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Abstract This paper proposes QR-based criteria for efficient selection of multi-mode pre-
coders in multi-user multiple-input multiple-output (MU-MIMO) precoded systems with
a limited feedback. In particular, a MU-MIMO QR based precoding scheme is developed
which takes advantage of the overall precoder design among users in conjunction with QR
detection. A selection criterion is developed to identify the precoder that yields the maximum
free distance. Efficient mode selection and tree search strategies are adopted to reduce the
complexity associated with the identification of the optimum precoder. To further improve
the detection performance in correlated channels, an efficient QR-based MMSE V-BLAST
detector is proposed. Computer simulations confirm that the proposed QR-based precoding
scheme attains the performance of existing schemes with a significantly lower complexity
level.

Keywords QR decomposition ·Multi-mode precoding ·Multiple-input multiple-output ·
Limited feedback system

1 Introduction

The recent increase in demand for higher spectral efficiency prompts the development of
uplink single-user MIMO (SU-MIMO) system in the LTE-advanced standard [1,2]. The
SU-MIMO system was proposed using a structured precoding codebook and the lim-
ited feedback technique [3]. The limited feedback associated with the precoder index
comprises fewer bits because codebooks are stored in both the transmitter and receiver
and the receiver sends the index of the selected precoder to the transmitter via a lim-
ited feedback channel [4,5]. For the limited feedback in the SU-MIMO system, effec-
tive quantization schemes for channel status information (CSI) feedback were developed
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[4,6]. Various selection criteria with exhaustive search were proposed to identify the
precoder and mode to optimize transmission performance [7–9]. An extension of the
SU-MIMO system to the multi-user MIMO (MU-MIMO) system was intended to pro-
vide space-division multiple access [10,11]. However, designing multi-mode precod-
ing for MU-MIMO to improve detection performance is even more challenging due
to non-cooperative users (i.e., mobile stations) and the complex computations as the
number of users grows [12]. Overcoming these difficulties is the motivation for this
paper.

In the proposed multi-mode precoding, the receiver (i.e., the base station) collects the
CSI associated with respective users and designs the overall precoder. Users and receivers
are equipped with multiple transmit and receive antennas and each user can transmit either
a single symbol stream or multiple streams to the receiver. According to the condition of
the overall channel, each user adopts the precoder determined by the receiver to precode
its own signal. Specifically, the precoders obtained from the respective user’s codebook
are combined to form the overall precoder. We here propose a QR-based criterion for the
selection of the overall precoder to minimize the probability of detection error [7]. This is
accomplished by maximizing the minimum absolute value of diagonal entries in the upper
triangular matrix of the QR-decomposition (QRD) associated with the effective channel.
The effective channel matrix is the product of the overall channel matrix and the overall
precoder matrix, which varies according to the overall precoder. The detection performance
is optimized by selecting the precoder according to the largest minimum absolute value of
the diagonal entries. Thus, the overall precoder produces an effective channel matrix yielding
a near equal-diagonal QRD [14,15], leading to the maximum free distance or the minimum
rate of error detection.

For large codebooks and/or a large number of users, the design of the overall precoder
inevitably requires complex computations since the users’ precoders are obtained through an
exhaustive search over all possible combinations. To reduce the search complexity, efficient
mode selection (EMS) and partial precoder search strategies are developed using the SVD
of the original sub-channel matrix for each user. EMS in QR-based selection criterion is also
capable of yielding the maximum free distance to identify the precoder. The partial precoder
search is performed by converting the precoders in a codebook into a binary tree [16,17],
which reduces the number of candidate precoders using the concept of short distance within
a limit region. To further improve the detection performance in correlated channels, efficient
QR-based MMSE V-BLAST detection [18,19] is proposed, which employs a low-complexity
scheme for computing the nulling vectors. Simulation results show that the proposed EMS
and partial precoder search schemes are capable of achieving nearly the optimal performance
with a very low level of complexity.

