
T E S T G E N E R A T I O N

Simplifying Sequential
Circuit Test Generation

SEQUENTIAL TEST generation
poses a difficult problem for circuits
implemented from finite-state ma-
chines. The flip-flops in sequential
circuitssynthesized from FSMs gen-
erally have intricate cyclic struc-
tures that complicate sequential
test generation. We have devel-
oped a parity checker design-for-
testability scheme that significantly
enhances circuit testability, thus
simplifying the testability problem.

Years ago, Hennie’ proposed a
checking experiment to test FSMs
by deriving “distinguish” sequences
that can differentiate good ma-
chines from faulty ones. The very
long test sequence involved, plus
the near impossibility of deriving the
distinguish sequence sometimes
makes this approach impractical.

To shorten the derived checking
sequence, Fujiwara et aL2 proposed
making machines output-observable by
adding a number of extra outputs. This
method reduces the length of the
checking sequence for the modified
machine nearly to a minimum.

For practical circuit designs, manu-
facturers commonly use scan designs3
to facilitate sequential circuit testing. To

MENG-LIEH SHEU

CHUNG LEN LEE
National Chiao Tung

University

the large hardware overhead and
shorten the test sequence, several
factors argue against their use.

J
enhance circuit controllability and ob-
servability, full scan designs chain all
the storage elements into a shift regis-
ter. Such designs, though, involve rela-
tively large hardware overhead and
long test sequences.

Partial scan designs, by contrast, se-
lect only a subset of flip-flops for scan-
ning. Though they significantly reduce

.

.

.

Sequential test generation is
inevitable for the nonscanned
flip-flops.
All scan designs may degrade
performance due to the extra
delay introduced in the scan
path.
Additional input/output pins
are necessary for the scan
data I/O and scan clock
control.
The scan mode cannot oper-
ate at the speed of the circuit
during normal operation.

Researchers have developed
many efficient sequential test gen-
eration algorithms to generate test

sequences for FSM circuits based on the
stuck-at-fault model. Due to the heavy
computation involved, these can gen-
erate test sequences only for moder-
ately large circuits.

Recently, Cheng et aL4 proposed a
functional test generation method for
FSMs based on their single-state transi-
tion fault model. The derived functional

28 0740-7475/94/$04.00 0 1994 IEEE IEEE DESION & TEST OF COMPUTERS

Useful definitions

DFT Design for testability
DS Distinguish sequence
DT Distinguish table
FSM Finite state machine
FTG Functional test generation
PCDFT Parity checker DFT
SPDS Statepair distinguishing

sequence
SSPDS Shortest SPDS
SST Singlestate transition

__
test sequences have high stuck-at fault
coverages, demonstrating the effective
ness of this functional fault model.

One solution for this testing problem
is to design (orsynthesize) the circuit of
an FSM in a testable way. For example,
Devadas et a1.5 proposed a procedure to
synthesize highly testable FSMs that
eliminates sequential redundancies of
an FSM. Agrawal et aL6 devised a gener-
al architecture of testable design for
FSMs in which the FSM function merges
with a test function during circuit syn-
thesization. The same group’ also de-
veloped a state assignment procedure
for synthesizing testable designs that
produces highly testable designs by r e
ducing the cyclic structure of the flip

Saucier et a1.8 developed a method to
synthesize concurrently checked con-
trollers. It employs an embedded signa-
ture monitoring approach and signature
justification method to verify signatures
of the paths of a selfchecking FSM.
Recently, Fujiwara et a1.9 proposed a par-
ity scan design to shorten the test appli-
cation time. In their approach, the circuit
is fully scanned and treated as a combi-
national circuit during testing. To elimi-
nate the scan-out sequence of parity-
testable faults, an added parity checker
checks all flipflops.

Our new parity checker DIT scheme
for FSMs’O uses a parity checker to mon-
itor state changes after FSMs have made

flops.

FALL 19911

state transitions to detect state transition
faults. For the circuit, which still works
as a sequential circuit duringtesting, the
parity checker directly observes the fault
effect appearing at the state lines. This
eliminates any propagation or scan-out
sequence. Our approach significantly
enhances circuit testability, making the
testing problem much simpler.

Before proceeding to the parity check-
er DFTscheme for FSMs, readers should
acquaint themselves with several defin-
itions of distinguishability and theorems
for distinguishable machines that we ad-
dress in the accompanying box on the
next page.

