in order to not be
late. Using the vehicle movement relationship, the schedule of all stops can be calculated in a
backward manner, i.e. from the last stop (i.e. the depot) back to the current stop. The pseudo code
for the WF strategy is given in Table A2.

A3. MDW strategy

Denote Âj and D̂j as the arrival and departure times at stop j planned with the MDW strategy, and
ŴTj ¼ D̂j � Âj as the corresponding waiting time at the stop. MDW is a modification of DF, and
the computation of MDW makes use of the results of DF. The schedule of DF allows a vehicle to
arrive at a stop and wait before the pickup time of the location (i.e. Aj 5 aj), but MDW reallocates
this spare time to the previous stop (i.e. ŴTj ¼WTjþ1). With the stated recursive relationships, the
arrival, departure and waiting times can be calculated for all stops. The pseudo code for the MDW
strategy is given in Table A3.

Table A1. Pseudo code for the DF strategy.

SET N¼ number of stops in the route, with 0 and Nþ 1 as depot
SET A0 ¼ D0 ¼ 0
FOR each location j ( j¼ 1, 2 , . . . ,Nþ 1)
Aj ¼ Dj�1 þ t j�1ð Þ, j

WTj ¼ max aj � Aj, 0
� �

Dj ¼ Aj þWTj

ENDFOR

Table A2. Pseudo code for the WF strategy.

SET N¼ number of stops in the route, with 0 and Nþ 1 as depot
SET ANþ1 ¼ DNþ1¼ end of study period at the depot
FOR each location j ( j¼N, N� 1, . . . , 0)
Dj ¼ Ajþ1 � tj, jþ1ð Þ

WTj ¼ max Dj � bj, 0
� �

Aj ¼ Dj �WTj

ENDFOR

Table A3. Pseudo code for the MDW strategy.

CALCULATE Aj,Dj,WTj using DF strategy
FOR each location j ( j¼ 0, 1, 2, . . . , N)
ŴTj ¼WTjþ1

D̂j ¼ Dj þ ŴTj

Âj ¼ D̂j � ŴTj

ENDFOR
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