This paper is organized as follows. In Sect. 2, we describe the uplink MU-MIMO system
for multi-mode precoding. In Sect. 3, we present the QR-based criteria for low-complexity
selection in multi-mode precoding and the column ordering scheme. In Sect. 4, the perfor-
mance of the proposed QR-based precoding scheme is analyzed. In Sect. 5, we conduct
computer simulations to confirm the effectiveness of the proposed algorithms. Section 6
concludes the paper.

Notation: Matrices and vectors are denoted by upper and lower case boldface letters
respectively. IM is the M × M identity matrix. For vector x, xi is its i th entry. Superscript
(·)H , (·)−1 and (·)† represent the Hermitian transpose, inverse and pesudoinverse operations,
respectively. |·| denotes the absolute value operator, ||·||F and ||·||2 represent Frobenius norm
and 2-norm of a matrix, respectively, || · || denotes the L2-norm of a vector and blkdiag(·)
denotes the block diagonal operation.
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2 System Model of Multi-Mode Precoding

In this section, QR-based multi-mode precoding for the uplink MU-MIMO system is
described. We first briefly review system model for the multi-user multi-mode precoding.
Then, the QRD for MU-MIMO precoding under non-cooperative users is described. Finally,
the QR-based multi-mode precoding strategy is investigated to calculate the minimum dis-
tance to optimize the MU-MIMO precoding system. The proposed schemes are illustrated
in 2.1. Multi-user multi-mode precoding, 2.2. QR detection in precoded system, and 2.3.
QR-based multi-mode precoding scheme.

2.1 Multi-User Multi-Mode Precoding

As illustrated in Fig. 1, we consider multi-mode precoding with Mt = N1 + N2 · · · + NQ

transmit antennas, where Nq is the number of transmit antennas at the qth user, 1 ≤ q ≤ Q,
and Mr receive antennas in a limited feedback uplink MU-MIMO system [20]. The overall
W = W1 + W2 · · · + WQ transmitted bits, with Wq being the number of transmitted bits of
the qth user, are mapped to B = M1 + M2 · · · + MQ different data streams, with Mq being
the number of data streams (or mode) of the qth user, 1 ≤ Mq ≤ Nq . Without inter-user
cooperation, the signal model can be described as

y = HFM x + v, (1)

where y ∈ C Mr×1 is the received signal vector, x ∈ C B×1 is the transmitted symbol vector
with the correlation matrix Ex[xxH ] = (εx/B)IB , H ∈ C Mr×Mt is the MIMO channel
matrix with complex Gaussian entries which can be divided into Q subchannels as H =
[H1H2 . . . HQ] and then the matrix FM = [FM1FM2 . . . FM Q] ∈ C Mt×B with FH

M FM = IB

is the precoder matrix with Ex[(FM x)H FM x] ≤ εx regardless of the modulation scheme or
the value of B, M = (M1, M2, . . ., MQ) ∈ M represents a specific combination of user
modes, v ∈ C Mr×1 is the noise vector with i.i.d. complex Gaussian entries and power σ 2

v

and E(·) is the expectation operator.
When H changes, the overall precoder matrix FM = blkdiag(FM1, FM2, . . ., FM Q) is

adapted using the condition of the current channel based on the parameters received from a
feedback channel, as depicted in Fig. 1. The precoder matrix FMq of the (Mq)th transmission
mode of the qth user is selected from the NMq different M×t Mq precoder matrices denoted as
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Fig. 1 A precoded uplink MU-MIMO system with limited feedback in which the receiver transmits the index
of precoder of codebook to users via a limited feedback link
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FMq = {FMq ,1, FMq ,2, . . . , FMq ,NMq }, (2)

where Mq ∈ Mq and Mq is a set of supported modes for the qth user. For example, if
W = Mt = Mr = 4 and Q = Nq = Wq = 2, the BF (beamforming) mode with 4-QAM
adopted in each data stream and the SM (spatial multiplexing) mode with BPSK adopted in
each data stream are supported for the qth user with the mode set Mq = {1, 2}. Thus, the
overall supported transmission modes for the Q = 2 users are given by M = (M1, M2) ∈
{(BF, BF), (BF, SM), (SM, BF), (SM, SM)} or M = {(1, 1), (1, 2), (2, 1), (2, 2)}.
2.2 QR Detection in Precoded System