Parity checker DFT scheme
For an FSM to detect an SST fault, we

need an input sequence that will prop
agate the fault effect of the faulty state
pair to primary outputs. During the fault
effect propagation, three possible cas-
es can cause the fault effect to disap-
pear such that the primaly outputs
cannot observe the fault effect:

1. The faulty state pair is equivalent.
2. The faulty state pair is partially

equivalent.
3. The faulty state pair forms a loop,

as shown in Figure la, where A, B
are two states of a faulty state pair.

In Figure la, for the first case, statesA
and B transit to the same next states, giv-
ing the same outputs under any input.
They are equivalent. This is the equiva-
lent sequential redundancy reported by
Devada, Ma, and Newton.”

For the second case, states A and B
transit to the same next state Cwith the
same output 0 under certain input I.
They are partially equivalent. In this
case, if the input I is accidentally che
sen as the propagation sequence, the
fault effect will disappear.

For the third case, states A, B, and C
transit to each other to form a loop with
the same output 0 under the same in-
put I. In this case, states A, B, and Cmay

of A and B

(3)

Even Odd Even Odd Even

of A and B

Figure 1. Three cases that can cause the
fault effect to disappear (a), and ways to
eliminate fault-effect disappearance lbj.
The fauliy state pairs are equivalent (case
I j, partially equivalent (case 2), and form
U loop (case 3).

Flip

checker

Figure 2. The parity checker DFJ scheme
eliminates the propagation or scan-out
sequence required by other schemes.

be fully or partially equivalent. The case
having more states in such a loop pre-
sents the same situation as the third
case.

We propose a new D R scheme to
further eliminate the propagation or
scan-out sequence that other schemes
require. In our scheme, as shown in
Figure 2, we attach a parity checker to
the state lines to monitor the fault ef-
fects appearing at the flip-flops.

Basically, we assign the states of the
FSM with codes of a particular parity.
The parity checker checks the parity of
the flipflops that code the states of the
machine. Whenever an SST fault oc-

29

T E S T G E N E R A T I O N

Figure 3. The parity checker DFT scheme
with concurrent error detection. Adding
one flip-flop and its associated logic to
preserve the parity of the states will
extend our approach to a concurrent
error detection design.

curs, a faulty state pair arises, and the
faulty state demonstrates an opposite
parity that the parity-checker detects.
Hence, by assigning different parities to
states of the state pair as shown in
Figure 1 b, our Dm scheme can avoid
all three cases of state undistinguish-
ness just described.

For case 1 of Figure 1 b, we assign dif-
ferent parity to states A and B, as they
have the largest undistinguishability.
The parity checker will directly detect
the fault effect of the equivalent faulty
state pair, thus rendering the propaga-
tion or scan-out sequence unnecessaly.
The same exercise can also apply to
state pairs of cases 2 and 3. After as-

signing different parities, the equivalent,
partially equivalent or loop states be-
come totally distinguishable. The pari-
ty checker can immediately detect all
fault effects propagated to the state
lines, making the test sequence to de-
tect faults shorter and removing some
sequential redundant faults.” Test gen-
eration for circuits synthesized accord-
ing to this scheme becomes very
simple.

With one more flip-flop and its asso-
ciated logic for preserving the parity of
the states (see the shaded portion of
Figure 3), this scheme not only helps
detect the faults of an FSM during test-
ing. It can also serve as a scheme for the

30 IEEE DESIGN & TEST OF COMPUTERS

I

Definitions and theorems continued

faulty transition for the fault and generate tota
a faultystate pair. Since the machine is ic A
distinguishable, the propagation se- ly
quence of any faulty state pair is no Ion
than K. The maximum length fort

of SST faults is M(N-I
mum length for the in

comes 2NM(N-l).

Definition 6. If the two stat

r what applied input se
are a totally distinguishable

nition 7. A state S,,, of an
uishable state if

fault-tolerant design of an FSM for con-
current error detection. In such a case,
the output of the parity checker (la-
beled TO) serves as an error indicator
of transient faults appearing at flip-flops
during normal operation.

To reflect the testability of an FSM,
we use the value icand the number of P

distinguishable states as parameters.
For a Pdistinguishable FSM described
by a state transition graph, we can also
derive the number xas well as the num-
ber of the K-distinguishable states. The
larger the value of xand the number of
Kdistinguishable states, the longer a test
sequence must be to test this machine.
Also, the more difficult this test se-

quence will be to generate. We want,
therefore, to design a machine having
only totally distinguishable states. Such
a machine makes test generation very
easy and greatly shortens the obtained
test sequence.

