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We consider a single-machine two-agent problemwhere the objective is tominimize aweighted combination of the total completion
time and the total tardiness of jobs from the first agent given that no tardy jobs are allowed for the second agent. A branch-and-
bound algorithm is developed to derive the optimal sequence and two simulated annealing heuristic algorithms are proposed to
search for the near-optimal solutions. Computational experiments are also conducted to evaluate the proposed branch-and-bound
and simulated annealing algorithms.

1. Introduction

In traditional scheduling, there is a commongoal tominimize
for all the jobs [1–4]. In contrast to that, there is a growing
interest in multiagent scheduling problems where jobs are
from several customers who have different goals to pursue.
For instance, Peha [5] gave the telecommunication service
examples where various types of packets and service compete
for the use of a commercial satellite, and the problem is
to satisfy the service requirements of individual agents to
transfer voice, image, and text files for their clients. Brewer
and Plott [6] gave a transportation example where the agents
own transportation resources and compete for the usage of
the infrastructures. Kubzin and Strusevich [7] presented an
example that maintenance operations complete with the real
jobs formachine occupancy onmaintenance planning. Baker
and Smith [8] gave a sharing example of a prototype shop in
which the department of research and development might be
concerned about quick response time, while the department
of manufacturing might be more concerned about meeting
the due dates.

Agnetis et al. [9] and Baker and Smith [8] were the pio-
neers that brought the multiagent problems into scheduling
field. Agnetis et al. [9] considered the maximum of regular

functions, number of late jobs, and total weighted completion
times. They obtained different scenarios depending on the
objective function of each agent and on the structure of
the processing system. For each scenario, they addressed
the complexity of various problems. Baker and Smith [8]
examined the implications of minimizing an aggregate
scheduling objective function in which jobs belonging to
different customers are evaluated based on their individual
criteria. They demonstrated that the problem to minimize
a mix of makespan, maximum lateness, or total weighted
completion time is NP-hard. Cheng et al. [10] considered
the feasibility model of multiagent scheduling on a single
machine where each agent’s objective function is to minimize
the total weighted number of tardy jobs. They showed that
the general problem is strongly NP-complete and developed
the complexity results for some special cases. Ng et al. [11]
addressed a single-machine two-agent problem to minimize
the total completion time of the first agent given that the
number of tardy jobs of the second agent cannot exceed
a certain number. They showed that the problem is NP-
hard under high multiplicity encoding and can be solved in
pseudopolynomial time under binary encoding. Lee et al. [12]
discussed a single-machine multiagent scheduling problem
in which each agent is responsible for his own set of jobs
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and wishes to minimize the total weighted completion time
of his own set of jobs. They reduced this NP-hard problem
to a multiobjective short-path problem. They also provided
an efficient approximation algorithm with a reasonably good
worst-case ratio. Agnetis et al. [13] developed the branch-
and-bound algorithms for several single-machine two-agent
scheduling problems. They used Lagrangian dual to derive
the bounds for the branch-and-bound algorithm in strongly
polynomial time. Lee et al. [14] studied a single-machine two-
agent problem with deteriorating jobs in which the objective
function is to minimize the total completion time of jobs
from one agent given that no tardy jobs are allowed for the
other agent.They provided a branch-and-bound algorithm to
derive the optimal solution and several heuristic algorithms
for the proposed problem. Recently, Leung et al. [15] gen-
eralized the single-machine problems proposed by Agnetis
et al. [9] to the case of multiple identical parallel machines.
In addition, they also considered the situations where the
jobs may have different release dates and preemptions may
or may not be allowed. Nong et al. [16] studied a single-
machine two-agent scheduling problem for minimizing the
total cost in which the cost of the first agent is the maximum
weighted completion time while that of the second agent is
the total weighted completion time. Liu et al. [17] considered
single-machine two-agent problems with increasing linear
deterioration consideration. They developed the optimal
solutions for someproblemswhere the goal is tominimize the
objective function of the first agent given that the objective
function of the second agent cannot exceed a certain upper
bound. Cheng et al. [18] studied a two-agent single-machine
scheduling problem with release times where the objective
is to minimize the total weighted completion time of the
jobs of one agent with the constraint that the maximum
lateness of the jobs of the other agent does not exceed a
given limit.They proposed a branch-and-bound algorithm to
solve problems with up to 24 jobs. Yu et al. [19] developed
the optimal solutions for several single-machine scheduling
problems with two competing agents and maintenance activ-
ity. Liu et al. [20] considered single-machine scheduling with
two-agent and sum-of-processing-times-based deterioration
effect. They developed some polynomial-time algorithms for
the respective problems.

Pinedo [1] pointed out that a customer is often concerned
with multiple objectives. For instance, he might want to
have a lower cost and the on-time delivery. To the best of
our knowledge, multiagent scheduling problems with the
consideration ofmultiple objectives from the same agent have
seldom been discussed in the literature. In this paper, we
study a two-agent scheduling problem on a single machine
where the objective is to minimize the weighted combination
of the total completion time and the total tardiness of jobs
from the first agent given that the number of tardy jobs from
the second agent is zero. The rest of the paper is organized as
follows. In the next section the formulation of our problem
is described. In Section 3, a branch-and-bound algorithm
incorporating several elimination rules and a lower bound is
constructed to speed up the search for the optimal solution. In

Section 4, two simulated annealing algorithms are proposed
to solve this problem. In Section 5, a computational experi-
ment is conducted to evaluate the efficiency of the branch-
and-bound algorithm and the performance of the proposed
simulated annealing algorithms. A conclusion is given in the
final section.

