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Simplifying Sequential 
Circuit Test Generation 

SEQUENTIAL TEST generation 
poses a difficult problem for circuits 
implemented from finite-state ma- 
chines. The flip-flops in sequential 
circuitssynthesized from FSMs gen- 
erally have intricate cyclic struc- 
tures that complicate sequential 
test generation. We have devel- 
oped a parity checker design-for- 
testability scheme that significantly 
enhances circuit testability, thus 
simplifying the testability problem. 

Years ago, Hennie’ proposed a 
checking experiment to test FSMs 
by deriving “distinguish” sequences 
that can differentiate good ma- 
chines from faulty ones. The very 
long test sequence involved, plus 
the near impossibility of deriving the 
distinguish sequence sometimes 
makes this approach impractical. 

To shorten the derived checking 
sequence, Fujiwara et aL2 proposed 
making machines output-observable by 
adding a number of extra outputs. This 
method reduces the length of the 
checking sequence for the modified 
machine nearly to a minimum. 

For practical circuit designs, manu- 
facturers commonly use scan designs3 
to facilitate sequential circuit testing. To 
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the large hardware overhead and 
shorten the test sequence, several 
factors argue against their use. 

J 
enhance circuit controllability and ob- 
servability, full scan designs chain all 
the storage elements into a shift regis- 
ter. Such designs, though, involve rela- 
tively large hardware overhead and 
long test sequences. 

Partial scan designs, by contrast, se- 
lect only a subset of flip-flops for scan- 
ning. Though they significantly reduce 

. 

. 

. 

Sequential test generation is 
inevitable for the nonscanned 
flip-flops. 
All scan designs may degrade 
performance due to the extra 
delay introduced in the scan 
path. 
Additional input/output pins 
are necessary for the scan 
data I/O and scan clock 
control. 
The scan mode cannot oper- 
ate at the speed of the circuit 
during normal operation. 

Researchers have developed 
many efficient sequential test gen- 
eration algorithms to generate test 

sequences for FSM circuits based on the 
stuck-at-fault model. Due to the heavy 
computation involved, these can gen- 
erate test sequences only for moder- 
ately large circuits. 

Recently, Cheng et aL4 proposed a 
functional test generation method for 
FSMs based on their single-state transi- 
tion fault model. The derived functional 
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Useful definitions 

DFT Design for testability 
DS Distinguish sequence 
DT Distinguish table 
FSM Finite state machine 
FTG Functional test generation 
PCDFT Parity checker DFT 
SPDS Statepair distinguishing 

sequence 
SSPDS Shortest SPDS 
SST Singlestate transition 

__ 
test sequences have high stuck-at fault 
coverages, demonstrating the effective 
ness of this functional fault model. 

One solution for this testing problem 
is to design (orsynthesize) the circuit of 
an FSM in a testable way. For example, 
Devadas et a1.5 proposed a procedure to 
synthesize highly testable FSMs that 
eliminates sequential redundancies of 
an FSM. Agrawal et aL6 devised a gener- 
al architecture of testable design for 
FSMs in which the FSM function merges 
with a test function during circuit syn- 
thesization. The same group’ also de- 
veloped a state assignment procedure 
for synthesizing testable designs that 
produces highly testable designs by r e  
ducing the cyclic structure of the flip 

Saucier et a1.8 developed a method to 
synthesize concurrently checked con- 
trollers. It employs an embedded signa- 
ture monitoring approach and signature 
justification method to verify signatures 
of the paths of a selfchecking FSM. 
Recently, Fujiwara et a1.9 proposed a par- 
ity scan design to shorten the test appli- 
cation time. In their approach, the circuit 
is fully scanned and treated as a combi- 
national circuit during testing. To elimi- 
nate the scan-out sequence of parity- 
testable faults, an added parity checker 
checks all flipflops. 