The value K and the number of K-
distinguishable states are generally
greater than one for an FSM. To reduce
ic-to make a machine totally distin-
guishable-our scheme uses a parity
checker to design the FSM and makes
all SST faults having a lower level of
testability to be observed immediately
at the output of the parity checker by
assigning different state parity to the SST
faults.

Sate parity assignment
The testability feature of our approach

rests on the fact that different parities on
the states of the FSM will occur as the ma-
chine becomes faulty. By checking the
parity, our scheme can differentiate the
faulty state pair. However, for an FSM,
seldom will all states or state pairs be to-
tally distinguishable. In our proposed
DFTscheme, we have developed a state
assignment procedure that assigns state
pairs of the FSM to maximize the num-
ber of totally distinguishable states.

To better understand the state parity
assignment procedure, let’s look at the
example of FSM M2.4 Figure 4 (next
page) shows the state transition table

FALL 1994 31

T E S T G E N E R A T I O N

0/1

Figure 4. A sample FSM M2: state tran-
sition table (a), state transition graph (b).

and the associated state transition graph
of M2. At first, we construct a distinguish
table (DT), as shown in Figure 5a, from
the state transition table. The distinguish
table compiles the distinguishability of
each state. For this E M , states B and E
are totally distinguishable because they
transit to different states with different
outputs under any input. Also, states C
and E are totally distinguishable.

Hence, in the distinguish table, we
mark the table entries of state pairs
[B,E] and [C,E] with an X. States B and
C transit to the same next state D with

I
UnDisty(M2) = 2.8

D,$$Fi-7-l E 3

F v r l
A B C D E A B C D E F

UnDisty(S)= 2.4 2.8 3.4 2.6 2.6 3

[B,Cl; [E,Fl; [A,Dl; [A A , [C,Dl, [D,El; ...
(4

Figure 5. The distinguish table constructed from the state transition table ofM2: the
distinguish table (a), undistinguishability table (b), and the order list (c).

same output 1 under input 1, but transit
to statesA and E with output 0 under in-
put 0. States B and C thus are partially
equivalent, or may be equivalent if
statesA and E are equivalent. We mark
the table entry of state pair [B ,q with
an asterisk and an [A,E]. StatesA and B
transit to different next states and have
different outputs under input 0 but the
same output, that is 1, under input 1. We
also mark the table entry of state pair
[A&] with [D,E], which are the next

states of states A and B under input 1.
The accompanying Procedure for

Building a distinguish table box shows
the procedure we derive to construct
the distinguish table from the state tran-
sition table for an FSM.

In constructing the distinguish table,
the procedure also calculates undistin-
guishability to reflect the distinguisha-
bility. For an FSM F with Nstates and
each state with L outgoing edges, we de-
fine the undistinguishability of a state
pair and a state as follows:

For a state pair [S,,S,], its undistin-
guishability is UnDisty([S,S,]) = Number
of next state pair in [S,,S,] entry + num-
ber of [SJ,] in distinguish table + K,
where K =pN, if SI and S, have p partially
equivalent transitions, where 1 I p 5 L;
K = 0,othenvise.

For a state SI, its undistinguishability is

UnDisty(S,) =

2 UnDisty([S,.S,])
(N - 1) / = l , / t 1

With the above definitions, we con-
struct an undistinguishability table of
state pairs for the example FSM as
shown in Figure 5b. For example,
UnDisty([A,D]) = 2+1+1 = 4, because
there are two next state pairs in the
[AD] entry, and [A,D] appears once as
the next state pair in the [B,D] and

32 IEEE DESIGN & TEST OF COMPUTERS

[C, D] entries. Since there is one * in the
[B , q entry, UnDisty([B,C]) = 6+1+1+1
= 9. Figure 5b also shows the undistin-
guishability of every state. For state C,
UnDisty(Q = (2+9+3+1+2)/5 =3.4. Here,
we can define the undistinguishability
of an FSM as

l n UnDisty(F) = -cUnDisty(S,)
N

l = l .

The undistinguishability of an FSM
can serve as a testability measure for the
machine. The larger the undistinguish-
ability for a machine, the harder the test
generation will be. For the example
FSM shown in Figures 4 and 5, this val-
ue is UnDisty(M2) = (2.4+2.8+3.4+2.6
+2.6+3)/6 = 2.8.

