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Generalized perceptron learning rule and its
implications for photorefractive neural networks
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We consider the properties of a generalized perceptron learning network, taking into account the decay or the
gain of the weight vector during the training stages. A mathematical proof is given that shows the conditional
convergence of the learning algorithm. The analytical result indicates that the upper bound of the training
steps is dependent on the gain (or decay) factor. A sufficient condition of exposure time for convergence of a
photorefractive perceptron network is derived. We also describe a modified learning algorithm that provides
a solution to the problem of weight vector decay in an optical perceptron caused by hologram erasure. Both
analytical and simulation results are presented and discussed.

INTRODUCTION
Learning is one of the most intriguing properties of the
neural network. In the process of learning, both mem-
ory and information processing are involved. In a primi-
tive network such as the perceptron' the network can
be trained to classify a number of inputs by supervised
learning with examples. The capability of information
processing in a neural network is mainly determined by
its structure, i.e., the arrangement of neurons, and its in-
terconnection. Once the structure of a neural network is
given, the interconnection can be obtained by learning al-
gorithms. The perceptron with a single layer structure is
a basic neural network that can be trained to sort a set of
input patterns into category 1 (Cl) and category 2 (C2).
A trained perceptron will perform the following pattern
classification when the network is interrogated with an
input vector X:

W X > 0 for X E C1,

W X < 0 for X E C2.

In the learning process the interconnection weight W is
modified according to a simple learning algorithm given
by

Wk+1 = Wk + ek'lXk, (1)

where Xk is the input pattern vector, Wk is the intercon-
nection weight vector, is a constant representing the
learning rate, and Ek is an error signal denoted by

E

ek = 1

-1

if Xk is correctly classified
if Xk E C1 but is misclassified 
if Xk E C2 but is misclassified

where the subscript k is an integer (k = 1, 2, 3, ... ) reg-
istering the number of tests (or interrogations). We
note that the interconnection weight is changed when-
ever there is a misclassification of an input vector. The
process of weight vector update continues until all the

input patterns are correctly classified. The convergence
proof of the simple perceptron can be found in Refs. 2
and 3.

A recent development in photoinduced holograms in
photorefractive materials (e.g., LiNbO3 , Sr.Bal-,Nb 2 O6,
and BaTiO3)4 and spatial light modulators (SLM's) offers
unique possibilities for the optical implementation of neu-
ral networks with a learning capability. The holograms
can be recorded and erased in these media by an ap-
propriate optical interferometric technique. This is ideal
for implementing the interconnection weight, which must
be modified in the process of learning. Several optical
architectures for implementing the perceptronlike learn-
ing networks have been proposed and demonstrated.A 8
Learning is achieved by use of real-time holographic tech-
niques in photorefractive crystals to record the modifi-
able interconnection weight, which is proportional to the
amplitude of the photoinduced hologram. By virtue of
the dynamic response of the photorefractive crystal, the
hologram may decay during the learning process. The
hologram decay leads to a decrease of the interconnec-
tion weight. We have shown that the holographic decay
may affect the convergence property of the perceptron.9

Significant decay of the interconnection weight may lead
to a divergence of the learning process. To overcome
the hologram decay, the interconnection weight must be
strengthened by optical techniques. Mathematically this
is equivalent to adding a gain factor in the update equa-
tion. Although some special cases of optical perceptron
with weight decay1 2 have been studied, a general percep-
tron theory that addresses the issue of gain or decay of
the interconnection weight is not available. To illustrate
the need, we point out that the gain in the interconnec-
tion weight may also lead to a divergence of the learn-
ing process. In this paper we consider the convergence
properties of a generalized perceptron algorithm with an
arbitrary gain factor e for the weight vector. The decay
is represented by 0 < e < 1. An important special case is
the photorefractive perceptron learning network, in which
the gain factor = exp(-t/re) is less than unity.
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GENERALIZED PERCEPTRON
LEARNING ALGORITHM

The weight update equation of a generalized perceptron
algorithm can be written as

Wk+1 = Wk + Ek 77Xk, (3)

where Xk is the input vector, Wk is the weight vector, and
Ek is an error signal at the kth interrogation, respectively.
7 is the learning rate, and , depending on its value
relative to 1, is the gain or decay factor of the perceptron
network.

Following the perceptron learning algorithm and carry-
ing out a similar analysis leading to the proof of conver-
gence, we obtain a solution for the interconnection weight
vector W,+, that must satisfy the following relation (see
Appendix A):

fl(p) < IW +112 < f2( p), (4)

where p is the total number of weight changes and
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with W being an arbitrary solution and

min(W - Yk) /3 for all the pattern vectors Yk in C,
(7)

max(lYk12 ) a for all the pattern vectors Yk in C,
(8)

where C C1 U C2. In Eqs. (7) and (8) Y is the input
pattern redefined in Eq. (A3) of Appendix A, and we note
that Wp+l is, in general, different from W. According to
inequality (4) the squared magnitude of the weight vector
Wp+l is confined in the region bounded by f,( p) and f2(P).

