Simplifying Sequential
Circuit Test Generation

SEQUENTIAL TEST generation
poses a difficult problem for circuits
implemented from finite-state ma-
chines. The flip-flops in sequential
circuits synthesized from FSMs gen-
erally have intricate cyclic struc-
tures that complicate sequential
test generation. We have devel-
oped a parity checker design-for-
testability scheme that significantly
enhances circuit testability, thus
simplifying the testability problem.

Years ago, Hennie' proposed a
checking experiment to test FSMs
by deriving “distinguish” sequences
that can differentiate good ma-
chines from faulty ones. The very
long test sequence involved, plus
the near impossibility of deriving the
distinguish sequence sometimes
makes this approach impractical.

MENG-LIEH SHEU
CHUNG LEN LEE
National Chiao Tung

University

Design for testability reduces
festing costs for fsequemiul circuits;
The authors present a parity
checker DFT scheme they have
incorporated info a finite-state
- machine synthesis system.
Generating tests For circuits
synthesized according fo this
scheme becomes extremely simple.
The derived test sequence very =
efficiently detects faults.

the large hardware overhead and
shorten the test sequence, several
factors argue against their use.

m Sequential test generation is
inevitable for the nonscanned
flip-flops.

m Allscan designs may degrade
performance due to the extra
delay introduced in the scan
path.

m Additional input/output pins
are necessary for the scan
data /O and scan clock
control.

m The scan mode cannot oper-
ate at the speed of the circuit
during normal operation.

Researchers have developed
many efficient sequential test gen-

To shorten the derived checking
sequence, Fujiwara et al.? proposed
making machines output-observable by
adding a number of extra outputs. This
method reduces the length of the
checking sequence for the modified
machine nearly to a minimum.

For practical circuit designs, manu-
facturers commonly use scan designs®
to facilitate sequential circuit testing. To

enhance circuit controllability and ob-
servability, full scan designs chain all
the storage elements into a shift regis-
ter. Such designs, though, involve rela-
tively large hardware overhead and
long test sequences.

Partial scan designs, by contrast, se-
lect only a subset of flip-flops for scan-
ning. Though they significantly reduce

0740-7475/94/$04.00 © 1994 IEEE

eration algorithms to generate test
sequences for FSM circuits based on the
stuck-at-fault model. Due to the heavy
computation involved, these can gen-
erate test sequences only for moder-
ately large circuits.

Recently, Cheng et al.* proposed a
functional test generation method for
FSMs based on their single-state transi-
tion fault model. The derived functional

IEEE DESIGN & TEST OF COMPUTERS

Useful definitions

DFT Design for testability

DS Distinguish sequence
DT Distinguish table

FSM Finite state machine
FTG Functional test generation
PCDFT Parity checker DFT
SPDS State-pair distinguishing
sequence

Shortest SPDS
Single-state transition

SSPDS
SST

test sequences have high stuck-at fault

coverages, demonstrating the effective-
ness of this functional fault model.

One solution for this testing problem
isto design (or synthesize) the circuit of
an FSM in a testable way. For example,
Devadas et al.> proposed a procedure to
synthesize highly testable FSMs that
eliminates sequential redundancies of
an FSM. Agrawal et al.® devised a gener-
al architecture of testable design for
FSMs in which the FSM function merges
with a test function during circuit syn-
thesization. The same group’ also de-
veloped a state assignment procedure
for synthesizing testable designs that
produces highly testable designs by re-
ducing the cyclic structure of the flip-
flops.

Saucier et al developed a method to
synthesize concurrently checked con-
trollers. It employs an embedded signa-
ture monitoring approach and signature
justification method to verify signatures
of the paths of a selfchecking FSM.
Recently, Fujiwara et al.’ proposed a par-
ity scan design to shorten the test appli-
cation time. In their approach, the circuit
is fully scanned and treated as a combi-
national circuit during testing. To elimi-
nate the scan-out sequence of parity-
testable faults, an added parity checker
checks all flipflops.

Our new patity checker DFT scheme
for FSMs! uses a parity checker to mon-
itor state changes after FSMs have made

state transitions to detect state transition
faults. For the circuit, which still works
as asequential circuit during testing, the
parity checker directly observes the fault
effect appearing at the state lines. This
eliminates any propagation or scan-out
sequence. Our approach significantly
enhances circuit testability, making the
testing problem much simpler.

Before proceeding to the parity check-
er DFT scheme for FSMs, readers should
acquaint themselves with several defin-
itions of distinguishability and theorems
for distinguishable machines that we ad-
dress in the accompanying box on the
next page.

Parity checker DFT scheme

For an FSM to detect an SST fault, we
need an input sequence that will prop-
agate the fault effect of the faulty state
pair to primary outputs. During the fault
effect propagation, three possible cas-
es can cause the fault effect to disap-
pear such that the primary outputs
cannot observe the fault effect:

1. The faulty state pair is equivalent.

2. The faulty state pair is partially
equivalent.

3. The faulty state pair forms a loop,
as shown in Figure 1a, where A, B
are two states of a faulty state pair.

In Figure 1a, for the first case, states A
and Btransit to the same next states, giv-
ing the same outputs under any input.
They are equivalent. This is the equiva-
lent sequential redundancy reported by
Devada, Ma, and Newton.!!

For the second case, states A and B
transit to the same next state C with the
same output O under certain input /.
They are partially equivalent. In this
case, if the input / is accidentally cho-
sen as the propagation sequence, the
fault effect will disappear.