With the undistinguishability value
computed for each state pair, we derive
an order list of state pairs for the state par-
ity assignment. Figure 5c shows such a

list derived from Figure 5b. In the list, the
state pair [B,C] should get assigned to a
different parity first because it has the
highest undistinguishability value. Pair
[E,F] should come next, and so forth.

For parity assignment, as an even or
odd parity is assigned to one state of a
state pair, the scheme assigns the op-
posite parity to the otherstate of the pair.
With this assignment made, the states of
this state pair-originally having high
undistinguishability-become totally
distinguishable. Those state pairs that
are not totally distinguishable will also
become much less k-distinguishable.

Generally, we can easily generate the
test sequence of those k-distinguishable
state pairs. The State parity assignment
box describes the procedure used to
assign state parity for an FSM.

Figure 6 shows the new distinguish
table after completion of the parity as-
signment for the example. In the figure,

D

E

F

A B C D E

Figure 6. The modified distinguish table
of example M2. A// state pairs are tota//y
distinguishable except [A,C], and this
machine becomes a I -distinguishable
machines, with an undistinguishability
that approaches 0.

stateSA, C, and Fare assigned even par-
ity codes; states B, D, and E are assigned
odd parity codes. Since A and B have
different parity, the machine can dif-
ferentiate them at the next clock. An X
marked on the [A,B] entry indicates
that it is a totally distinguishable state
pair. Also, the state pairs [A,D] , [A,E] ,
[B,C], ... are totally distinguishable.

The state pair [A,F] has two next state
pairs, [B, c] and [C,E], that are both to-
tally distinguishable. State pair [A,F]
then is totally distinguishable after one
clock. Hence, in the figure, all state
pairs are totally distinguishable except
[A,C]. This machine becomes a 1-
distinguishable machine, with an undis-
tinguishability approaching 0. The
machine can record state pair [A,C] for
the later test generation.

Test generation
Adding the parity checker and adopt-

ing the state parity assignment greatly
simplifies test generation of FSMs. We
have developed two methods for gen-
erating test sequences with 100% fault
coverage for different fault models. A
functional test generation method ap-
plied before synthesis of FSMs works for
the singlestate transition fault model. A
deterministic test generation method
applied after the circuit implementation
works for the single stuck-at fault model.

FALL 1994 33

T E S T G E N E R A T I O N

Figure 7. Functional test generation of
example M2.

Table 1. Two state assignments for M2.

I M2 a Parity b I
A 000 Even 000
B 010 Odd 010
C 110 Even 001
D 100 Odd 100
E 001 Odd 011
F 101 Even 101

Functional test generation. As we
discussed earlier, after state parities are
assigned, the machine becomes a min-
imal Kdistinguishable device. For a K-
distinguishable FSM to detect all SST
faults, the test generation problem ba-
sically is a postman traveling problemI7
with a constraint that the postman must
consecutively pass some specified
streets. Starting from the postaffice (re-
set state), the postman, however,
should traverse all streets at least once,
while passing the minimal number of
streets. (In the postman traveling prob-
lem, a postman picks up mail at the post
office and delivers it to each block in
the territory. The postman wishes to
choose a route that minimizes the dis-
tance traveled. The vertices and edges
of a graph G modeling this situation cor-
respond to the street corners and con-
necting blocks of the postman’s
territory. The solution, then, to the post-
man traveling problem is a closed walk
of minimum length G that uses every
edge at least once.)

Table 2. The fault coverage percentages
of the two implementations shown in
Table I.

M2a M2b
Test r/O)
0
0
0
0
1
1
0
1
0
1
1
1
0

28
44
57
63
70
76
80
85
90
92
96
98
99

7
29
42
49
49
60
68
80
85
85
85
87
91

For the state transition graph, direct-
ed edges (state transitions) are like one-
way streets, and the vertices (states) are
like crossingstreets, with the constraint
that some edges must be consecutive-
ly traversed at least once. For a totally
distinguishable machine, the constraint
disappears. In this special case, the
functional test generation resembles the
checking experiments Fujiwara and
Kinoshita present.* If the state transition
graph is an eulerian, the problem sim-
plifies to a onestroke one, and the test
length becomes the minimum test
length-the number of transitions plus
one. (An eularian graph is one that lets
us walk all edges once and only once:
that is, a eulerian graph can be drawn in
one stroke, with no edge repeated.)