We recall that p is the total number of weight changes
for training. The convergence of the learning process
requires that an upper bound exist for the total number
of updating steps p. The existence of an upper bound
for p requires that a solution pa exist that satisfies the
following equation:

(9)

In other words, these two curves must intersect. The
point of intersection provides an upper bound pa for the
total number of updating steps, which depends on the
values of the gain factor 6 of the generalized perceptron
algorithm. To understand the convergence property, we
plot fi(p) and f2(P) as functions of p for various values
of 6 in Fig. 1. In the example we used fi(l) = 0.5 and
f2(1) = 5 with arbitrary units for heuristic explanation.
We note that the intersection occurs at pa = 10 for the
case t = 1. For cases in which the gain factors t = 0.9
and t = 1.1, the point of intersection shifts toward p > 10.
In other words, either gain or decay of the weight vector
will lead to a higher upper bound for the number of weight
changes.

Using Eqs. (5) and (6) and solving Eq. (9), we obtain
the following expression for the upper bound Pa

(O - l2) - pm(l -)2

Pa= (1f - 2) + pm(1 - 2 (10)

where Pm is an upper bound of the total number of weight
changes of the normal perceptron algorithm2 defined by

aIWI 2

Pm /32

Using Eqs. (5) and (6), we also find that

[2(1)f,1M=P

p
Fig. 1. Upper and lower bounds of the squared magnitude of the
weight vector IWp+112 versus updating steps p of the generalized
perceptron learning network for (a) 4 = 1.0, (b) e = 0.9, and
(c) e = 1.1. Solid curves, fi(p); dashed curves, f2(p). The
intersection pa provides an upper bound for p. In the example
f,(l) = 0.5 and f2(1) = 5 (arbitrary units) were used.

We note that Pm is greater than 1 and covers a wide
range of numbers because of the large number of so-
lution weights W. Equation (10) shows that the upper
bound pa is a function of the parameters t and Pm. We
also note that the maximum number of updating steps
Pa of the generalized perceptron algorithm is dependent
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on the gain factor (or decay rate) and is independent
of the learning rate -q. To illustrate this, Fig. 2 shows
the computer simulation results of the learning behav-
iors of the generalized learning algorithm described in
Eq. (3) for various values of and 77. In the simula-
tion we used 10 training patterns (Cl: {B, 3, 5, E, 6} and
C2: {A, 2, C, 4, D}; each pattern consists of 32 X 32 pix-
els) as shown in Fig. 2(g). In the learning process each
iteration represents a complete cycle of interrogation of
all 10 patterns. We note that, in our example, either too
much gain [see Fig. 2(e), t = 1.3] or too much decay [see
Fig. 2(a), = 0.85] leads to a divergence in the learning
process. Comparing Figs. 2(c) and 2(f), we also see that
the convergence behaviors are identical for different val-
ues of the learning rate Y7.

In Fig. 3 Pa is plotted as function of the gain factor f

for various values of Pm. We note that for a given gain
factor the upper bound Pa is an increasing function of
Pm and the upper bound Pa of the generalized perceptron
learning algorithm is always larger than that of the origi-

nal one ( = 1). That is to say, the minimum Pa occurs
at = 1, where

lm oF(1 - 2) - pm(1 - )2
lim P = Pm l(P (13)

This is the case of the normal perceptron (f = 1), which
has the smallest upper bound.

According to the properties of the logarithm and ana-
lyzing Eq. (10), we find that a finite upper bound Pa for
the total number of updating steps of the generalized per-
ceptron learning algorithm exists only when t is bounded
in a region given by

(14)

where

6 max =P 
Pm 1

Pm + 1

(15)
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Fig. 2. Learning behaviors of a generalized perceptron with 10 input patterns (C1: {B, 3, 5, E, 6} and C2: {A, 2, C, 4, D}; pattern consists
of 32 X 32 pixels) and for various gain factors: (a) = 0.85; (b) f = 0.9; (c) = 1.0; (d) -= 1.1; (e) f = 1.3, -= 0.5; (f) normal perceptron,

= 1, 77 = 1; (g) training patterns. Each iteration represents a complete cycle of interrogation of all 10 patterns.
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Fig. 3. Upper bound of updating steps p of the generalized
perceptron algorithm as a function of gain factor for
Pm = 10, 20, 30 as indicated.