Our new parity checker DIT scheme 
for FSMs’O uses a parity checker to mon- 
itor state changes after FSMs have made 

flops. 
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state transitions to detect state transition 
faults. For the circuit, which still works 
as a sequential circuit duringtesting, the 
parity checker directly observes the fault 
effect appearing at the state lines. This 
eliminates any propagation or scan-out 
sequence. Our approach significantly 
enhances circuit testability, making the 
testing problem much simpler. 

Before proceeding to the parity check- 
er DFTscheme for FSMs, readers should 
acquaint themselves with several defin- 
itions of distinguishability and theorems 
for distinguishable machines that we ad- 
dress in the accompanying box on the 
next page. 

Parity checker DFT scheme 
For an FSM to detect an SST fault, we 

need an input sequence that will prop 
agate the fault effect of the faulty state 
pair to primary outputs. During the fault 
effect propagation, three possible cas- 
es can cause the fault effect to disap- 
pear such that the primaly outputs 
cannot observe the fault effect: 

1. The faulty state pair is equivalent. 
2. The faulty state pair is partially 

equivalent. 
3. The faulty state pair forms a loop, 

as shown in Figure la, where A, B 
are two states of a faulty state pair. 

In Figure la, for the first case, statesA 
and B transit to the same next states, giv- 
ing the same outputs under any input. 
They are equivalent. This is the equiva- 
lent sequential redundancy reported by 
Devada, Ma, and Newton.” 

For the second case, states A and B 
transit to the same next state Cwith the 
same output 0 under certain input I. 
They are partially equivalent. In this 
case, if the input I is accidentally che  
sen as the propagation sequence, the 
fault effect will disappear. 

For the third case, states A, B, and C 
transit to each other to form a loop with 
the same output 0 under the same in- 
put I. In this case, states A, B, and Cmay 

of A and B 

(3) 

Even Odd Even Odd Even 

of A and B 

Figure 1. Three cases that can cause the 
fault effect to disappear (a), and ways to 
eliminate fault-effect disappearance lbj. 
The fauliy state pairs are equivalent (case 
I j, partially equivalent (case 2), and form 
U loop (case 3). 

Flip 

checker 

Figure 2. The parity checker DFJ scheme 
eliminates the propagation or scan-out 
sequence required by other schemes. 

be fully or partially equivalent. The case 
having more states in such a loop pre- 
sents the same situation as the third 
case. 

We propose a new D R  scheme to 
further eliminate the propagation or 
scan-out sequence that other schemes 
require. In our scheme, as shown in 
Figure 2, we attach a parity checker to 
the state lines to monitor the fault ef- 
fects appearing at the flip-flops. 

Basically, we assign the states of the 
FSM with codes of a particular parity. 
The parity checker checks the parity of 
the flipflops that code the states of the 
machine. Whenever an SST fault oc- 
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Figure 3. The parity checker DFT scheme 
with concurrent error detection. Adding 
one flip-flop and its associated logic to 
preserve the parity of the states will 
extend our approach to a concurrent 
error detection design. 

curs, a faulty state pair arises, and the 
faulty state demonstrates an opposite 
parity that the parity-checker detects. 
Hence, by assigning different parities to 
states of the state pair as shown in 
Figure 1 b, our Dm scheme can avoid 
all three cases of state undistinguish- 
ness just described. 

For case 1 of Figure 1 b, we assign dif- 
ferent parity to states A and B, as they 
have the largest undistinguishability. 
The parity checker will directly detect 
the fault effect of the equivalent faulty 
state pair, thus rendering the propaga- 
tion or scan-out sequence unnecessaly. 
The same exercise can also apply to 
state pairs of cases 2 and 3. After as- 

signing different parities, the equivalent, 
partially equivalent or loop states be- 
come totally distinguishable. The pari- 
ty checker can immediately detect all 
fault effects propagated to the state 
lines, making the test sequence to de- 
tect faults shorter and removing some 
sequential redundant faults.” Test gen- 
eration for circuits synthesized accord- 
ing to this scheme becomes very 
simple. 