The information obtained in the state
assignment procedure can assist during
functional test generation. For the dis-
tinguish table of example M2 shown in
Figure 6, the machine is now a 1-
distinguishable machine after state
parity assignment. One remaining 1-
distinguishable state pair, [A, c] , has an
undistinguishable next state pair [D,E]
under input 1. So the input 1 state tran-

sitions of states A and C is a constraint
during test generation.

Since [D,E] is totally distinguishable
after one additional clock, making any
additional transition after the con-
strained transitions will remove the con-
straints. Since the state transition graph
is an eulerian, one stroke will generate
the test sequence, as Figure 7 shows.
Here, the reset state is A. After traversing
the states, the derived test sequence is
00001 10101 110 and the final state is C.

For comparison, we performed two
implementations of different state as-
signments with the M2 machine we
have used as an example. Table 1 p r e
sents the results. For the M2a imple-
mentation, we adopted the stateparity
assignment, and for the M2b imple-
mentation, we assigned the states
without considering parity. We then
synthesized these two assignments into
logic circuits with the aid of MisII.I2 We
then applied the test sequence gener-
ated in Figure 7 to these two logic cir-
cuits to detect stuck-at faults.

From theorem 2, for the M2a imple-
mentation, the SST fault coverage is
guaranteed to be 100%. Table 2 shows
the fault coverage of stuck-at fault ver-
sus the test sequence applied for these
two implementations. Clearly, the fault
coverage rises much faster, reaching
99% for the M2a implementation than
with M2b. Fault coverage reaches only
91% under the applied test sequence for
the M2b implementation.

Deterministic test generation. In
general, FSMs are not completelyspec-
ified for their state transition tables.
Unspecified states, state transitions, and
“don’t care” terms remain for the tables.
During functional test generation, cal-
culation of the undistinguishability
does not reflect these unspecified
terms. Also, for the traversing sequences
containing “don’t care” terms, we ran-
domly assign logic 0 or 1 to form the in-
put sequence. These reduce the
effectiveness of the derived functional

34 IEEE DESIGN C TEST OF COMPUTERS

faults of the implemented circuits. For
example, in the M2a implementation
just discussed, the derived functional
test sequence reach only a 99% stuck-
at fault coverage.

To reach 100% stuck-at fault cover-
age, we use a deterministic test genera-
tion method to generate test for a circuit
synthesized employing the parity
checker DFTscheme as follows:

1. Find a sequence that traverses all
states at least once as an initial test
sequence.

2. Run sequential fault simulation for
the test sequence; drop the de-
tected faults and stop if no fault re-
mains; and record the last reached
state as the current state.

3. Select a target fault.
4. Run the combinational test gener-

ation procedure for the target fault.
The fault effect may appear in pri-
mary outputs, or appear in odd
number of flip-flops. Record the
state that detects the fault as the
target state and the input that
detects the fault as the activation
pattern.

5. Find a sequence that justifies the
current state to the target state as
the new test sequence, add the ac-
tivation pattern into the test se-
quence, and go to step 2.

Experiments
We built an automatic synthesis sys-

tem on a Sun workstation to synthesize
and generate functional test sequences
for FSMs by incorporating our DFT
scheme. Upon receiving the transition
table of an FSM, the system builds the
distinguish table, calculates the undis-
tinguishability, and suggests a parity
state group partition, as well as deriving
a set of functional test sequences. With
the suggested state group partition, it
uses MUSTANG,13 a state-assignment
tool developed at UC Berkeley, to make
the state assignments and MisII to per-

~~ ~ ~

SST fault SA fault
coverage PCDFT-FTG coveraae

CPU Test With Without With Without
FSM speed length PCDFT PCDFT PCDFT PCDFT
name (sec.) (patterns) (%) (%I (%I (%I

bbsra 0.02
bbsse 0.03
bbtas 0.02
beecount 0.02
cse 0.05
dk14 0.02
dk15 0.02
dk16 0.1 3
dk17 0.02
dk27 0.02
dk512 0.03
ex3 0.02
ex7 0.02
lion 0.02
lion9 0.02
opus 0.02
sand 0.20
sse 0.03
styr 0.1 8
train4 0.02
train1 1 0.02
Average 0.04
'99.69524