In other words, the generalized perceptron learning algo-
rithm may not converge if the gain factor 4 is out of the
range specified by inequality (14). The range for the gain
factor is dependent on the magnitude of Pmn. Table 1 lists
the limits for various values of Pm. Figure 4 plots the
limits as functions of Pm. The results in Fig. 4 indicate
that, for a given set of input patterns with a given classi-
fication, Pm covers a wide range of values, and the mini-
mum of all these Pm's is useful in determining the range
of the gain factor 4. It should be pointed out that the up-
per bound Pm depends on knowledge of solution weight W.
Some values of Pm can be derived from Eq. (11), in which
the weight vector W is obtained by the perceptron al-
gorithm described in Eq. (1). By definition these values
of Pm are all greater than min(pm). In addition, the re-
sults of the simulation also include the number of weight
changes p for convergence. These values ofpm as well as
p obtained by perceptron simulation provide information
about min(pm). Specifically,

exp(-t/Tr). The weight update equation is thus written
as

Wp+l = exp(-t/Te)Wp + [1 - exp(-t/r)]Yp, (17)

where Yp is the input pattern, Wp is the interconnec-
tion weight, and Tr and T

e are the rise and decay time
of the photorefractive crystal, respectively. t is the expo-
sure time for each of the weight updates. Equation (17)
indicates that the learning rate rq and decay rate 4 of the
optical perceptron network are determined by the expo-
sure time during the holographic recording and the re-
sponse times of the photorefractive crystal. Using 4 =
exp(-t/Te) in Eq. (10), we obtain the following expression
for the upper bound of the total number of weight changes
of the photorefractive perceptron:

Te F 1 + Pm tanh(t/2re) 1 (18)
Pa0 = e Ini I18t L1 - Pm, tanh(t/2r,)

According to Eq. (18), a finite upper bound requires that
the exposure time of the optical perceptron network be
written as

0 < t < ln(Pn + 1) (19)

For Pm >> 1, inequality (19) can be written as

tPm < 2Te. (20)

Inequality (20) may provide a guideline for the expo-
sure time t provided that min(pm) is known. The pho-
torefractive perceptron will converge in a finite number
of steps provided that the exposure time is limited by
inequality (20). We note that inequality (20) is a suffi-
cient condition for the convergence of a photorefractive
perceptron. Although there are infinite numbers of Pm,
the minimum of all these Pm's provides the guideline for
the exposure time.

p < min(pm) < Pm.

In our case, Fig. 2(f), we obtained P = 7, Pm =

alWp,+i2 /f32 = 368. This leads to 7 < min(pm) - 368.
Further simulation results are likely to decrease the
range of possible values of min( pm). As mentioned ear-
lier, information about min(pm) is useful in determining
the range of 4 for convergence. For Fig. 2(f) the range
of 4 for convergence is at least 0.995 < 4: < 1.005, which
we obtain by taking Pm = 368 as the worst case. The
range of 4: for perceptron convergence is useful in the
implementation in which the interconnection weight is
likely to suffer gain or loss because of practical issues
such as noise, electrical resistance, holographic decay,
and even system imperfection. The range of 4 for
convergence would allow a finite range of tolerance in
the system design.

PHOTOREFRACTIVE PERCEPTRON
NETWORK

A special case of interest is the photorefractive perceptron,
where the gain factor (or decay factor) is given by 4: =

exp(-t/Te), and the learning rate is given by -q = 1 -

Table 1. Limits of Gain Factor 4t

Pm emin emax

5 0.667 1.500
10 0.818 1.222
15 0.875 1.143
20 0.905 1.105
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Fig. 4. Limits of gain factor e as functions of Pm. Solid curve,
emax; dashed curve, emin.
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MODIFIED LEARNING ALGORITHM

As a result of hologram decay during the training pro-
cedure, the photorefractive perceptron network may not
converge or convergence may require more iterations.
This can be seen from the simulation results illustrated
in Figs. 2(a)-2(f). Physically the hologram decay is con-
sistent with the decay of the weight vector. When there
is a large number of input patterns, the weight decay
may become too severe for the perceptron network to con-
verge. To overcome the weight decay in a photorefractive
perceptron in the learning process, a method for weight
restoration 3 ,"4 is required. The system can realize this
by reading out the weight vector and then rerecording
it optically in the same medium by using the technique
of phase conjugation during each exposure for update by
previous records in holographic associative memory.'5'1 6

Mathematically, the equation for the weight update
becomes

Wp+1 = exp(-t/re)Wp + [1 - exp(-t/r)](Yp + AWp),
(21)

where A is a constant. In other words, a previous weight
vector is added to the input vector to compensate for the
weight decay. The equation can be rewritten as

cial case of photorefractive perceptrons in which the gain
factor is an exponential term accounting for holographic
erasure during illumination. A feasible guideline for the
exposure time of a photorefractive perceptron network is
presented. A modified photorefractive perceptron with a
compensation technique for overcoming the weight decay
is proposed and analyzed.