For the third case, states A4, B, and C
transit to each other to form a loop with
the same output O under the same in-
put/ In this case, states A4, B, and C may

1/0
450
© ©
@ 3)

@) ®
>
Same next states

(a) m

Even Odd Evenll0 0dd
M 1/0 110 0
Same next states 0
of Aand B
(1) @) @3)
(o)

Figure 1. Three cases that can cause the
fault effect to disappear (a), and ways to
eliminate fault-effect disappearance (b).
The faulty state pairs are equivalent (case
1), partially equivalent (case 2}, and form
a loop {case 3).

Qutputs
Combinational ">

logic
Flip]

flops

Inputs
—

Parity To
checker

Figure 2. The parity checker DFT scheme
eliminates the propagation or scan-out
sequence required by other schemes.

be fully or partially equivalent. The case
having more states in such a loop pre-
sents the same situation as the third
case.

We propose a new DFT scheme to
further eliminate the propagation or
scan-out sequence that other schemes
require. In our scheme, as shown in
Figure 2, we attach a parity checker to
the state lines to monitor the fault ef-
fects appearing at the flip-flops.

Basically, we assign the states of the
FSM with codes of a particular parity.
The parity checker checks the parity of
the flipflops that code the states of the
machine. Whenever an SST fault oc-

Deﬁniﬁons and theorems

In a state transition gfaph
an FSM, the vertices starid for thy slafes
the FSM and the dxrectededg&s
state transitions. We assume
has a reset state. When imp|
FSM into circuit form, a
stuck-at fault o;f the cir
some state transmo
state transition graj
mean that for a state
both of its ouz;mt and

proposed a smglestats
model. An SST fault:
one of its state trmtsiim
correct destination state:
fault, the test sequenc
subsequences:’ i

® the lnlualmon

Inputs Outputs
Combinational —*
logic
Flip :|
flops

| To

Parity | Parity
bit fogic | flip flop

Figure 3. The parity checker DFT scheme
with concurrent error detection. Adding
one flip-flop and its associated logic to
preserve the parity of the states will
extend our approach to a concurrent
error detection design.

Definition. Vf.z LetS and S, be t two

i not an

e state.

tween land (N—l) where Nis the number

- of states

 Definition 5. A state pair [5,,.5,] of an
FSMF is a k-distinguishable state pair, if
the length of the SSPDS of [S,,,S,] is & A

~siate‘s is a K-distinguishable state, if the
: !ang%t:iength of allSSPDSs of [S,.5,] isK,

where S, is another state of F. If the maxi-.
mum K value {of‘all states of Fis x, F is

© called a redistinguishable machine.

_ The SSPDS of a state pair is the shortest

{, propagation sequence for an SST fault to

differentiate a faulty state from a good

© Withthe above deﬁmnons wehavethe

M ~fo!lo'wmg theorem.

Theorem 1.Fora iedistinguishable FSM

Fwith Vstates and M state transitions; the

- upper bound of the length of the test se:

; l _quence for detecting al SST faults of Fis
s, (mN)M(N—])

: Proaf For an SST fault, traversing from

DS for tw - astate to the source state of the SST fault
seqnen » haimak@s‘

requires at most (V-1) state {ransitions.

"tAftEF the machine reaches the source
state; an input vector-can activate the

curs, a faulty state pair arises, and the
faulty state demonstrates an opposite
parity that the parity-checker detects.
Hence, by assigning different parities to
states of the state pair as shown in
Figure 1b, our DFT scheme can avoid
all three cases of state undistinguish-
ness just described.

For case 1 of Figure 1b, we assign dif-
ferent parity to states A and B, as they
have the largest undistinguishability.
The parity checker will directly detect
the fault effect of the equivalent faulty
state pair, thus rendering the propaga-
tion or scan-out sequence unnecessary.
The same exercise can also apply to
state pairs of cases 2 and 3. After as-

signing different parities, the equivalent,
partially equivalent or loop states be-
come totally distinguishable. The pari-
ty checker can immediately detect all
fault effects propagated to the state
lines, making the test sequence to de-
tect faults shorter and removing some
sequential redundant faults.! Test gen-
eration for circuits synthesized accord-
ing to this scheme becomes very
simple.

With one more flip-flop and its asso-
ciated logic for preserving the parity of
the states (see the shaded portion of
Figure 3), this scheme not only helps
detect the faults of an FSM during test-
ing. It can also serve as a scheme for the

IEEE DESIGN & TEST OF COMPUTERS

faulty transition for the fault and generate
a faulty state pair. Since the machine is k&
distinguishable, the propagation se-
quence of any faulty state pair is no longer
than k. The maximum length for the input

(N-141+K) = (x+N). Since there are M tran-
sitions, and each transition has at most
(N-1) wrong next states, the total number
of SST faults is M(N-1). Hence, the maxi-
mum length for the input sequence to'de-
tect all SST faults is (ke N)M(N=1). Forthe
worst case, x = N, the upper bound be-
comes 2NM(N-1).

Definition 6. If the two states of a state
pair have different output responses, no
matter what applied input sequences,
they are a totally distinguishable state pair.

Definition 7. Astate S, of an FSM F is
atotally distinguishable state if {S,,.5,] isa
totally distinguishable state pair for any
state S, where S, is another state of F.