2. Problem Description

Theproblemwe study is described as follows.There are 𝑛 jobs
ready to be processed. Each job belongs to either one of the
two agents AG

1
or AG

2
. For each job 𝑗, there is a processing

time 𝑝
𝑗
, a due date 𝑑

𝑗
, and an agent code 𝐼

𝑗
, where 𝐼

𝑗
= 1

if job 𝑗 ∈ AG
1
or 𝐼
𝑗
= 2 if job 𝑗 ∈ AG

2
. Under a schedule

𝑆, let 𝐶
𝑗
(𝑆) be the completion time of job 𝑗, let 𝑇

𝑗
(𝑆) =

max{0, 𝐶
𝑗
(𝑆) − 𝑑

𝑗
} be the tardiness of job 𝑗, and 𝑈

𝑗
(𝑆) = 1 if

𝑇
𝑗
(𝑆) > 0 and zero otherwise. In this paper, we study a single

machine problem to minimize the weighted combination of
the total completion time and the total tardiness of jobs from
AG
1
given that no tardy jobs fromAG

2
are allowed. Using the

conventional three fields of notation, this problem is denoted
by 1|∑

𝑗∈AG
2

𝑈
𝑗
= 0|∑

𝑗∈AG
1

𝜃𝑇
𝑗
+ (1 − 𝜃)𝐶

𝑗
where 0 ≤ 𝜃 ≤ 1.

3. A Branch-and-Bound Algorithm

If there is no job from agent AG
2
and 𝜃 = 1, the problem

under consideration reduces to the classical single-machine
total tardiness time problem which is proved to be NP-
hard by Du and Leung [21]. Therefore, a branch-and-bound
algorithmmight be a goodway to derive the optimal solution.
In this section, we will provide several dominance properties
to speed up the search process.

3.1. Dominance Properties. In this subsection, we develop a
nonadjacent and several adjacent dominance properties to
reduce the searching scope.

Property 1. If jobs 𝑖, 𝑗 ∈ AG
1
, 𝑑
𝑖
≤ 𝑑
𝑗
, and 𝑝

𝑖
< 𝑝
𝑗
, then job 𝑖

must precede job 𝑗 in an optimal schedule.

The following propositions are the ordering criteria on a
pair of adjacent jobs. Suppose that 𝑆 and 𝑆󸀠 are two schedules
of jobs and the only difference between them is a pairwise
interchange of two adjacent jobs 𝑖 and 𝑗. That is, 𝑆 =

(𝜋, 𝑖, 𝑗, 𝜋
󸀠
) and 𝑆

󸀠
= (𝜋, 𝑗, 𝑖, 𝜋

󸀠
), where 𝜋 and 𝜋

󸀠 each denote
a partial sequence. In addition, let 𝑡 denote the completion
time of the last job in 𝜋. The completion times of jobs 𝑖 and 𝑗

in 𝑆 are

𝐶
𝑖
(𝑆) = 𝑡 + 𝑝

𝑖
, (1)

𝐶
𝑗
(𝑆) = 𝑡 + 𝑝

𝑖
+ 𝑝
𝑗
. (2)

Similarly, the completion times of jobs 𝑗 and 𝑖 in 𝑆
󸀠 are

𝐶
𝑗
(𝑆
󸀠
) = 𝑡 + 𝑝

𝑗
, (3)

𝐶
𝑖
(𝑆
󸀠
) = 𝑡 + 𝑝

𝑗
+ 𝑝
𝑖
. (4)
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Proposition 1. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
,𝑝
𝑖
< 𝑝
𝑗
, and 𝑑

𝑗
< 𝑑
𝑖
< 𝑡+𝑝

𝑗
,

then 𝑆 dominates 𝑆󸀠.

Proof. Since jobs in partial sequence 𝜋 are processed in the
same order in both 𝑆 and 𝑆

󸀠 and from (2) and (4), we have

𝐶
𝑘
(𝑆) = 𝐶

𝑘
(𝑆
󸀠
) if job 𝑘 ∈ 𝜋 or 𝜋󸀠. (5)

To show that 𝑆 dominates 𝑆󸀠, it suffices to show

𝜃 [𝑇
𝑖
(𝑆) + 𝑇

𝑗
(𝑆)] + (1 − 𝜃) [𝐶

𝑖
(𝑆) + 𝐶

𝑗
(𝑆)]

< 𝜃 [𝑇
𝑖
(𝑆
󸀠
) + 𝑇
𝑗
(𝑆
󸀠
)] + (1 − 𝜃) [𝐶

𝑖
(𝑆
󸀠
) + 𝐶
𝑗
(𝑆
󸀠
)] .

(6)

Since 𝑝
𝑖
< 𝑝
𝑗
and 𝑑

𝑗
< 𝑑
𝑖
< 𝑡 + 𝑝

𝑗
, we have

𝑇
𝑖
(𝑆) = max {𝑡 + 𝑝

𝑖
− 𝑑
𝑖
, 0} ,

𝑇
𝑗
(𝑆) = 𝑡 + 𝑝

𝑖
+ 𝑝
𝑗
− 𝑑
𝑗
,

𝑇
𝑗
(𝑆
󸀠
) = 𝑡 + 𝑝

𝑗
− 𝑑
𝑗
,

𝑇
𝑖
(𝑆
󸀠
) = 𝑡 + 𝑝

𝑗
+ 𝑝
𝑖
− 𝑑
𝑖
.