With one more flip-flop and its asso- 
ciated logic for preserving the parity of 
the states (see the shaded portion of 
Figure 3), this scheme not only helps 
detect the faults of an FSM during test- 
ing. It can also serve as a scheme for the 
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Definitions and theorems continued 

faulty transition for the fault and generate tota 
a faultystate pair. Since the machine is ic A 
distinguishable, the propagation se- ly 
quence of any faulty state pair is no Ion 
than K. The maximum length fort 

of SST faults is M(N-I 
mum length for the in 

comes 2NM(N-l).  

Definition 6. If the two stat 

r what applied input se 
are a totally distinguishable 

nition 7. A state S,,, of an 
uishable state if 

fault-tolerant design of an FSM for con- 
current error detection. In such a case, 
the output of the parity checker (la- 
beled TO) serves as an error indicator 
of transient faults appearing at flip-flops 
during normal operation. 

To reflect the testability of an FSM, 
we use the value icand the number of P 

distinguishable states as parameters. 
For a Pdistinguishable FSM described 
by a state transition graph, we can also 
derive the number xas well as the num- 
ber of the K-distinguishable states. The 
larger the value of xand the number of 
Kdistinguishable states, the longer a test 
sequence must be to test this machine. 
Also, the more difficult this test se- 

quence will be to generate. We want, 
therefore, to design a machine having 
only totally distinguishable states. Such 
a machine makes test generation very 
easy and greatly shortens the obtained 
test sequence. 

The value K and the number of K- 
distinguishable states are generally 
greater than one for an FSM. To reduce 
ic-to make a machine totally distin- 
guishable-our scheme uses a parity 
checker to design the FSM and makes 
all SST faults having a lower level of 
testability to be observed immediately 
at the output of the parity checker by 
assigning different state parity to the SST 
faults. 

Sate parity assignment 
The testability feature of our approach 

rests on the fact that different parities on 
the states of the FSM will occur as the ma- 
chine becomes faulty. By checking the 
parity, our scheme can differentiate the 
faulty state pair. However, for an FSM, 
seldom will all states or state pairs be to- 
tally distinguishable. In our proposed 
DFTscheme, we have developed a state 
assignment procedure that assigns state 
pairs of the FSM to maximize the num- 
ber of totally distinguishable states. 

To better understand the state parity 
assignment procedure, let’s look at the 
example of FSM M2.4 Figure 4 (next 
page) shows the state transition table 
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0/1 

Figure 4. A sample FSM M2:  state tran- 
sition table (a), state transition graph (b). 

and the associated state transition graph 
of M2. At first, we construct a distinguish 
table (DT), as shown in Figure 5a, from 
the state transition table. The distinguish 
table compiles the distinguishability of 
each state. For this E M ,  states B and E 
are totally distinguishable because they 
transit to different states with different 
outputs under any input. Also, states C 
and E are totally distinguishable. 

Hence, in the distinguish table, we 
mark the table entries of state pairs 
[B,E] and [C,E] with an X. States B and 
C transit to the same next state D with 

I 
UnDisty(M2) = 2.8 

D,$$Fi-7-l E 3  

F v r l  
A B C D E  A B C D E F  

UnDisty(S)= 2.4 2.8 3.4 2.6 2.6 3 

[B,Cl; [E,Fl; [A,Dl; [ A A ,  [C,Dl, [D,El; ... 
(4 

Figure 5. The distinguish table constructed from the state transition table ofM2:  the 
distinguish table (a), undistinguishability table (b), and the order list (c). 

same output 1 under input 1, but transit 
to statesA and E with output 0 under in- 
put 0. States B and C thus are partially 
equivalent, or may be equivalent if 
statesA and E are equivalent. We mark 
the table entry of state pair [B ,q  with 
an asterisk and an [A,E]. StatesA and B 
transit to different next states and have 
different outputs under input 0 but the 
same output, that is 1, under input 1. We 
also mark the table entry of state pair 
[A&] with [D,E], which are the next 

states of states A and B under input 1. 
The accompanying Procedure for 

Building a distinguish table box shows 
the procedure we derive to construct 
the distinguish table from the state tran- 
sition table for an FSM. 