Detecting an SST fault that creates a to-
tally distinguishable faulty state pairis very
easy: All the input patterns can detect suich
a fault. Detecting the SST fault that causes
faulty state transitions whose next states are

sequence to detect this SST fault is

Definitions and theorems continved

totally distinguishable is also very easy.
Applying any input at the next clock quick-
ly revealssuch a fault. Hence, activating the
transition whose next state is a totally dis-
tinguishable state will reveai an SST fault.

Definition 8. For a machineF, if all of
its states are totally distinguishable states;
F is a totally distinguishable machine.

Theorem 2. To detect all the SST faults
of a totally distinguishable machine, the
input sequence needs to traverse all the
state transitions; the upper bound of such
traversing is MN+1, where M is the num-
ber of transitions and N is the number of
states. .

Proof. For a totally distinguishable ma-
chine; all states are totally distinguish-

~able~all state transitions have totally

distinguishable next states; or all state
pairs are totally distinguishable. Hence,
while a state transition activates (N-1) SST
faults, the current transition detects other
(N=1) SST faults that a previous state tran-
sition activated. That is; the (N-1) SST
faults activated by the current state tran-
sition will be detected at the next clock

_the Mstate transmons to ‘activate -all
- uon will reveal the (N-1) faults actwated

 transition, it will take at most (N—]) tran-

under any applied input. -
The machine needs only to traverse all

M(N—l) SST fauits one more state transn—

by the]ast state transition. For each state

sitions to mmairze the pr@em state that

will be thesource state of a faulty transi-
tion; pius one more input to activate the
(N=1) SST faults. Any input following the
faulty transition can then detect the (N—l)
SST faults and activate another (I\M) SST
fault. The upper bound of such traversmg .
is M(I’NHH)H =MN+1,

References

.- KT: Cheng and LY. Jou, “A Func-
tional Fault Model for Sequential
Machines,” [EEE Trans. Computer‘
Aided Design, Vei 11,1992, pp 1065-
1073. ;

2.-8.C. Lee, Digital Circuits and Loglc

' Design, Prentice-Hall, Engieweod
Cliffs, N.J., 1976. :

3. KT Cheng and LY. Jou, "thcnonal ‘
Test Generation .. for - Finite State
Machines,” Proc. Intl ’I‘est Conf €5
Press, 1990 pp. 162- 168

fault-tolerant design of an FSM for con-
current error detection. In such a case,
the output of the parity checker (la-
beled TO) serves as an error indicator
of transient faults appearing at flip-flops
during normal operation.

To reflect the testability of an FSM,
we use the value xand the number of x
distinguishable states as parameters.
For a sdistinguishable FSM described
by a state transition graph, we can also
derive the number x as well as the num-
ber of the xdistinguishable states. The
larger the value of xand the number of
xdistinguishable states, the longer a test
sequence must be to test this machine.
Also, the more difficult this test se-

FALL 1994

quence will be to generate. We want,
therefore, to design a machine having
only totally distinguishable states. Such
a machine makes test generation very
easy and greatly shortens the obtained
test sequence.

The value x and the number of
distinguishable states are generally
greater than one for an FSM. To reduce
k—to make a machine totally distin-
guishable—our scheme uses a parity
checker to design the FSM and makes
all SST faults having a lower level of
testability to be observed immediately
at the output of the parity checker by
assigning different state parity to the SST
faults.

State parity assignment

The testability feature of our approach
rests on the fact that different parities on
the states of the FSM will occur as the ma-
chine becomes faulty. By checking the
parity, our scheme can differentiate the
faulty state pair. However, for an FSM,
seldom will all states or state pairs be to-
tally distinguishable. In our proposed
DFT scheme, we have developed a state
assignment procedure that assigns state
pairs of the FSM to maximize the num-
ber of totally distinguishable states.

To better understand the state parity
assignment procedure, let’s look at the
example of FSM M2.! Figure 4 (next
page) shows the state transition table

31

N
(=)
ey

e
A0
E/0
F AN
BA
B/

TmMUow»=

{a)

Figure 4. A sample FSM M2: state tran-
sition table (a), state transition graph (b).

{b)

and the associated state transition graph
of M2. At first, we construct a distinguish
table (DT), as shown in Figure 5a, from
the state transition table. The distinguish
table compiles the distinguishability of
each state. For this FSM, states Band £
are totally distinguishable because they
transit to different states with different
outputs under any input. Also, states C
and E are totally distinguishable.
Hence, in the distinguish table, we
mark the table entries of state pairs
[B,E] and [C,E] with an X. States Band
C transit to the same next state D with

B | DE
G {DE| N
CF
D | g |AD|AD
£ [BC| X | X |BF
BC BF|
FGE|CD|CD | 2
A B C D E
{a)

[B.CI; [EF}; [AD]; [AE] [C.D], [DE]; ...
(c)

A
UnDisty(S)= 2.4

B |1
cla2lag UnDisty(M2) = 2.8
D| 4|13

E|{3[0]1]3

Fl2]3 |22

H

B C D E F
28 34 26 26 3

{t)

Figure 5. The distinguish table constructed from the state transition table of M2: the
distinguish table (a), undistinguishability table (b}, and the order list (c).

same output 1 under input 1, but transit
to states A and E with output O under in-
put 0. States B and C thus are partially
equivalent, or may be equivalent if
states A and E are equivalent. We mark
the table entry of state pair [B,C] with
an asterisk and an [A,£]. StatesA and B
transit to different next states and have
different outputs under input 0 but the
same output, that is 1, underinput 1. We
also mark the table entry of state pair
[A,B] with [D,E], which are the next

{
For each State-Pair {S,5} do. .