(7)

Suppose that 𝑇
𝑖
(𝑆) is not zero. Note that this is the more

restrictive case since it comprises the case that 𝑇
𝑖
(𝑆) is zero.

From 𝑝
𝑖
< 𝑝
𝑗
, we have

𝜃 [𝑇
𝑖
(𝑆) + 𝑇

𝑗
(𝑆)] + (1 − 𝜃) [𝐶

𝑖
(𝑆) + 𝐶

𝑗
(𝑆)]

− 𝜃 [𝑇
𝑖
(𝑆
󸀠
) + 𝑇
𝑗
(𝑆
󸀠
)] − (1 − 𝜃) [𝐶

𝑖
(𝑆
󸀠
) + 𝐶
𝑗
(𝑆
󸀠
)]

= 𝑝
𝑖
− 𝑝
𝑗
< 0.

(8)

Thus, 𝑆 dominates 𝑆󸀠.

Proposition 2. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
, (𝑝
𝑖
−𝑝
𝑗
)+𝜃(𝑑

𝑖
−𝑡−𝑝

𝑖
) < 0,

𝑑
𝑗
< 𝑡 + 𝑝

𝑗
< 𝑑
𝑖
< 𝑡 + 𝑝

𝑖
+ 𝑝
𝑗
, and 𝑝

𝑖
< 𝑝
𝑗
, then 𝑆 dominates

𝑆
󸀠.

Proposition 3. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
, 𝑑
𝑗
< 𝑡 + 𝑝

𝑗
, 𝑡 + 𝑝

𝑖
+𝑝
𝑗
< 𝑑
𝑖
,

and 𝑝
𝑖
− (1 − 𝜃)𝑝

𝑗
< 0, then 𝑆 dominates 𝑆󸀠.

Proposition 4. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
, 𝑡 + 𝑝

𝑖
< 𝑑
𝑖
, 𝑡 + 𝑝

𝑗
< 𝑑
𝑗
,

𝑡 +𝑝
𝑖
+𝑝
𝑗
> max{𝑑

𝑖
, 𝑑
𝑗
}, and 𝜃(𝑑

𝑖
−𝑑
𝑗
) + (1− 𝜃)(𝑝

𝑖
−𝑝
𝑗
) < 0,

then 𝑆 dominates 𝑆󸀠.

Proposition 5. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
, 𝑡+𝑝
𝑗
< 𝑑
𝑗
< 𝑡+𝑝

𝑖
+𝑝
𝑗
< 𝑑
𝑖
,

and 𝜃(𝑡 + 2𝑝
𝑗
− 𝑑
𝑗
) + (𝑝

𝑖
− 𝑝
𝑗
) < 0, then 𝑆 dominates 𝑆󸀠.

Proposition 6. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
, 𝑝
𝑖
< 𝑝
𝑗
, and 𝑡 + 𝑝

𝑖
+ 𝑝
𝑗
<

𝑑
𝑗
< 𝑑
𝑖
, then 𝑆 dominates 𝑆󸀠.

Proposition 7. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
, 𝑡 + 𝑝

𝑗
< 𝑑
𝑗
< 𝑡 + 𝑝

𝑖
+ 𝑝
𝑗
,

(𝑝
𝑖
−𝑝
𝑗
) + 𝜃(𝑡 +𝑝

𝑗
−𝑑
𝑗
) < 0, and 𝑑

𝑖
< 𝑡+𝑝

𝑖
, then 𝑆 dominates

𝑆
󸀠.

Proposition 8. If jobs 𝑖, 𝑗 ∈ 𝐴𝐺
1
, 𝑑
𝑖
< 𝑡 + 𝑝

𝑖
, 𝑡 + 𝑝

𝑖
+ 𝑝
𝑗
< 𝑑
𝑗
,

and (1 − 𝜃)𝑝
𝑖
< 𝑝
𝑗
, then 𝑆 dominates 𝑆󸀠.

Proposition 9. If job 𝑖 ∈ 𝐴𝐺
1
, job 𝑗 ∈ 𝐴𝐺

2
, 𝑝
𝑖
< 𝜃𝑝
𝑗
, and

𝑡 + 𝑝
𝑖
+ 𝑝
𝑗
< 𝑑
𝑗
, then 𝑆 dominates 𝑆󸀠.

To further facilitate the search process, we provide two
properties to determine the feasibility of a partial schedule
or the ordering of the remaining unscheduled jobs. Assume
that (𝜋, 𝜋𝑐) is a sequence of jobs where 𝜋 is the scheduled part
with 𝑘 jobs and 𝜋

𝑐 is the unscheduled part with (𝑛 − 𝑘) jobs.
Among the unscheduled jobs, there are 𝑛

1
jobs from agent

AG
1
and 𝑛

2
jobs from agent AG

2
where 𝑛

1
+ 𝑛
2
= 𝑛 − 𝑘.