92
150
36
53

21 2
83
43

195
65
22
56
93

101
14
33
82

334
169
389

14
42

108

100 90.7
100 83.6
100 94.2
100 82.4
100 75.4
100 91.7
100 85.4
100 98.7
100 91.5
100 91.7
100 96.0
100 55.6
100 38.3
100 87.9
100 80.1
100 92.8
100 99.3
100 84.2
100 89.4
100 81.0
100 80.8
100 84.3

1 00

100
100

100
1 00
100
1 00
100
1 00

98.2

99.6

99.3
98.6

99.6

99.8
98.7
99.8

100

100

100
100

8

77.2
87.7
72.6
83.5
96.5
97.6
97.2
99.5
96.4
86.3
93.1
67.3
53.9
94.2
91.2
97.8
94.5
85.9
91.6
95.4
98.2
88.5

form logic optimization and circuit re-
alization for the combinational logic
system then automatically adds the flip
flops and parity checker to make a se-
quential circuit. Finally, a single state
transition fault simulator SSTFS and a
stuck-at fault simulator SEESIMI4 evalu-
ate the fault coverage.

As Tables 3 and 4 show, the system
has synthesized a number of MCNC
(Microelectronic Center at North Caro-
lina) benchmark FSMs.I5 In Table 3, the
second and third columns are the test
generation times and the test lengths of
the functional test sequences generat-
ed during synthesis. The fourth column
is the SST fault coverage for the FSMs
designed with the parity checker DFT

scheme (PCDFT). All the SST fault cov-
erage are 100% for these FSMs. The fifth
column is the SST fault coverage for the
FSMs with a parity checker added to
FSMs to help detect the transition fault,
but without applying the state parity as-
signment. For this case, the SST fault
coverage averages 15% lower. The last
two columns are the single stuck-at
(SA) fault coverage of each imple-
mented logic circuit with and without
employing the PCDFT scheme.

Table 3 shows that the stuck-at fault
coverages under the derived test se-
quence for the circuits employing the
PCDFT scheme are generally over 99%,
while the average SA fault coverage for
the circuits without employing the

FALL 1994 35

T E S T G E N E R A T I O N

T a b 4. Comparison of FTG and our KDR-FTG.

dk14
dkl5
dk16
dkl7
dk512
ex7
opus
styr
bbara

sand
Average

CSe

FTG PCDFT-FIG
CPU' Test Fault CPU' Test Fault

FSM speed length coverage speed length coverage
name (sec.) (patterns) 0 (sec.) (patterns) rw

1.0 228 100.0 0.02 83 100.0
0.2 146 100.0 0.02 43 100.0

10.0 406 100.0 0.13 195 100.0
0.4 86 100.0 0.02 65 100.0
0.5 89 100.0 0.03 56 100.0

98.6
00.0
99.8
00.0
99.6
99.8
99.8

2.0 158
0.2 96

204.0 964
2.0 241

45.0 880
202.0 809
42.5 373

Normalize- 235
'CPU seconds: FTG on Sun 4/260 (I 0 MIPS),
KDF-FTG on Sun Sparc 2 (28 MIPS).

99.3
98.5
97.2
00.0
97.9
97.7
99.1

0.02 101
0.02 82
0.18 389
0.02 92
0.05 212
0.20 334
0.06 150
1 .00

Table 6. Comparison of STG3 and PCDFJ-DetTG.

STG3 PCDFT-DetTG
CPU' Test Fault CPU' Test Fault

FSM speed length coverage speed length coverage
name (=.I (patterns) rw (=.I (patterns) (%I

dk14 12 90 100.0 2.3 61 100
dkl5 4 44 100.0 1.0 29 100
dk16 7,176 322 97.6 9.1 172 1 00
dk17 9 66 100.0 0.8 45 1 00
dk512 92 85 100.0 1.0 58 100
ex7 314 58 99.2 1.5 44 100
opus 25 80 100.0 1.1 54 1 00
styr 20,613 515 94.3 23.4 287 1 00
bbara 36 133 100.0 1.1 51 1 00
CSe 9,657 344 97.8 5.9 158 100
sand 9,106 376 97.6 24.5 214 100
Average 4,277 192 98.8 6.5 107 100

' Normalized 218 1 .o
~ 'CPU seconds: FTG on Sun 4/260 (IO MIPS), PCDF-FTG on Sun Sparc 2 (28 MIPS).
1

PCDFT scheme is only 88.5%. For the
PCDFT circuits whose SA fault coverage
are not loo%, the undetected faults

36

mainly come from the unspecified term
of the FSMs. All these non-fully-testabl
circuits have very low connectivity, ir

able 5. Results of our deterministic test
meration PCDFJ-Det TG.