{ : .
For each input k transition 7, do

{

else

}
if (No. of Partially__Equivalent =

if [S,5;] entry of DT is empty then

}

Procedure for building a distinguish table

if outputs of transitions (S, T,) and (S, T,) are the same then
if Next states of transitions (S, 7,) and (S, T,)-are the same then .
markan “*" in {S;S;] entry of DT; /*Partially. Equivalent */

mark a Next_State_Pair{(S, Tk),(S,; T} in [S,5] entry of DT;

No. of inputs) in [S,.5] entry of DT then states S;and 5, are Equivalent;

mark an “X” in [S,S] entry of DT; / *Totally_Distinguishable*/

32

states of states A and B under input 1.

The accompanying Procedure for
Building a distinguish table box shows
the procedure we derive to construct
the distinguish table from the state tran-
sition table for an FSM.

In constructing the distinguish table,
the procedure also calculates undistin-
guishability to reflect the distinguisha-
bility. For an FSM F with N states and
each state with L outgoing edges, we de-
fine the undistinguishability of a state
pair and a state as follows:

For a state pair {S,S5], its undistin-
guishability is UnDisty([S,S;]) =Number
of next state pair in [S,S] entry + num-
ber of [S,S] in distinguish table + K,
where K=pN, if 5;and S, have p partially
equivalent transitions, where 1 <p < L;
K =0,otherwise.

For astate S,, its undistinguishability is

UnDisty(S,) =

3 UnDisty([S,,s,])

(v-1) £

With the above definitions, we con-
struct an undistinguishability table of
state pairs for the example FSM as
shown in Figure 5b. For example,
UnDisty([A,D]) = 2+1+1 = 4, because
there are two next state pairs in the
[A4,D] entry, and [A4,D] appears once as
the next state pair in the [B,D] and

L

IEEE DESIGN & TEST OF COMPUTERS

{

For each state-pair SPin dP-hsb do
{

{

next slatepalr

1

if Ecost is larger than O-cost then
else

nextstate-pair;
}

State parity ass;ignmem:proce‘dure

/* Input : Order list of state—paxr <.S‘P—Izs£> N
/* Output: Parity list of states; <Even~ltsl> <Oddist> */
if both states of SP are ass&gned then next state-pair;
if only one state of SP :samgned then :
assign another state of SP to: Qpposne panty list;
choose the larger undistinguishabiiity state S from SP; -
calculate E-cost =% UnDisty ([$,<0dd-list>]) and
O-cost=Z Undisty ([S,<Evendist>]); =
assign Sto <Even.-list>¢and ~the other state to <Odd-ists;

ass:gnStod)ddhsbandmeotherstateto&venhsb delreh et

[C.D] entries. Since there is one * in the
[B,C] entry, UnDisty([B,C]) = 6+1+1+1
= 9. Figure 5b also shows the undistin-
guishability of every state. For state C,
UnDisty(C) = (2+9+3+1+2)/5=3.4. Here,
we can define the undistinguishability
of an FSM as

UnDisty(F) = %iUnDisty(S])
Jj=1,

The undistinguishability of an FSM
can serve as a testability measure for the
machine. The larger the undistinguish-
ability for a machine, the harder the test
generation will be. For the example
FSM shown in Figures 4 and 5, this val-
ue is UnDisty(M2) = (2.4+2.8+3.4+2.6
+2.6+3)/6=2.8.

With the undistinguishability value
computed for each state pair, we derive
an order list of state pairs for the state par-
ity assignment. Figure 5c shows such a

FALL 1994

list derived from Figure 5b. In the list, the
state pair [B,C] should get assigned to a
different parity first because it has the
highest undistinguishability value. Pair
[£,F] should come next, and so forth.

For parity assignment, as an even or
odd parity is assigned to one state of a
state pair, the scheme assigns the op-
posite parity to the other state of the pair.
With this assignment made, the states of
this state pair—originally having high
undistinguishability—become totally
distinguishable. Those state pairs that
are not totally distinguishable will also
become much less k-distinguishable.

Generally, we can easily generate the
test sequence of those k-distinguishable
state pairs. The State parity assignment
box describes the procedure used to
assign state parity for an FSM.

Figure 6 shows the new distinguish
table after completion of the parity as-
signment for the example. In the figure,

Even:
0dd:

UJ>

UO
me

)
X | BE

Wk <]
B €C D E

Figure 6. The modified distinguish table
of example M2. All state pairs are totally
distinguishable except [A,C], and this
machine becomes a 1-distinguishable
machines, with an undistinguishability
that approaches 0.

B X B

states A, C, and F are assigned even par-
ity codes; states B, D, and E are assigned
odd parity codes. Since A and B have
different parity, the machine can dif-
ferentiate them at the next clock. An X
marked on the [A,B] entry indicates
that it is a totally distinguishable state
pair. Also, the state pairs [4,D], [4,E],
[B,C], ... are totally distinguishable.

The state pair [4,F] has two next state
pairs, [B,C] and [C,E], that are both to-
tally distinguishable. State pair [A,F]
then is totally distinguishable after one
clock. Hence, in the figure, all state
pairs are totally distinguishable except
[A,C]. This machine becomes a 1-
distinguishable machine, with an undis-
tinguishability approaching 0. The
machine can record state pair [4,C] for
the later test generation.