Let 𝑆∗ = (𝜋, 𝜋
∗
) be a sequence such that 𝑛

1
jobs from agent

AG
1
are first scheduled in the shortest processing time (SPT)

rule, followed by 𝑛
2
jobs from agent AG

2
in the earliest due

date (EDD) rule. In addition, let 𝑑2
(1)

≤ 𝑑
2

(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑑

2

(𝑛
2
)

denote the due dates of the remaining 𝑛
2
jobs from agent

AG
2
when they are arranged in the EDD rule. Moreover,

let 𝑝2
(1)
, 𝑝
2

(2)
, . . . , 𝑝

2

(𝑛
2
)
denote their corresponding processing

times and let 𝐶
[𝑘]

be the completion times of the last job in 𝜋.

Property 2. If there exists a 𝑗 such that𝐶
[𝑘]
+∑
𝑗

𝑖=1
𝑝
2

(𝑖)
−𝑑
2

(𝑗)
> 0

for some 𝑗 = 1, 2, . . . , 𝑛
2
, then sequence (𝜋, 𝜋𝑐) is infeasible.

Property 3. If∑
𝑘∈𝜋
∗ 𝑈𝑘

(𝑆
∗
) = 0, then 𝑆

∗
= (𝜋, 𝜋

∗
) dominates

sequences of the type (𝜋, 𝜋𝑐).

3.2. A Lower Bound. The efficiency of the branch-and-bound
algorithm also depends on the lower bound of the partial
sequence. Assume that PS is a partial schedule in which the
order of the first 𝑘 jobs is determined and let US be the
unscheduled part with (𝑛 − 𝑘) jobs. Among the unscheduled
jobs, there are 𝑛

1
jobs from agent AG

1
and 𝑛
2
jobs from agent

AG
2
. Moreover, let 𝑑2

(1)
≤ 𝑑
2

(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑑

2

(𝑛
2
)
denote the

due dates of the remaining 𝑛
2
jobs from agent AG

2
when

they are arranged in the EDD rule and 𝑝
2

(1)
, 𝑝
2

(2)
, . . . , 𝑝

2

(𝑛
2
)

denote their corresponding processing times. In addition, let
𝑝
1

(1)
≤ 𝑝
1

(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑝

1

(𝑛
1
)
denote the processing times of the

remaining 𝑛
1
jobs from agent AG

1
when they are arranged

in the SPT rule and 𝑑
1

(1)
≤ 𝑑
1

(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑑

1

(𝑛
1
)
denote the

due dates of the remaining 𝑛
1
jobs from agent AG

1
when

they are arranged in the EDD rule. To derive the lower bound
of the objective function, we construct 𝑛

1
pseudo jobs from

agent AG
1
in the way that job 𝑗 from agent AG

1
has the

processing time 𝑝1
(𝑗)

and due date 𝑑1
(𝑗)
. The idea to derive the

lower bound of the completion times of jobs from agent AG
1

is to assign the completion times to jobs from agent AG
2
as

late as possible without violating the assumption of no tardy
jobs fromagentAG

2
and then to proceed jobs fromagentAG

1

into the machine available periods with the assumption that
jobs splitting is allowed for jobs from agent AG

1
. In addition,

let 𝑡 be the completion time of the last job in partial schedule
PS.The procedures are basically divided into two phases.The
first phase is to calculate the latest time to start processing
jobs from AG

2
, and the second phase is to derive the lower
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bounds for the completion times of jobs from agent AG
1
.The

steps are given as follows.

Phase I

Step 1. Set 𝑖 = 𝑛
2
, 𝑠𝑡 = ∞, and 𝑡

𝑛
2
+1

= ∞.

Step 2. If 𝑑2
(𝑖)

< 𝑠𝑡, set 𝑡
𝑖
= 𝑑
2

(𝑖)
− 𝑝
2

(𝑖)
. Otherwise, set

𝑡
𝑖
= 𝑠𝑡 − 𝑝

2

(𝑖)
.

Step 3. Set 𝑠𝑡 = 𝑡
𝑖
and 𝑖 = 𝑖 − 1. If 𝑖 ≥ 1, go to Step 2.

Step 4. Output (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
2

, 𝑡
𝑛
2
+1
).

Phase II

Step 1. Set 𝑖 = 1 and 𝑘 = 0.
Step 2. Set 𝑘 = 𝑘 + 1.
Step 3. If 𝑡+𝑝1

(𝑖)
> 𝑡
𝑘
, set𝑝1
(𝑖)

= 𝑝
1

(𝑖)
−(𝑡
𝑘
−𝑡), 𝑡 = 𝑡

𝑘
+𝑝
2

(𝑘)

and go to Step 2.Otherwise, set 𝑡 = 𝑡+𝑝
1

(𝑖)
and𝐶1

(𝑖)
= 𝑡.

Step 4. If 𝑖 < 𝑛
1
, set 𝑖 = 𝑖 + 1 and go to Step 3.

Step 5. Output (𝐶1
(1)
, 𝐶
1

(2)
, . . . , 𝐶

1

(𝑛
1
)
).

Thus, the lower bound of theweighted combination of the
total completion time and the total tardiness for PS is

LB (PS) = ∑

𝑗∈AG
1
∩PS

((1 − 𝜃) 𝐶
[𝑗]

(PS) + 𝜃𝑇
[𝑗]

(PS))

+

𝑛
1

∑

𝑗=1

(1 − 𝜃) 𝐶
1

(𝑗)
+ 𝜃max {0, 𝐶1

(𝑗)
− 𝑑
1

(𝑗)
} .