In constructing the distinguish table, 
the procedure also calculates undistin- 
guishability to reflect the distinguisha- 
bility. For an FSM F with Nstates and 
each state with L outgoing edges, we de- 
fine the undistinguishability of a state 
pair and a state as follows: 

For a state pair [S,,S,], its undistin- 
guishability is UnDisty( [S,S,]) = Number 
of next state pair in [S,,S,] entry + num- 
ber of [SJ,] in distinguish table + K, 
where K =pN,  if SI and S, have p partially 
equivalent transitions, where 1 I p 5 L; 
K =  0,othenvise. 

For a state SI, its undistinguishability is 

UnDisty(S,) = 

2 UnDisty([S,.S,]) 
( N - 1 )  / = l , / t 1  

With the above definitions, we con- 
struct an undistinguishability table of 
state pairs for the example FSM as 
shown in Figure 5b. For example, 
UnDisty([A,D]) = 2+1+1 = 4, because 
there are two next state pairs in the 
[AD]  entry, and [A,D] appears once as 
the next state pair in the [B,D] and 
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[ C, D] entries. Since there is one * in the 
[ B , q  entry, UnDisty([B,C]) = 6+1+1+1 
= 9. Figure 5b also shows the undistin- 
guishability of every state. For state C, 
UnDisty(Q = (2+9+3+1+2)/5 =3.4. Here, 
we can define the undistinguishability 
of an FSM as 

l n  UnDisty(F) = -cUnDisty(S,) 
N 

l = l .  

The undistinguishability of an FSM 
can serve as a testability measure for the 
machine. The larger the undistinguish- 
ability for a machine, the harder the test 
generation will be. For the example 
FSM shown in Figures 4 and 5, this val- 
ue is UnDisty(M2) = (2.4+2.8+3.4+2.6 
+2.6+3)/6 = 2.8. 

With the undistinguishability value 
computed for each state pair, we derive 
an order list of state pairs for the state par- 
ity assignment. Figure 5c shows such a 

list derived from Figure 5b. In the list, the 
state pair [B,C] should get assigned to a 
different parity first because it has the 
highest undistinguishability value. Pair 
[E,F] should come next, and so forth. 

For parity assignment, as an even or 
odd parity is assigned to one state of a 
state pair, the scheme assigns the op- 
posite parity to the otherstate of the pair. 
With this assignment made, the states of 
this state pair-originally having high 
undistinguishability-become totally 
distinguishable. Those state pairs that 
are not totally distinguishable will also 
become much less k-distinguishable. 

Generally, we can easily generate the 
test sequence of those k-distinguishable 
state pairs. The State parity assignment 
box describes the procedure used to 
assign state parity for an FSM. 

Figure 6 shows the new distinguish 
table after completion of the parity as- 
signment for the example. In the figure, 

D 

E 

F 

A B C D E  

Figure 6. The modified distinguish table 
of example M2. A// state pairs are tota//y 
distinguishable except [A,C], and this 
machine becomes a I -distinguishable 
machines, with an undistinguishability 
that approaches 0. 

stateSA, C, and Fare assigned even par- 
ity codes; states B, D, and E are assigned 
odd parity codes. Since A and B have 
different parity, the machine can dif- 
ferentiate them at the next clock. An X 
marked on the [A,B] entry indicates 
that it is a totally distinguishable state 
pair. Also, the state pairs [A,D] , [A,E] , 
[B,C], ... are totally distinguishable. 

The state pair [A,F] has two next state 
pairs, [B, c] and [C,E], that are both to- 
tally distinguishable. State pair [A,F] 
then is totally distinguishable after one 
clock. Hence, in the figure, all state 
pairs are totally distinguishable except 
[A,C]. This machine becomes a 1- 
distinguishable machine, with an undis- 
tinguishability approaching 0. The 
machine can record state pair [A,C] for 
the later test generation. 