Test generation

Adding the parity checker and adopt-
ing the state parity assignment greatly
simplifies test generation of FSMs. We
have developed two methods for gen-
erating test sequences with 100% fault
coverage for different fault models. A
functional test generation method ap-
plied before synthesis of FSMs works for
the single-state transition fault model. A
deterministic test generation method
applied after the circuit implementation
works for the single stuck-at fault model.

33

Figure 7. Functional test generation of
example M2.

Table 1. Two state assignments for M2.

M2 a Parity b
A 000 Even 000
B 010 Odd 010
C 110 Even 001
D 100 Odd 100
E 001 Odd 011
F 101 Even 101

Functional test generation. As we
discussed earlier, after state parities are
assigned, the machine becomes a min-
imal x-distinguishable device. For a i
distinguishable FSM to detect all SST
faults, the test generation problem ba-
sically is a postman traveling problem'
with a constraint that the postman must
consecutively pass some specified
streets. Starting from the post-office (re-
set state), the postman, however,
should traverse all streets at least once,
while passing the minimal number of
streets. (In the postman traveling prob-
lem, a postman picks up mail at the post
office and delivers it to each block in
the territory. The postman wishes to
choose a route that minimizes the dis-
tance traveled. The vertices and edges
of a graph G modeling this situation cor-
respond to the street corners and con-
necting blocks of the postman’s
territory. The solution, then, to the post-
man traveling problem is a closed walk
of minimum length G that uses every
edge at least once.)

34

Table 2. The fault coverage percentages
of the two implementations shown in
Table 1.

M2a M2b
Test (%) (%)
0 28 7
0 44 29
0 57 42
0 63 49
1 70 49
1 76 60
0 80 68
1 85 80
0 90 85
1 92 85
1 96 85
1 98 87
0 99 N

For the state transition graph, direct-
ed edges (state transitions) are like one-
way streets, and the vertices (states) are
like crossing streets, with the constraint
that some edges must be consecutive-
ly traversed at least once. For a totally
distinguishable machine, the constraint
disappears. In this special case, the
functional test generation resembles the
checking experiments Fujiwara and
Kinoshita present.? If the state transition
graph is an eulerian, the problem sim-
plifies to a one-stroke one, and the test
length becomes the minimum test
length—the number of transitions plus
one. (An eularian graph is one that lets
us walk all edges once and only once;
that is, a eulerian graph can be drawn in
one stroke, with no edge repeated.)

The information obtained in the state
assignment procedure can assist during
functional test generation. For the dis-
tinguish table of example M2 shown in
Figure 6, the machine is now a 1-
distinguishable machine after state
parity assignment. One remaining 1-
distinguishable state pair, [4,C], hasan
undistinguishable next state pair [D,E]
under input 1. So the input 1 state tran-

sitions of states A and C is a constraint
during test generation.

Since [D,E] is totally distinguishable
after one additional clock, making any
additional transition after the con-
strained transitions will remove the con-
straints. Since the state transition graph
is an eulerian, one stroke will generate
the test sequence, as Figure 7 shows.
Here, the reset state is A. After traversing
the states, the derived test sequence is
0000110101110 and the final state is C.

For comparison, we performed two
implementations of different state as-
signments with the M2 machine we
have used as an example. Table 1 pre-
sents the results. For the M2a imple-
mentation, we adopted the state-parity
assignment, and for the M2b imple-
mentation, we assigned the states
without considering parity. We then
synthesized these two assignments into
logic circuits with the aid of Misll.!? We
then applied the test sequence gener-
ated in Figure 7 to these two logic cir-
cuits to detect stuck-at faults.

From theorem 2, for the M2a imple-
mentation, the SST fault coverage is
guaranteed to be 100%. Table 2 shows
the fault coverage of stuck-at fault ver-
sus the test sequence applied for these
two implementations. Clearly, the fault
coverage rises much faster, reaching
99% for the M2a implementation than
with M2b. Fault coverage reaches only
91% under the applied test sequence for
the M2b implementation.

Deterministic test generation. In
general, FSMs are not completely spec-
ified for their state transition tables.
Unspecified states, state transitions, and
“don’t care” terms remain for the tables.
During functional test generation, cal-
culation of the undistinguishability
does not reflect these unspecified
terms. Also, for the traversing sequences
containing “don’t care” terms, we ran-
domly assign logic 0 or 1 to form the in-
put sequence. These reduce the
effectiveness of the derived functional

IEEE DESIGN & TEST OF COMPUTERS

test sequences for detecting the stuck-at
faults of the implemented circuits. For
example, in the M2a implementation
just discussed, the derived functional
test sequence reach only a 99% stuck-
at fault coverage.

To reach 100% stuck-at fault cover-
age, we use a deterministic test genera-
tion method to generate test for a circuit
synthesized employing the parity
checker DFT scheme as follows:

1. Find a sequence that traverses all
states at least once as an initial test
sequence.

2. Run sequential fault simulation for
the test sequence; drop the de-
tected faults and stop if no fault re-
mains; and record the last reached
state as the current state.

3. Select a target fault.

4. Run the combinational test gener-
ation procedure for the target fault.
The fault effect may appear in pri-
mary outputs, or appear in odd
number of flip-flops. Record the
state that detects the fault as the
target state and the input that
detects the fault as the activation
pattern.

5. Find a sequence that justifies the
current state to the target state as
the new test sequence, add the ac-
tivation pattern into the test se-
quence, and go to step 2.