(9)

4. The Simulated Annealing Algorithm

Metaheuristic algorithms have been successfully applied
to solve many scheduling or optimization problems [22–
25]. The simulated annealing (SA) algorithm is one of the
most popular ones. It is originally proposed by Kirkpatrick
et al. [26] and has been successfully applied to solve many
combinatorial optimization problems. The advantage of SA
algorithm is that it could avoid getting trapped in a local
optimum. In this paper, we utilize the SA algorithm to derive
the near-optimal solution for the proposed problem. A brief
description of the SA procedure is as follows. Given an
initial sequence, a new sequence is created by a random
neighborhood generation. The new sequence is accepted if it
has a smaller objective function than the original sequence;
otherwise, it is accepted with some probability that decreases
as the process evolves. The exchange condition is initially set
to a high level so that a neighborhood exchange could happen
frequently in early iterations. It is gradually lowered using
a predetermined cooling strategy so that it becomes more
difficult to exchange in later iterations unless a better solution
is obtained.

The key elements of the SA algorithm are as follows.

(1) Initial Sequence. Since no tardy job is allowed for agent
AG
2
and the SPT rule yields the optimal solution for the total

completion time problem, the initial sequence is constructed
as follows. Jobs from agent AG

2
are first placed according to

the EDD rule, followed by jobs from agent AG
1
according to

the SPT rule.

(2) Neighborhood Generation. Neighborhood generation
plays an important role in the efficiency of the SA method.
Three neighborhood generation methods are used in the
preliminary study. They are the pairwise interchange (PI),
the extraction and forward-shifted reinsertion (EFSR), and
the extraction and backward-shifted reinsertion (EBSR)
movements. It is observed that the PI movement yields a
better solution in general. Thus, it is used in later analysis.

(3) Acceptance Probability. In SA, solutions are accepted
according to the magnitude of increase in the objective
function and the temperature. The probability of acceptance
is generated from an exponential distribution:

𝑃 (accept) = exp (−𝛼 × ΔTC) , (10)

where 𝛼 is the control parameter and ΔTC is the change in
the objective function. In addition, the method of changing 𝛼
at the 𝑘th iteration is obtained from Ben-Arieh and Maimon
[27] and is given by

𝛼 =

𝑘

𝛽

, (11)

where 𝛽 is an experimental factor. After some pretests, we
chose 𝛽 = 6000. If the weighted combination of the total
completion time and the total tardiness increases as a result
of a random neighborhood movement, the new sequence is
accepted when 𝑃(accept) > 𝑟, where 𝑟 is a uniform random
number between 0 and 1.

(4) Objective Function.The objective function is usually cho-
sen to be the one that we want to minimize. Thus, in the first
simulated annealing algorithm SA

1
, the objective function is

∑
𝑗∈AG

1

𝜃𝑇
𝑗
+ (1−𝜃)𝐶

𝑗
and regenerates the neighborhood if it

is infeasible. Since our problem is to minimize an objective
function under a constraint, it is reasonable to add the
constraint into the objective function. Thus, in the second
simulated annealing algorithm SA

2
, the objective function is

modified to ∑
𝑗∈AG

1

𝜃𝑇
𝑗
+ (1 − 𝜃)𝐶

𝑗
+ 𝜆∑

𝑗∈AG
2

𝑇
𝑗
where 𝜆 is

chosen to be 1000 after some preliminary tests.

(5) Stopping Condition. Our preliminary tests showed that
the schedule is quite stable after 400𝑛 iterations, where 𝑛 is
the number of jobs. Thus, 400𝑛 was used as the number of
iterations.

5. Computational Experiments

In this section, we conducted the computational experiments
to evaluate the performance of the branch-and-bound and
the proposed SA algorithms. The algorithms were coded in
Fortran 90 and run on a personal computer with Intel(R)
Core(TM)2 Duo CPU T7500 2.20GHz and 2.99GB RAM
underWindows XP.The job processing times were generated
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Table 1: The performance of the B&B with 𝑛 = 12 and 𝜃 = 0.5.

P 𝜏 R Number of nodes CPU time
Mean SD Mean SD

0.25

0.25
0.25 275.81 182.83 0.01 0.08
0.50 389.64 327.66 0.00 0.07
0.75 496.82 774.90 0.00 0.07

0.50
0.25 378.42 363.44 0.00 0.06
0.50 504.80 636.00 0.00 0.07
0.75 473.48 474.64 0.00 0.06

0.75 0.25 154.05 169.55 0.00 0.04
0.5 214.68 244.00 0.00 0.05

0.5

0.25
0.25 323.24 228.37 0.00 0.05
0.50 345.06 332.54 0.01 0.09
0.75 362.94 492.78 0.00 0.06

0.50
0.25 105.47 96.16 0.00 0.03
0.50 216.62 246.72 0.01 0.08
0.75 293.75 285.05 0.00 0.06

0.75 0.25 23.18 35.97 0.00 0.02
0.5 67.08 105.95 0.00 0.03

0.75

0.25
0.25 115.18 96.11 0.00 0.05
0.50 160.90 123.03 0.00 0.05
0.75 104.57 169.79 0.00 0.04

0.50
0.25 3.95 25.52 0.00 0.03
0.50 23.55 50.71 0.00 0.02
0.75 66.48 78.98 0.00 0.03

0.75 0.25 4.82 20.06 0.00 0.02
0.5 5.98 29.08 0.00 0.02

Table 2: ANOVA table for the number of nodes with 𝑛 =

12 and 𝜃 = 0.5.