APPENDIX A. CONVERGENCE PROOF OF
THE GENERALIZED PERCEPTRON

We assume that the sets CI and C2 are linearly separable
and that the union of these two subsets is the complete
training set C. Here, without loss of generality, we also
assume that the perceptron network has a zero threshold
value. That is, at least one solution weight vector W
exists such that

W X > 0 for X E C1,

W X < 0 for X E C2.

(Al)

(A2)

For the purpose of proving the convergence, we define a
set of new vectors such that

for X E Cl
for X E C2

(A3)

Thus inequalities (Al) and (A2) can be written as
(22)

According to the general results, inequality (14), the suf-
ficient condition for the convergence of the perceptron be-
comes

6.mil < exp(-t/re) + A[l - exp(-t/Tr)] < max. (23)

The constant A can be properly chosen to tailor the
gain factor. For the case of a unity gain factor, i.e.,
exp(-t/Te) + A[1 - exp(-t/rr)] = 1, we obtain

A 1 - exp(-t/le) (24)
1-exp(-t/rr)

For short exposure time we obtain A T rire. Since each
constant A corresponds to a unique value of 4, the results
of simulation are in exact agreement with those obtained
in Fig. 2.

W Y>O. (A4)

The weight update equation (3) now becomes

Wp+1= 4:Wp + Yp, (A5)

where the pattern Yp is misclassified by the weight Wp
and p is now an integer registering the number of weight
changes. We assume that there is no gain or decay of the
weight vector during all the interrogations whose classifi-
cations are correct. In other words, 4 = 1, where ek = 0.
If we start with the initial weight WI = 0, we obtain the
weight vector after p updating steps:

Wp+1 = 4:p-1 7yl + eP-2, 7y2 + ... + 7yp
p

= 7 I 4P kYk 
k=1

(A6)

CONCLUSIONS

In conclusion, we have considered the properties of a gen-
eralized perceptron learning network, taking into account
a gain factor in the update of the interconnection weight.
We have shown that the learning rate will not affect the
convergence of the perceptron. It merely affects the scale
of the input vectors. The gain factor (or decay factor)
may affect the convergence of the perceptron learning
process. We have derived conditions for the convergence
of the learning process. The range of the gain factor ()
for perceptron convergence is useful in hardware imple-
mentation, where the interconnection weight may suffer
gain or loss during the training stage because of practi-
cal issues, which would allow a finite range of tolerance
in the system design. We have also considered the spe-

Taking the dot product of the above equation with solution
weight vector W, we obtain

W p+ = IZ -Pk (W Yk).
k=1

(A7)

For a given solution weight vector W, let /3 be the mini-
mum for all the inner products, i.e.,

min(W Yk) for all the pattern vectors Yk,

(A8)

where 13 > 0. From Eqs. (A7) and (A8) we obtain

(1 ) (A9)

Wp+1 = {exp(-t/,r) + A[l - exp(-t/r)]}Wp
+ [1 - exp(-t/rr)]Yp.
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Using the Cauchy-Schwarz inequality,

lW ,112 (W Wp+l)

and inequalities (A9) and (A10), we obtain

IWP+1 12 1 ( _

We define a function of p as

J /W12 (I - )

Using Eqs. (A12) and (A18) and solving Eq. (A20), we
obtain the upper bound for p:

(A10) (1- 2) - Pm(l - )2
P. = loge[ (1- 2) + Pm(l - )2 , (A21)

where
aPWm 2

Fm 'g2 (All) (A22)

with Pm being the maximum number of finite updating
steps of the normal perceptron algorithm.2

(A12)

From Eq. (AS) we have

JWk±1 2 = 21IWk2 + 2 1YkI2 + 277(Wk - Yk). (A13)

Using Wk - Yk < 0 during training and 2f 7 > 0, we obtain

JWk+112 _ 4:2 IWkI2 + fl2 iYkl2* (A14)

By adding these inequalities for k = 1, 2, ... , p, we ob-
tain

k=1

Let the maximum magnitude of the pattern vectors be
written as

max(IYkJ2) a.

This leads to

IWp+l2 '• 72 _

We define another function of p as

f2(p) a cg7( 2)

Combining relations (All), (A12), (A17),
obtain the following relation:

fl(p) S IWP+112 ' f2(P).

and (A18), we

Inequality (A19) indicates that the weight vector on com-
pletion of the training Wp+1 will be localized in the region
bounded by fi(p) and f2(p). We recall that p is the to-
tal number of updating steps leading to a trained percep-
tron. The total number of steps p must satisfy the above
equation. An upper bound for p exists provided that the
following equation yields a finite solution p.:

fA(P.) = f2(Po) -
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