SA fault
PCDFT-DetTG CoveraQe
CPU Test With Withou

FSM speed length PCDFT PCDFT
name (sec.) (patterns) 1%) ("4

bbara 1.1
bbsse 2.3
bbtas 0.4
beecount 0.3
cse 5.9
dk14 2.3
dk15 1.0
dk16 9.1
dk17 0.8
dk27 0.2
dk512 1.0
ex3 1.1
ex7 1.5
lion 0.1
lion9 0.1
opus 1.1
sand 24.5
sse 2.4
styr 23.4
train4 0.1
train1 1 0.7
Average 3.8

51 100 81.2
104 100 96.4
16 100 58.3
42 100 93.8

158 100 84.1
61 100 100
29 100 99.2

172 100 93.4
45 100 96.8
19 100 91.8
58 100 94.7
36 100 90.3
44 100 88.1
11 100 88.9
21 100 92.2
54 100 94.4

214 100 80.0
90 100 97.8

287 100 81.6
14 100 90.2
38 100 89.3
74 100 89.6

icating that functional test sequences
rill not effectively detect SA faults when
le machines have many unspecified
3rms. The test generation times are al-
lost negligible for most circuits.

Table 4 compares the test generation
mes of Table 3 with those found in
:heng and Jou.4 Here, the test genera-
on times for our PCDFT scheme cir-
uits represent the CPU times of a Sun
parc 2 workstation, a 28 MIPS machine,
ihile those of the functional test gener-
tion (FTG) circuits4 represent CPU
mes of a Sun 4/260 workstation, a 10
!IPS machine. After normalizing CPU
mes, the test generation times for
'CDIT circuits are 235 times shorter
ian those of FTG circuits. The table also

IEEE DESION & TEST OF COMPUTERS

lists the test length and fault coverage of
eachsequence. Our PCDlTscheme cir-
cuits have higher fault coverages, near-
ly 100% on average, and shorter test
lengths than those of FTG circuits.

Table 5 shows the results for the test
sequences generated by the determin-
istic test generation method for the im-
plemented PCDFT circuits. In the table,
the second and the third columns are
the test generation times and lengths of
the test sequences generated by the d e
terministic test generator (PCDFT-
DetTG). The fourth column is the
stuck-at fault coverages for the test s e
quences for the PCDFT circuits, which
are all 100%. The fifth column shows the
fault coverages for the nonPCDIT cir-
cuits if they are applied to the same test
sequences. The average fault coverage
is only 90% for this case. Also, note that
for the deterministic test sequences,
their test lengths are shorter than those
of the functional test sequences of
Table 3.

To show the efficiency of this test
generation, Table 6 compares our re-
sults with those of STG3.* Our test
lengths are shorter than those of STG3;
we achieve 100% fault coverage for all
circuits with much less test generation
time. We gain all this effectiveness from
the small penalty of the parity checker.

CED I Hardware Extra Performance Test Test
~ Approach overhead I/O pins degradation generation length capability

THE EXTRA OVERHEAD on logic gates
added in this scheme is very small, r e
quiring only log,(number of states)-1
numbers of XOR gates. This figure is
less than the general extra overhead in
the conventional scan designs. Table 7
compares the scan designs, the parity-
scan de~ign ,~ and our parity checker
DFT.

I

Table 7. Comparison of our DFT scheme (KDFT) with other approaches.

PCDFT Low 1 No Simple Short Yes
Parity-~can'~ High 23 Yes Easy Long Yes
Full scan High 23 Yes Easy Long No
Partial scan Low 23 Yes Harder Short No

Acknowledgments
The authors wish to express their grati-

tude for helpful comments from the re-
viewers. The National Science Council,
Taiwan, Republic of China, supported this
work under contracts NSC-814404-EO09136
and NSC-82-0404-E009-183.

References
1. F.C. Hennie, "Fault-Detecting Experi-

ments for Sequential Circuits," h c . FiHh
Ann. Symp. Switching Circuit Theory and
hgicalDesign, Princeton, N.J., 1964, pp.
951 10.