Test generation 
Adding the parity checker and adopt- 

ing the state parity assignment greatly 
simplifies test generation of FSMs. We 
have developed two methods for gen- 
erating test sequences with 100% fault 
coverage for different fault models. A 
functional test generation method ap- 
plied before synthesis of FSMs works for 
the singlestate transition fault model. A 
deterministic test generation method 
applied after the circuit implementation 
works for the single stuck-at fault model. 
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Figure 7. Functional test  generation of 
example M2. 

Table 1. Two state assignments for M2. 

I M2 a Parity b I 
A 000 Even 000 
B 010 Odd 010 
C 110 Even 001 
D 100 Odd 100 
E 001 Odd 011 
F 101 Even 101 

Functional test generation. As we 
discussed earlier, after state parities are 
assigned, the machine becomes a min- 
imal Kdistinguishable device. For a K- 
distinguishable FSM to detect all SST 
faults, the test generation problem ba- 
sically is a postman traveling problemI7 
with a constraint that the postman must 
consecutively pass some specified 
streets. Starting from the postaffice (re- 
set state), the postman, however, 
should traverse all streets at least once, 
while passing the minimal number of 
streets. (In the postman traveling prob- 
lem, a postman picks up mail at the post 
office and delivers it to each block in 
the territory. The postman wishes to 
choose a route that minimizes the dis- 
tance traveled. The vertices and edges 
of a graph G modeling this situation cor- 
respond to the street corners and con- 
necting blocks of the postman’s 
territory. The solution, then, to the post- 
man traveling problem is a closed walk 
of minimum length G that uses every 
edge at least once.) 

Table 2. The fault coverage percentages 
of the two implementations shown in 
Table I. 

M2a M2b 
Test r/O) 
0 
0 
0 
0 
1 
1 
0 
1 
0 
1 
1 
1 
0 

28 
44 
57 
63 
70 
76 
80 
85 
90 
92 
96 
98 
99 

7 
29 
42 
49 
49 
60 
68 
80 
85 
85 
85 
87 
91 

For the state transition graph, direct- 
ed edges (state transitions) are like one- 
way streets, and the vertices (states) are 
like crossingstreets, with the constraint 
that some edges must be consecutive- 
ly traversed at least once. For a totally 
distinguishable machine, the constraint 
disappears. In this special case, the 
functional test generation resembles the 
checking experiments Fujiwara and 
Kinoshita present.* If the state transition 
graph is an eulerian, the problem sim- 
plifies to a onestroke one, and the test 
length becomes the minimum test 
length-the number of transitions plus 
one. (An eularian graph is one that lets 
us walk all edges once and only once: 
that is, a eulerian graph can be drawn in 
one stroke, with no edge repeated.) 

The information obtained in the state 
assignment procedure can assist during 
functional test generation. For the dis- 
tinguish table of example M2 shown in 
Figure 6, the machine is now a 1- 
distinguishable machine after state 
parity assignment. One remaining 1- 
distinguishable state pair, [A, c ] ,  has an 
undistinguishable next state pair [D,E] 
under input 1. So the input 1 state tran- 

sitions of states A and C is a constraint 
during test generation. 

Since [D,E] is totally distinguishable 
after one additional clock, making any 
additional transition after the con- 
strained transitions will remove the con- 
straints. Since the state transition graph 
is an  eulerian, one stroke will generate 
the test sequence, as Figure 7 shows. 
Here, the reset state is A. After traversing 
the states, the derived test sequence is 
00001 10101 110 and the final state is C. 

For comparison, we performed two 
implementations of different state as- 
signments with the M2 machine we 
have used as an example. Table 1 p r e  
sents the results. For the M2a imple- 
mentation, we adopted the stateparity 
assignment, and for the M2b imple- 
mentation, we assigned the states 
without considering parity. We then 
synthesized these two assignments into 
logic circuits with the aid of MisII.I2 We 
then applied the test sequence gener- 
ated in Figure 7 to these two logic cir- 
cuits to detect stuck-at faults. 