Source SS DF MS F 𝑃 value
P 2 36236586 18118293 189.52 0.00
(𝜏, R) 7 19531459 2790208 29.19 0.00
Error 2390 2.28𝐸 + 08 95598
Total 2399 2.84𝐸 + 08

from a uniform distribution over the integers 1 to 100 and the
due dates of jobs were generated from a uniform distribution
over the integers between 𝑇(1 − 𝜏 − 𝑅/2) and 𝑇(1 − 𝜏 + 𝑅/2),
where 𝑅 is the due date range factor, 𝜏 is the tardiness factor,
and 𝑇 is the total processing time of all the jobs.

The computational experiments were divided into four
parts. In the first part of the experiment, we studied the effects
of the due date factors 𝜏 and𝑅 and the proportion of jobs from
the second agent 𝑃 to the performance of the branch-and-
bound algorithm.The job size 𝑛 was 12, and the coefficient of
the weighted combination of the total completion time and
the total tardiness 𝜃 was 0.5. Three values of the proportion
of jobs from agent AG

1
were considered, that is, 𝑃 = 0.25,

0.5, and 0.75. Eight combinations of (𝜏, 𝑅) values were tested,
that is, (0.25, 0.25), (0.25, 0.50), (0.25, 0.75), (0.5, 0.25), (0.5,

Table 3: The performance of the B&B with 𝑛 = 12 and 𝑃 = 0.5.

𝜃 𝜏 R Number of nodes CPU time
Mean SD Mean SD

0.25

0.25
0.25 246.56 174.35 0.00 0.05
0.50 367.78 604.59 0.00 0.07
0.75 359.06 396.26 0.00 0.05

0.50
0.25 93.20 61.04 0.00 0.04
0.50 226.18 264.67 0.00 0.05
0.75 285.38 297.02 0.00 0.05

0.75 0.25 25.01 41.37 0.00 0.04
0.5 44.52 55.99 0.00 0.03

0.5

0.25
0.25 323.24 228.37 0.00 0.05
0.50 345.06 332.54 0.01 0.09
0.75 362.94 492.78 0.00 0.06

0.50
0.25 105.47 96.16 0.00 0.03
0.50 216.62 246.72 0.01 0.08
0.75 293.75 285.05 0.00 0.06

0.75 0.25 23.18 35.97 0.00 0.02
0.5 67.08 105.95 0.00 0.03

0.75

0.25
0.25 324.93 326.67 0.01 0.10
0.50 346.91 294.66 0.00 0.06
0.75 354.06 449.82 0.00 0.06

0.50
0.25 122.77 114.42 0.00 0.04
0.50 215.55 217.34 0.00 0.04
0.75 341.23 301.91 0.00 0.06

0.75 0.25 26.92 46.26 0.00 0.02
0.5 46.97 66.25 0.00 0.03

Table 4: ANOVA table for the number of nodes with 𝑛 =

12 and 𝑃 = 0.5.

Source SS DF MS F 𝑃 value
𝜃 2 113054 56527 0.74 0.48
(𝜏, R) 7 38742472 5534639 72.26 0.00
Error 2390 1.83𝐸 + 08 76593
Total 2399 2.22𝐸 + 08

0.50), (0.5, 0.75), (0.75, 0.25), and (0.75, 0.50). The mean
and the standard deviation of the number of nodes and
the mean and the standard deviation of the CPU time (in
seconds) were reported for the branch-and-bound algorithm.
100 replications were randomly generated for each case and
the results were presented in Table 1. A two-way analysis of
variance (ANOVA) on the number of nodes of the branch-
and-bound algorithm was constructed and given in Table 2.
The resulting 𝐹 value of factor 𝑃 was 189.52 with a 𝑃 value
close to 0, which indicated that the values of 𝑃 really affect
the performance of the branch-and-bound algorithm. In fact,
problems are easier to solve when the value of 𝑃 is larger.
The main reason is that Property 2 is more powerful in this
case. In addition, the resulting 𝐹 value of due date factor 𝜏
or 𝑅 was 29.19 with a 𝑃 value close to 0, which indicated that
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Table 5: The performance of the B&B and SA algorithms (𝜃 = 0.5).

n P 𝜏 R
Branch-and-bound algorithm SA

1
SA
2

Number of nodes CPU time Error percentages Error percentages
Mean SD Mean SD Mean SD Mean SD

16

0.25

0.25
0.25 1585.08 1474.52 0.02 0.02 0.15 0.91 0.11 0.73
0.50 2095.26 2732.66 0.02 0.03 0.15 0.50 0.14 0.59
0.75 2222.28 4286.49 0.02 0.04 0.13 0.61 0.14 0.58

0.50
0.25 2065.72 2321.27 0.02 0.02 0.10 0.59 0.09 0.54
0.50 4513.85 6357.05 0.04 0.05 0.05 0.32 0.17 0.66
0.75 8619.26 21890.46 0.07 0.18 0.11 0.31 0.19 0.55

0.5

0.25
0.25 1393.40 1012.04 0.01 0.01 0.27 1.83 0.15 1.36
0.50 1705.39 1475.57 0.02 0.02 0.44 2.34 0.45 2.10
0.75 2492.71 3162.69 0.02 0.03 0.40 1.75 0.20 1.12