Experiments

We built an automatic synthesis sys-
tem on a Sun workstation to synthesize
and generate functional test sequences
for FSMs by incorporating our DFT
scheme. Upon receiving the transition
table of an FSM, the system builds the
distinguish table, calculates the undis-
tinguishability, and suggests a parity
state group partition, as well as deriving
a set of functional test sequences. With
the suggested state group partition, it
uses MUSTANG," a state-assignment
tool developed at UC Berkeley, to make
the state assignments and MislI to per-

FALL 1994

Table 3. Results of functional test generation PCDFT-FTG.

SST fault SA fault
PCDFT-FIG coverage coverage
CPU Test With Without With Without
FSM speed length PCDFT PCDFT PCDFT PCDFT
name (sec.) (patterns) (%) (%) (%) (%)
bbsra 0.02 92 100 90.7 100 77.2
bbsse 0.03 150 100 83.6 98.2 877
bbtas 0.02 36 100 94.2 100 72.6
beecount 0.02 53 100 82.4 100 83.5
cse 0.05 212 100 75.4 99.6 96.5
dk14 0.02 83 100 1.7 100 97.6
dk15 0.02 43 100 85.4 100 97.2
dk16 0.13 195 100 98.7 100 99.5
dk17 0.02 65 100 91.5 100 96.4
dk27 0.02 22 100 N7 100 86.3
dk512 0.03 56 100 96.0 100 93.1
ex3 0.02 93 100 55.6 99.3 67.3
ex/ 0.02 101 100 38.3 98.6 539
fion 0.02 14 100 87.9 100 94.2
lion9 0.02 33 100 80.1 99.6 91.2
opus 0.02 82 100 92.8 100 97.8
sand 0.20 334 100 99.3 99.8 945
sse 0.03 169 100 84.2 98.7 859
styr 0.18 389 100 89.4 99.8 916
traind 0.02 14 100 81.0 100 95.4
train11 0.02 42 100 80.8 100 98.2
Average 0.04 108 100 84.3 * 88.5
*99.69524

form logic optimization and circuit re-
alization for the combinational logic
systemn then automatically adds the flip-
flops and parity checker to make a se-
quential circuit. Finally, a single state
transition fault simulator SSTFS and a
stuck-at fault simulator SEESIM" evalu-
ate the fault coverage.

As Tables 3 and 4 show, the system
has synthesized a number of MCNC
(Microelectronic Center at North Caro-
lina) benchmark FSMs.> In Table 3, the
second and third columns are the test
generation times and the test lengths of
the functional test sequences generat-
ed during synthesis. The fourth column
is the SST fault coverage for the FSMs
designed with the parity checker DFT

scheme (PCDFT). All the SST fault cov-
erage are 100% for these FSMs. The fifth
column is the SST fault coverage for the
FSMs with a parity checker added to
FSMs to help detect the transition fault,
but without applying the state parity as-
signment. For this case, the SST fault
coverage averages 15% lower. The last
two columns are the single stuck-at
(SA) fault coverage of each imple-
mented logic circuit with and without
employing the PCDFT scheme.

Table 3 shows that the stuck-at fault
coverages under the derived test se-
quence for the circuits employing the
PCDFT scheme are generally over 99%,
while the average SA fault coverage for
the circuits without employing the

T E S T E N E R T | 0 N
Table 4. Comparison of FTG and our PCDFT-FIG. Table 5. Results of our deterministic test
generation PCDFT-Det TG.
FIG PCDFT-FTG
cpy* Test Fault cpy* Test Fault SA fault
FSM speed length coverage speed length coverage PCDFT-DetlG _coverage
name (sec.) (patterns) (%) (sec.) (patterns) (%) CPU Test With Without
FSM speed length PCDFT PCDFT
dk14 1.0 228 100.0 0.02 83 100.0 name (sec.) (patterns) (%) (%)
dk15 0.2 146 100.0 0.02 43 100.0
dk16 10.0 406 100.0 0.13 195 100.0 bbara 1.1 51 100 81.2
dk17 0.4 86 100.0 0.02 65 100.0 bbsse 23 104 100 96.4
dk512 0.5 89 100.0 0.03 56 100.0 bbtas 04 16 100 58.3
ex/ 20 158 99.3 0.02 101 98.6 beecount 0.3 42 100 93.8
opus 0.2 96 98.5 0.02 82 100.0 cse 59 158 100 84.1
styr 204.0 964 97.2 0.18 389 99.8 dk14 23 61 100 100
bbara 20 241 100.0 0.02 92 100.0 dk15 1.0 29 100 99.2
cse 45.0 880 97.9 0.05 212 99.6 dk16 9.1 172 100 934
sand 202.0 809 97.7 0.20 334 99.8 dk17 0.8 45 100 96.8
Average 425 373 99.1 0.06 150 99.8 dk27 02 19 100 91.8
Normalized 235 1.00 dk512 1.0 58 100 947
*CPU seconds: FTG on Sun 4/260 (10 MIPS), ex3 1.1 36 100 90.3
PCDF-FTG on Sun Sparc 2 {28 MIPS). ex/ 1.5 44 100 88.1
lion 0.1 11 100 88.9
lion9 0.1 21 100 92.2
opus 1.1 54 100 944
Table 6. Comparison of STG3 and PCDFT-DetTG. sand 245 214 100 80.0
sse 24 90 100 978
STG3 PCDFT-DetTG styr 23.4 287 100 B81.46
cpU? Test Fault cpPyU* Test Fault traind 0.1 14 100 90.2
FSM speed length coverage speed length coverage train1l 0.7 38 100 893
name (sec.) (patterns) (%) (sec.) (patterns) (%) Average 3.8 74 100 89.6
dk14 12 90 100.0 2.3 61 100
dk15 4 44 100.0 1.0 29 100 dicating that functional test sequences
dk1é 7176 322 97.6 9.1 172 100 will not effectively detect SA faults when
dk17 9 66 100.0 0.8 45 100 the machines have many unspecified
dk512 92 85 100.0 1.0 58 100 terms. The test generation times are al-
ex/ 314 58 99.2 1.5 44 100 most negligible for most circuits.
opus 25 80 100.0 1.1 54 100 Table 4 compares the test generation
styr 20,613 515 943 234 287 100 times of Table 3 with those found in
bbara 36 133 100.0 1.1 51 100 Cheng and Jou. Here, the test genera-
cse 9,657 344 97.8 59 158 100 tion times for our PCDFT scheme cir-
sand 9,106 376 97.6 245 214 100 cuits represent the CPU times of a Sun
Average 4,277 192 98.8 6.5 107 100 Sparc 2 workstation, a 28 MIPS machine,
Normalized 218 1.0 while those of the functional test gener-
CPU seconds: FTG on Sun 4/260 (10 MIPS), PCDF-FTG on Sun Sparc 2 (28 MIPS). ation (FTG) circuits represent CPU
times of a Sun 4/260 workstation, a 10