From theorem 2, for the M2a imple- 
mentation, the SST fault coverage is 
guaranteed to be 100%. Table 2 shows 
the fault coverage of stuck-at fault ver- 
sus the test sequence applied for these 
two implementations. Clearly, the fault 
coverage rises much faster, reaching 
99% for the M2a implementation than 
with M2b. Fault coverage reaches only 
91% under the applied test sequence for 
the M2b implementation. 

Deterministic test generation. In 
general, FSMs are not completelyspec- 
ified for their state transition tables. 
Unspecified states, state transitions, and 
“don’t care” terms remain for the tables. 
During functional test generation, cal- 
culation of the undistinguishability 
does not reflect these unspecified 
terms. Also, for the traversing sequences 
containing “don’t care” terms, we ran- 
domly assign logic 0 or 1 to form the in- 
put sequence. These reduce the 
effectiveness of the derived functional 
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faults of the implemented circuits. For 
example, in the M2a implementation 
just discussed, the derived functional 
test sequence reach only a 99% stuck- 
at fault coverage. 

To reach 100% stuck-at fault cover- 
age, we use a deterministic test genera- 
tion method to generate test for a circuit 
synthesized employing the parity 
checker DFTscheme as follows: 

1. Find a sequence that traverses all 
states at least once as an initial test 
sequence. 

2. Run sequential fault simulation for 
the test sequence; drop the de- 
tected faults and stop if no fault re- 
mains; and record the last reached 
state as the current state. 

3. Select a target fault. 
4. Run the combinational test gener- 

ation procedure for the target fault. 
The fault effect may appear in pri- 
mary outputs, or appear in odd 
number of flip-flops. Record the 
state that detects the fault as the 
target state and the input that 
detects the fault as the activation 
pattern. 

5. Find a sequence that justifies the 
current state to the target state as 
the new test sequence, add the ac- 
tivation pattern into the test se- 
quence, and go to step 2. 

Experiments 
We built an automatic synthesis sys- 

tem on a Sun workstation to synthesize 
and generate functional test sequences 
for FSMs by incorporating our DFT 
scheme. Upon receiving the transition 
table of an FSM, the system builds the 
distinguish table, calculates the undis- 
tinguishability, and suggests a parity 
state group partition, as well as deriving 
a set of functional test sequences. With 
the suggested state group partition, it 
uses MUSTANG,13 a state-assignment 
tool developed at UC Berkeley, to make 
the state assignments and MisII to per- 

~~ ~ ~ 

SST fault SA fault 
coverage PCDFT-FTG coveraae 

CPU Test With Without With Without 
FSM speed length PCDFT PCDFT PCDFT PCDFT 
name (sec.) (patterns) (%) (%I (%I (%I 

bbsra 0.02 
bbsse 0.03 
bbtas 0.02 
beecount 0.02 
cse 0.05 
dk14 0.02 
dk15 0.02 
dk16 0.1 3 
dk17 0.02 
dk27 0.02 
dk512 0.03 
ex3 0.02 
ex7 0.02 
lion 0.02 
lion9 0.02 
opus 0.02 
sand 0.20 
sse 0.03 
styr 0.1 8 
train4 0.02 
train1 1 0.02 
Average 0.04 
'99.69524 

92 
150 
36 
53 

21 2 
83 
43 

195 
65 
22 
56 
93 

101 
14 
33 
82 

334 
169 
389 

14 
42 

108 

100 90.7 
100 83.6 
100 94.2 
100 82.4 
100 75.4 
100 91.7 
100 85.4 
100 98.7 
100 91.5 
100 91.7 
100 96.0 
100 55.6 
100 38.3 
100 87.9 
100 80.1 
100 92.8 
100 99.3 
100 84.2 
100 89.4 
100 81.0 
100 80.8 
100 84.3 

1 00 

100 
100 

100 
1 00 
100 
1 00 
100 
1 00 

98.2 

99.6 

99.3 
98.6 

99.6 

99.8 
98.7 
99.8 

100 

100 

100 
100 

8 

77.2 
87.7 
72.6 
83.5 
96.5 
97.6 
97.2 
99.5 
96.4 
86.3 
93.1 
67.3 
53.9 
94.2 
91.2 
97.8 
94.5 
85.9 
91.6 
95.4 
98.2 
88.5 

form logic optimization and circuit re- 
alization for the combinational logic 
system then automatically adds the flip 
flops and parity checker to make a se- 
quential circuit. Finally, a single state 
transition fault simulator SSTFS and a 
stuck-at fault simulator SEESIMI4 evalu- 
ate the fault coverage. 