0.50
0.25 708.37 1012.71 0.01 0.01 0.00 0.00 0.00 0.00
0.50 2342.18 6513.62 0.02 0.05 0.23 0.96 0.31 1.29
0.75 4389.43 6513.39 0.03 0.05 0.14 0.88 0.17 0.91

20

0.25

0.25
0.25 6440.11 8778.62 0.10 0.13 0.14 0.69 0.21 0.83
0.50 8888.21 12532.10 0.12 0.16 0.44 1.19 0.29 0.93
0.75 37910.61 169197.47 0.52 2.44 0.17 0.59 0.29 0.85

0.50
0.25 31509.93 119592.04 0.41 1.69 0.20 0.72 0.24 0.79
0.50 77321.28 252992.05 0.98 3.45 0.19 0.73 0.22 0.72
0.75 107661.85 496233.51 1.33 6.28 0.14 0.41 0.19 0.72

0.5

0.25
0.25 6080.79 7331.26 0.09 0.10 0.24 1.54 0.15 1.30
0.50 12825.16 17350.45 0.16 0.21 1.05 3.59 0.96 3.16
0.75 30411.23 83195.05 0.37 1.01 0.58 2.15 0.53 2.02

0.50
0.25 3189.29 5854.18 0.04 0.06 0.13 0.93 0.20 1.07
0.50 20391.67 49137.99 0.22 0.55 0.57 1.76 0.59 1.85
0.75 86350.21 282470.70 0.95 3.22 0.42 1.19 0.67 1.47

24

0.25

0.25
0.25 28131.45 39702.43 0.59 8.36 0.26 0.77 0.24 0.73
0.50 100685.98 354838.97 2.15 84.59 0.31 0.84 0.21 0.68
0.75 281777.41 669598.75 5.79 131.44 0.21 0.62 0.19 0.59

0.50
0.25 223096.41 1334703.63 4.35 265.11 0.27 0.69 0.25 0.67
0.50 707912.81 1682584.50 13.42 327.85 0.31 0.64 0.26 0.47
0.75 2069551.88 4812524.50 47.37 1083.82 0.26 0.50 0.26 0.60

0.5

0.25
0.25 28694.70 51288.52 0.57 10.11 0.46 2.34 0.80 2.93

0.50 130640.24 489352.94 2.26 79.84 0.20 1.00 0.44 2.22

0.75 259434.69 552024.63 4.58 97.95 0.29 1.36 0.86 2.42

0.50
0.25 17466.58 29918.38 0.26 4.36 0.15 0.76 0.27 1.11

0.50 439942.63 1794187.38 6.63 298.29 0.46 1.22 0.71 1.75

0.75 2000465.50 6470223.50 34.15 1047.58 0.49 1.32 0.97 1.63

the values of 𝜏 or 𝑅 have statistically significant effects on the
difficulty of the problem. A closer look at Table 1 revealed that
problems are easier to solve as 𝑅 decreases or when 𝜏 = 0.75.
The main reason is that Property 2 and the lower bound are
more powerful in those cases.

Similar to the first part of the experiment, the second part
was to test the effects of the coefficient 𝜃 as well as the effects
of the due date factors 𝜏 and 𝑅. The job size was fixed at 12,
and 𝑃 was 0.5. Three different values of 𝜃 (0.25, 0.5, and 0.75)

and eight values of (𝜏, 𝑅) values were tested, that is, (0.25,
0.25), (0.25, 0.50), (0.25, 0.75), (0.5, 0.25), (0.5, 0.50), (0.5,
0.75), (0.75, 0.25), and (0.75, 0.50). As a consequence, 24 cases
were tested and 100 replications were randomly generated
for each case. The results were presented in Table 3. A two-
way ANOVA on the number of nodes was utilized to test the
effects of the parameters to the performance of the branch-
and-bound algorithm, and the result was reported in Table 4.
The resulting 𝐹 value for the coefficient 𝜃 was 0.74 with a 𝑃
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Table 6: The performance of the SA
1
and SA

2
algorithms with 𝜃 = 0.5.

n P 𝜏 R
RDP CPU time 𝑛

𝑇

SA
1

SA
2

SA
1

SA
2

Mean SD Mean SD Mean SD Mean SD SA1 SA
2

100

0.25

0.25
0.25 0.07 1.89 0.19 3.07 0.20 0.99 0.23 1.20 64 36
0.50 0.06 1.67 0.25 2.91 0.23 1.17 0.24 1.21 71 29
0.75 0.04 1.11 0.21 2.92 0.24 1.20 0.25 1.30 77 23

0.50
0.25 0.10 2.12 0.18 2.65 0.25 1.24 0.22 1.09 56 44
0.50 0.07 1.43 0.21 2.26 0.30 1.43 0.25 1.30 72 28
0.75 0.07 1.33 0.18 2.76 0.37 1.94 0.28 1.37 56 44

0.5

0.25
0.25 0.44 11.34 0.39 10.38 0.21 1.08 0.23 1.13 56 44
0.50 0.06 2.92 1.75 18.84 0.23 1.12 0.24 1.24 88 12
0.75 0.11 4.28 1.49 14.18 0.25 1.26 0.24 1.20 88 12

0.50
0.25 0.27 5.74 0.31 6.36 0.26 1.32 0.24 1.23 54 46
0.50 0.22 5.06 0.72 7.84 0.32 1.58 0.25 1.24 74 26
0.75 0.12 3.36 0.75 6.99 0.45 2.27 0.28 1.40 79 21