PCDFT scheme is only 88.5%. For the
PCDFT circuits whose SA fault coverage
are not 100%, the undetected faults

36

mainly come from the unspecified terms
of the FSMs. All these non-fully-testable
circuits have very low connectivity, in-

MIPS machine. After normalizing CPU
times, the test generation times for
PCDFT circuits are 235 times shorter
than those of FTG circuits. The table also

IEEE DESIGN & TEST OF COMPUTERS

lists the test length and fault coverage of
each sequence. Our PCDFT scheme cir-
cuits have higher fault coverages, near-
ly 100% on average, and shorter test
lengths than those of FTG circuits.

Table 5 shows the results for the test
sequences generated by the determin-
istic test generation method for the im-
plemented PCDFT circuits. In the table,
the second and the third columns are
the test generation times and lengths of
the test sequences generated by the de-
terministic test generator (PCDFT-
DetTG). The fourth column is the
stuck-at fault coverages for the test se-
quences for the PCDFT circuits, which
are all 100%. The fifth column shows the
fault coverages for the nonPCDFT cir-
cuits if they are applied to the same test
sequences. The average fault coverage
is only 90% for this case. Also, note that
for the deterministic test sequences,
their test lengths are shorter than those
of the functional test sequences of
Table 3.

To show the efficiency of this test
generation, Table 6 compares our re-
sults with those of STG3.* Our test
lengths are shorter than those of STG3;
we achieve 100% fault coverage for all
circuits with much less test generation
time. We gain all this effectiveness from
the small penalty of the parity checker.

THE EXTRA OVERHEAD on logic gates
added in this scheme is very small, re-
quiring only log,(number of states)-1
numbers of XOR gates. This figure is
less than the general extra overhead in
the conventional scan designs. Table 7
compares the scan designs, the parity-
scan design,® and our parity checker
DFT.

FALL 1994

Table 7. Comparison of our DFT scheme (PCDFT) with other approaches.

Hardware Extra Performance Test Test CED
Approach overhead 1/O pins degradation generation length capability
PCDFT Low 1 No Simple Short Yes
Parity-scan® High 23 Yes Easy long Yes
Full scan High =3 Yes Easy long No
Parfial scan Low =3 Yes Harder ~ Short No
PCDFT needs no modification of the | Acknowledgments

flip-flops, requiring only an XOR tree for
the parity checker and an extra output
pin. The chip area and extra I/O pins are
lower than those of scan designs having
at least three extra I/0 pins. Test gener-
ation for PCDFT is as simple as combin-
ational test generation, and the
generated test sequence is more effec-
tive than other approaches. Also, like
the partial scan design, the PCDFT
scheme can apply to partial flip-flops,
which have low controllability/observ-
ability. This adaptability further saves
on hardware overhead while main-
taining the advantage that no circuit
performance degradation is introduced
as PCDFT needs no modification of the
flip-flops. Also, with the full PCDFT
scheme, we can consider the added
parity checker as a concurrent error de-
tection scheme for fault-tolerant
designs.

Our next step is to extend this PCDFT
scheme to general (nonFSM) sequen-
tial circuits. For such circuits, we will in-
coporate the PCDFT scheme into
sequential test generation to alleviate
the test generation effort. We will adapt
a partial PCDFT scheme to reduce the
size of the added parity checker. Our
goal is to achieve a fully and easily
testable design with a minimal length
of test sequences by adding less hard-
ware overhead.

As the PCDFT scheme requires no
modifications of flip-flops or latches, we
can also directly apply this scheme to
on-ine testing and asynchronous se-
quential circuits.

The authors wish to express their grati-
tude for helpful comments from the re-
viewers. The National Science Council,
Taiwan, Republic of China, supported this
work under contracts NSC-81-0404-E009-136
and NSC-82-0404-E009-183.

References

1. F.C. Hennie, “Fault-Detecting Experi-
ments for Sequential Circuits,” Proc. Fifth
Ann. Symp. Switching Circuit Theory and
Logical Design, Princeton, N.J., 1964, pp.
95-110.