As Tables 3 and 4 show, the system 
has synthesized a number of MCNC 
(Microelectronic Center at North Caro- 
lina) benchmark FSMs.I5 In Table 3, the 
second and third columns are the test 
generation times and the test lengths of 
the functional test sequences generat- 
ed during synthesis. The fourth column 
is the SST fault coverage for the FSMs 
designed with the parity checker DFT 

scheme (PCDFT). All the SST fault cov- 
erage are 100% for these FSMs. The fifth 
column is the SST fault coverage for the 
FSMs with a parity checker added to 
FSMs to help detect the transition fault, 
but without applying the state parity as- 
signment. For this case, the SST fault 
coverage averages 15% lower. The last 
two columns are the single stuck-at 
(SA) fault coverage of each imple- 
mented logic circuit with and without 
employing the PCDFT scheme. 

Table 3 shows that the stuck-at fault 
coverages under the derived test se- 
quence for the circuits employing the 
PCDFT scheme are generally over 99%, 
while the average SA fault coverage for 
the circuits without employing the 
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T a b  4. Comparison of FTG and our KDR-FTG. 

dk14 
dkl5 
dk16 
dkl7 
dk512 
ex7 
opus 
styr 
bbara 

sand 
Average 

CSe 

FTG PCDFT-FIG 
CPU' Test Fault CPU' Test Fault 

FSM speed length coverage speed length coverage 
name (sec.) (patterns) 0 (sec.) (patterns) rw 

1.0 228 100.0 0.02 83 100.0 
0.2 146 100.0 0.02 43 100.0 

10.0 406 100.0 0.13 195 100.0 
0.4 86 100.0 0.02 65 100.0 
0.5 89 100.0 0.03 56 100.0 

98.6 
00.0 
99.8 
00.0 
99.6 
99.8 
99.8 

2.0 158 
0.2 96 

204.0 964 
2.0 241 

45.0 880 
202.0 809 
42.5 373 

Normalize- 235 
'CPU seconds: FTG on Sun 4/260 ( I  0 MIPS), 
KDF-FTG on Sun Sparc 2 (28 MIPS). 

99.3 
98.5 
97.2 
00.0 
97.9 
97.7 
99.1 

0.02 101 
0.02 82 
0.18 389 
0.02 92 
0.05 212 
0.20 334 
0.06 150 
1 .00 

Table 6. Comparison of STG3 and PCDFJ-DetTG. 

STG3 PCDFT-DetTG 
CPU' Test Fault CPU' Test Fault 

FSM speed length coverage speed length coverage 
name (=.I (patterns) rw (=.I (patterns) (%I 

dk14 12 90 100.0 2.3 61 100 
dkl5 4 44 100.0 1.0 29 100 
dk16 7,176 322 97.6 9.1 172 1 00 
dk17 9 66 100.0 0.8 45 1 00 
dk512 92 85 100.0 1.0 58 100 
ex7 314 58 99.2 1.5 44 100 
opus 25 80 100.0 1.1 54 1 00 
styr 20,613 515 94.3 23.4 287 1 00 
bbara 36 133 100.0 1.1 51 1 00 
CSe 9,657 344 97.8 5.9 158 100 
sand 9,106 376 97.6 24.5 214 100 
Average 4,277 192 98.8 6.5 107 100 

' Normalized 218 1 .o 
~ 'CPU seconds: FTG on Sun 4/260 (IO MIPS), PCDF-FTG on Sun Sparc 2 (28 MIPS). 
1 

PCDFT scheme is only 88.5%. For the 
PCDFT circuits whose SA fault coverage 
are not loo%, the undetected faults 
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mainly come from the unspecified term 
of the FSMs. All these non-fully-testabl 
circuits have very low connectivity, ir 

able 5. Results of our deterministic test 
meration PCDFJ-Det TG. 