2. H. Fujiwara and K. Kinoshita, "Design of
Diagnosable Sequential Machines Uti-
lizing Extra Outputs," IEEE Trans. Com-
puters, Vol. 232,1974, pp. 138145.

3. M. Abramovici, M.A. Breuer, and A.D.
Friedman, Digital Systems Testing and
Testable Design, Computer Science
Press, Oxford, England, 1990.

4. K.T. Cheng and J.Y. Jou, "FunctionalTest
Generation for Finite State Machines,"
&. Int'l Test Conference, C5 Press, 1990,

5. S. Devadas and K. Keutzer, "A Unified
Approach to the Synthesis of Fully
Testable Sequential Machines," IEEE
Trans. Computer-Aided Design, Vol. 10,
1991, pp.3 950.

6. V.D. Agrawal and K.T. Cheng, "Test Func-
tion Specification in Synthesis," Roc.
27th &sign Automation Cod , CS Press,
1990, pp. 235240.

7. K.T. Cheng and V.D. Agrawal, "State As
signment for Testable Design," Int'l J.
Computer-Aided VUI Design, Vol. 3,
March 1991, pp. 291-308.

8. R. Leveugle and G. Saucier, "Optimized

pp. 162-168.

FILL 1994 37

T E S T G E N E R A T I O N

JO
AT KCAD

Meng-Lieh Sheu is currently working to-
ward his PhD in the Department of Elec-
tronics Engineering at the National Chiao
Tung University, where he earlier received

38

Synthesis of Concurrently Checked Con-
trollers,” IEEE Trans. Computevs, Vol. 39,
1990, pp. 419425.

9. H. Fujiwara and A. Yamamoto, “Parity-
Scan Design to Reduce the Cost of Test
Application,” hoc . Int’l Test C o d , CS
Press, 1992, pp. 283-292,.

10. M.L. Sheu and C.L. Lee, “A Parity Check-
er Design for Testability Scheme for Fi-
nite State Machines,” Roc. Asia-Pacific
Cod Circuits andSystems, IEEE Circuits
and Systems Society, Piscataway, N.J.,
1992, pp. 53-58.

11. S. Devadas, H.K. Ma, and A.R. Newton,
“Redundancies and Don’t Cares in S e
quential Logic Synthesis,” J. Electronic
Testing: Theory and Applications, Jan.
1990, pp.1530.

12. R. Brayton et al., “MIS: Multiple-Level In-
teractive Logic Optimization Systems,”
IEEE Trans. Computer-Aided Design, Vol.

13. S. Devadas et al., “MUSTANG: State
Assignment of Finite State Machines Tar-
geting Multilevel Logic Implementa-
tions,” IEEE Trans. Computer-Aided
Design, Vo1.7, 1988, pp. 129@1300.

14. C.P. Wu, C.L. Lee, and W.Z. Shen, “SEES
IM-A Fast Synchronous Sequential Cir-
cuit Fault Simulator with Single Event
Equivalence,” h c . European Design Au-
tomation Cod, CS Press, 1992, pp. 446-449.

15. B. Lisanke, “Logic Synthesis and Optimi-
zation Benchmarks,” tech. report, MCNC,
Research Triangle Park, N.C., Dec. 1988.

6, 1987, pp. 1062-1081.

BS and MS degrees in electronics engineer-
ing. His research interests include VU1 test-
ing, logic arid high-level synthesis, and
computer-aided design. He is a student
member of the IEEE Computer Society, Cir-
cuits and Systems Society, and Communi-
cations Society.

Chung Len Lee currently is a professor in
the Department of Electronics Engineering,
National Chiao Tung University, where his
teaching and research interests focus on in-
tegrated circuits and testing. He has super-
vised more than 90 MS and PhD candidates,
and has published more than 140 papers in
technical journals. He received his BS from
the National Taiwan University and MS and
PhD degrees from Carnegie Mellon Uni-
versity. Presently, he serves on the editorial
board of the Journal of Electronic Testing:
Theory and Applications, and is a member
of the IEEE Asian Test Technology Com-
mittee. He is a senior member of the IEEE
Circuits and Systems Society and the IEEE
Computer Society.

Direct questions concerning this article
to Cheng Len Lee, Department of
Electronics Engineering, National Chiao
Tung University, 30050, Hsin-Chu, Taiwan:
cllee@ cc.nctu.edu.tw.

IEEE DESIGN & TEST OF COMPUTERS