2. H.Fujiwara and K. Kinoshita, “Design of
Diagnosable Sequential Machines Uti-
lizing Extra Outputs,” /EEE Trans. Com-
puters, Vol. 232, 1974, pp. 138-145.

3. M. Abramovici, M.A. Breuer, and A.D.
Friedman, Digital Systems Testing and
Testable Design, Computer Science
Press, Oxford, England, 1990.

4. KT.Chengandl.Y.Jou, “Functional Test
Generation for Finite State Machines,”
Proc. Int'l Test Conference, CS Press, 1990,
pp. 162-168.

5. S.Devadas and K. Keutzer, “A Unified
Approach to the Synthesis of Fully
Testable Sequential Machines,” [EEE
Trans. Computer-Aided Design, Vol. 10,
1991, pp.3 9-50.

6. V.D.Agrawal and K.T. Cheng, “Test Func-
tion Specification in Synthesis,” Proc.
27th Design Automation Conf., CS Press,
1990, pp. 235-240.

7. KT.Chengand V.D. Agrawal, “State As-
signment for Testable Design,” Int'l J.
Computer-Aided VLSI Design, Vol. 3,
March 1991, pp. 291-308.

8. R.Leveugle and G. Saucier, “Optimized

37

JOINUS
AT ICCAD

for an interesting panel discussmn. 5 I

CAD Profession:
ﬁonds,undilnﬁom

A 10X growth in semiconductorca-
pacity every six years hasforced de-' |
signers to rely on CAD tools to deliver
10X productivity improvements. How- I

ever, with the pace in semiconductor -
processingshowing nosignof slowing
down, many believe current CAD tools . |
no longer support designers’ needs. -

Moderator Daniel Gajski (UC Iwme)
will lead panelists Ron Collett{(Collett
Int), James Duley (HewlettPackard), -
Carlos Dangelo (LSI Logic), and |
Richard Newton:(UUCBerkeley) asthey.
 consider this challenge and mm]

v Theunderlying semmtméuctor F
revolution- -

¢ ltsimpact onthe markeﬁp :
and CAD in particular

v The EDA mdustry——Caa it
deliver schitions to these
problems and still sbay
profitable? o !

v Theroleventure capltal an G

start-ups should play. . ..

/ The role of academic meamh
in meeting these. chalienges '

The IEEE/ACM International
Conferenceon =
Computer-Aided Design meets -
November 7-10, 1994,

in San Jose, California.

38

11.

12.

15.

. S. Devadas et al,,

Synthesis of Concurrently Checked Con-
trollers,” IEEE Trans. Computers, Vol. 39,
1990, pp. 419425.

H. Fujiwara and A. Yamamoto, “Parity-
Scan Design to Reduce the Cost of Test
Application,” Proc. Int’l Test Conf., CS
Press, 1992, pp. 283-292,.

. M.L.Sheu and C.L. Lee, “A Parity Check-

er Design for Testability Scheme for Fi-
nite State Machines,” Proc. Asia-Pacific
Conf. Circuits and Systems, 1IEEE Circuits
and Systems Society, Piscataway, N.J.,
1992, pp. 53-58.

S. Devadas, H.K. Ma, and A.R. Newton,
“Redundancies and Don’t Cares in Se-
quential Logic Synthesis,” J. Electronic
Testing: Theory and Applications, Jan.
1990, pp.15-30.

R. Brayton et al., “MIS: Multiple-Level In-
teractive Logic Optimization Systems,”
IEEE Trans. Computer-Aided Design, Vol.
6, 1987, pp. 1062-1081.

“MUSTANG: State
Assignment of Finite State Machines Tar-
geting Multilevel Logic Implementa-
tions,” IEEE Trans. Computer-Aided
Design, Vol.7, 1988, pp. 1290-1300.

. CP.Wu, CL. Lee, and W.Z. Shen, “SEES-

IM—A Fast Synchronous Sequential Cir-
cuit Fault Simulator with Single Event
Equivalence,” Proc. European Design Au-
tomation Conf., CS Press, 1992, pp. 446-449.
B. Lisanke, “Logic Synthesis and Optimi-
zation Benchmarks,” tech. report, MCNC,
Research Triangle Park, N.C,, Dec, 1988.

Meng-Lieh Sheu is currently working to-
ward his PhD in the Department of Elec-
tronics Engineering at the National Chiao
Tung University, where he earlier received

BS and MS degrees in electronics engineer
ing. His research interests include VLSI test-
ing, logic and high-level synthesis, and
computer-aided design. He is a student
member of the IEEE Computer Society, Cir-
cuits and Systems Society, and Communi-
cations Society.

Chung Len Lee currently is a professor in
the Department of Electronics Engineering,
National Chiao Tung University, where his
teaching and research interests focus on in-
tegrated circuits and testing. He has super-
vised more than 90 MS and PhD candidates,
and has published more than 140 papersin
technical journals. He received his BS from
the National Taiwan University and MS and
PhD degrees from Carnegie Mellon Uni-
versity. Presently, he serves on the editorial
board of the Journal of Electronic Testing:
Theory and Applications, and is a member
of the IEEE Asian Test Technology Com-
mittee. He is a senior member of the IEEE
Circuits and Systems Society and the [EEE
Computer Society.

Direct questions concerning this article
to Cheng Len Lee, Department of
Electronics Engineering, National Chiao
Tung University, 30050, Hsin-Chu, Taiwan;
cllee@ cc.nctu.edu.tw.

IEEE DESIGN & TEST OF COMPUTERS