200

0.25

0.25
0.25 0.06 1.50 0.28 3.21 0.52 0.14 0.57 0.20 77 23
0.50 0.07 1.83 0.51 6.29 0.62 0.25 0.61 0.17 77 23
0.75 0.09 2.06 0.39 4.86 0.69 0.31 0.64 0.30 70 30

0.50
0.25 0.04 0.98 0.22 2.11 0.70 0.25 0.60 0.27 78 22
0.50 0.03 0.90 0.32 2.98 0.90 0.32 0.68 0.19 78 22
0.75 0.04 1.02 0.31 3.24 1.06 0.56 0.80 2.68 76 24

0.5

0.25 0.25 0.36 7.17 0.48 7.93 0.51 0.21 0.63 1.37 61 39
0.50 0.17 5.75 2.10 16.13 0.57 0.23 0.65 1.78 85 15
0.75 0.11 3.21 1.88 17.17 0.67 0.31 0.69 2.30 83 17

0.50
0.25 0.22 4.05 0.19 3.05 0.76 1.22 0.68 2.34 57 43
0.50 0.07 1.87 0.89 8.11 1.07 3.21 0.72 2.60 81 19
0.75 0.01 0.28 1.15 7.52 1.45 4.38 0.87 3.84 95 5

value of 0.48, which implied that 𝜃 does not affect the per-
formance of the branch-and-bound algorithm. On the other
hand, the statistical test showed that the due date factors have
significant effects on the performance of the branch-and-
bound algorithm, and the problems are easier to solve when
𝜏 = 0.75, which is consistent with the findings in the first part
of the experiment.

Themain purpose of the third part of the experiment was
to study the impact of the number of jobs to the performance
of the branch-and-bound algorithms and the accuracy of the
proposed simulated annealing algorithms.Three different job
sizes (𝑛 = 16, 20, and 24) were tested. Since the problems are
relatively easier to solve when 𝜏 = 0.75 and 𝜃 was found to be
the insignificant factors in the second part of the experiments,
we ignored the cases when 𝜏 = 0.75 and fixed 𝜃 at 0.5 in the
third part of the experiment. Two values of 𝜏 (0.25, 0.50) and
three values of 𝑃 (0.25, 0.50, and 0.75) and of 𝑅 (0.25, 0.50,
and 0.75) were tested.Themean and standard deviation of the
number of nodes and the mean and standard deviation of the
CPU time (in seconds) for the branch-and-bound algorithm
were given, while only the mean and standard deviation of
the error percentages of the SA algorithmswere reported.The
error percentage of the solution produced by SA is calculated
as

(𝑉 − 𝑉
∗
)

𝑉
∗

× 100%, (12)

where 𝑉 is the weighted combination of the total completion
time and the total tardiness of the solution generated by SA
and 𝑉

∗ is the value of the optimal solution obtained from
the branch-and-bound algorithm. The execution time of SA
algorithms was not recorded since they were finished within
a second. For each condition, 100 replications were generated
and the results were given in Table 5. It is observed that the
branch-and-bound algorithm could solve problems of up to
24 jobs in a reasonable amount of time. However, the number
of nodes and execution time grow exponentially as the
number of jobs increases since the problem is NP-hard. The
most time consuming case (𝑛, 𝑃, 𝜏, 𝑅) = (24, 0.25, 0.5, 0.75)

took an average execution time of 47.37 seconds. As to the
performance of the SA algorithms, the results showed that
both of them are quite accurate with a mean percentage error
of less than 1% for all the tested cases. Moreover, it seemed
that SA

2
performed better than SA

1
when the number of jobs

is 16; however, the trend is not obvious as the number of jobs
becomes larger.Thus, we would study the performance of the
algorithms for large job-size problems in the last part of the
experiments.

We tested two job sizes, that is, 𝑛 = 100 and 200, in
the last part of the experiments. We randomly generated
100 instances for each situation and we reported the results
in Table 6. The mean and standard deviation of the relative
deviation percentage (RDP) were given. The RDP of the
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solution produced by a simulated annealing algorithm is
calculated as

(𝑉
𝑖
−min {𝑉

1
, 𝑉
2
})

min {𝑉
1
, 𝑉
2
}

× 100% (13)

for 𝑖 = 1, 2, where𝑉
𝑖
is the value of the weighted combination

of the total completion time and the total tardiness of the jobs
from the first agent generated by the 𝑖th simulated annealing
algorithm.Themean and standard deviation of the execution
timewere also reported. In addition, we recorded the number
of times (𝑛

𝑇
) it yields the minimum value. It was seen that

both algorithms are very fast since the mean execution time
is less than 1 second for all the tested cases. However, the
first SA algorithm performs better than the second one in
terms of the RDP values and the number of times it yields
the minimum value. Thus, it is recommended as the number
of jobs increases.

6. Conclusion

In this paper, we considered a two-agent single-machine
scheduling problem where the objective is to minimize the
weighted combination of the total completion time and the
total tardiness of the jobs of the first agent given that no
tardy job is allowed for the second agent. We proposed a
branch-and-bound algorithm to solve the problem optimally
and two simulated annealing algorithms to find near-optimal
solutions. The computational experiments showed that the
branch-and-bound algorithm could solve problems of up to
24 jobs in a reasonable amount of time. It also showed that the
performance of the first SA algorithm is very good, yielding
an average error percentage of less than 1% for all the tested
cases.
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