SA fault 
PCDFT-DetTG CoveraQe 
CPU Test With Withou 

FSM speed length PCDFT PCDFT 
name (sec.) (patterns) 1%) ("4 

bbara 1.1 
bbsse 2.3 
bbtas 0.4 
beecount 0.3 
cse 5.9 
dk14 2.3 
dk15 1.0 
dk16 9.1 
dk17 0.8 
dk27 0.2 
dk512 1.0 
ex3 1.1 
ex7 1.5 
lion 0.1 
lion9 0.1 
opus 1.1 
sand 24.5 
sse 2.4 
styr 23.4 
train4 0.1 
train1 1 0.7 
Average 3.8 

51 100 81.2 
104 100 96.4 
16 100 58.3 
42 100 93.8 

158 100 84.1 
61 100 100 
29 100 99.2 

172 100 93.4 
45 100 96.8 
19 100 91.8 
58 100 94.7 
36 100 90.3 
44 100 88.1 
11 100 88.9 
21 100 92.2 
54 100 94.4 

214 100 80.0 
90 100 97.8 

287 100 81.6 
14 100 90.2 
38 100 89.3 
74 100 89.6 

icating that functional test sequences 
rill not effectively detect SA faults when 
le machines have many unspecified 
3rms. The test generation times are al- 
lost negligible for most circuits. 

Table 4 compares the test generation 
mes of Table 3 with those found in 
:heng and Jou.4 Here, the test genera- 
on  times for our PCDFT scheme cir- 
uits represent the CPU times of a Sun 
parc 2 workstation, a 28 MIPS machine, 
ihile those of the functional test gener- 
tion (FTG) circuits4 represent CPU 
mes of a Sun 4/260 workstation, a 10 
!IPS machine. After normalizing CPU 
mes, the test generation times for 
'CDIT circuits are 235 times shorter 
ian those of FTG circuits. The table also 
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lists the test length and fault coverage of 
eachsequence. Our PCDlTscheme cir- 
cuits have higher fault coverages, near- 
ly 100% on average, and shorter test 
lengths than those of FTG circuits. 

Table 5 shows the results for the test 
sequences generated by the determin- 
istic test generation method for the im- 
plemented PCDFT circuits. In the table, 
the second and the third columns are 
the test generation times and lengths of 
the test sequences generated by the d e  
terministic test generator (PCDFT- 
DetTG). The fourth column is the 
stuck-at fault coverages for the test s e  
quences for the PCDFT circuits, which 
are all 100%. The fifth column shows the 
fault coverages for the nonPCDIT cir- 
cuits if they are applied to the same test 
sequences. The average fault coverage 
is only 90% for this case. Also, note that 
for the deterministic test sequences, 
their test lengths are shorter than those 
of the functional test sequences of 
Table 3. 

To show the efficiency of this test 
generation, Table 6 compares our re- 
sults with those of STG3.* Our test 
lengths are shorter than those of STG3; 
we achieve 100% fault coverage for all 
circuits with much less test generation 
time. We gain all this effectiveness from 
the small penalty of the parity checker. 

CED I Hardware Extra Performance Test Test 
~ Approach overhead I/O pins degradation generation length capability 

THE EXTRA OVERHEAD on logic gates 
added in this scheme is very small, r e  
quiring only log,(number of states)-1 
numbers of XOR gates. This figure is 
less than the general extra overhead in 
the conventional scan designs. Table 7 
compares the scan designs, the parity- 
scan de~ign ,~  and our parity checker 
DFT. 

I 

Table 7. Comparison of our DFT scheme (KDFT) with other approaches. 

PCDFT Low 1 No Simple Short Yes 
Parity-~can'~ High 23 Yes Easy Long Yes 
Full scan High 23 Yes Easy Long No 
Partial scan Low 23 Yes Harder Short No 
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