We first consider the QR detection for MU-MIMO precoding systems. In QR-based detection
[13], the QRD of the effective channel HFM is given by

HFM =
[

Q1 Q2
]
[

R
0

]
= QR, (3)

where Q = [Q1 ∈ C Mr×BQ2 ∈ C Mr×(Mr−B)] is an Mr × Mr unitary matrix and R is an
B × B upper triangular matrix. The QR-based detection is performed as follows:

ỹ =

⎡

⎢⎢⎢
⎣

ỹ1

ỹ2
...

ỹMr

⎤

⎥⎥⎥
⎦
= QH y =

⎡

⎢⎢⎢
⎣

r1,1 r1,2 · · · r1,B

0 r2,2 · · · r2,B
...

... · · · ...

0 · · · 0 rB,B

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
R

x + ṽ = Rx + ṽ, (4)

where R = QH H, ṽ = QH v, and ri, j , 1 ≤ i, j ≤ B, is the (i, j)th entry of R. The i th entry
of the modified received signals is detected as

ŷi = ỹi −
B∑

j=i+1

ri, j x̂ j = ri,i xi +
B∑

j=i+1

ri, j (x j − x̂ j )+ ṽi , (5)

where x̂ j is the j th entry of the detected symbol vector. Assuming that there is no error in
the previous symbol detection [13], we obtain

x̂i = Decision

(
ŷi

ri,i

)
, where ŷi = ri,i xi + ṽi . (6)

2.3 QR-Based Multi-Mode Precoding

In this subsection, along the line of QR detection, a low-complexity QR-based pre-
coder selection criterion is developed to select the precoder and mode to implement the
MU-MIMO precoding to optimize the limited feedback system. First, the minimum distance
of the constellation χ Mq at the qth user is defined by

dmin(Mq , Wq) = min
sq ,cq∈χ Mq ,sq �=cq

|sq − cq |, (7)

where sq and cq are two different signal vectors with the modulation of Wq/Mq bits per
substream [4]. The minimum distance in the MU-MIMO precoded system may be untraceable
due to that there is no cooperation between users at the transmitter such that different users
may adopt different modulations. However, a lower bound can be obtained as shown in the
following Lemma.
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Lemma 1 Assuming that there are no cooperation at the transmitter for the MU-MIMO
system, the minimum distance of the MU-MIMO system is larger than or equal to the minimum
distance of the SU-MIMO system under the condition that both systems have the same number
of transmit antennas, receive antennas and total number of transmitted bits per transmission.

Proof Under above conditions, the minimum number of data streams in the MU-MIMO
system is B = Q ≥ 1 which is larger than or equal to the number of a single data stream for
the BF transmission in the SU-MIMO system. Thus the proof is complete. ��

Based on Lemma 1, the minimum distance of the MU-MIMO precoded system can be
approximated as

d̃min(B, W ) ≈
Q∑

q=1

dmin(Mq , Wq). (8)

With (8), the QR-based selection criterion [7] is proposed to determine the overall precoder
to optimize MU-MIMO precoding as follows:

FM = arg max
F′∈FM

min
1≤i≤B

|ri,i (HF′)|, (9)

FQR = arg max
M∈M

|r(HFM )| · d̃min(B, W ), (10)

where ri,i (HF′) is the (i, i)th entry of R in the QRD of HF′, r(HFM ) is the optimal diagonal
entry associated with mode M obtained in (9) and the overall codebook of the M th mode can
be generated by FM = blkdiag(FM1, FM2, . . ., FM Q), where blkdiag(·) denotes the block
diagonal matrix formed by the matrix entries. Note that the precoder is determined in (9) to
maximize the minimum absolute value of diagonal entries of R in each mode of codebook.
The optimal mode in (10), which invokes the largest bound, is selected by computing the
minimum distance bound for each mode. The proposed QR-based selection criterion, using
the exhaustive search in (9) and (10), is performed on minimizing the probability of detection
error. Finally, the receiver sends the indices of the precoders selected from the codebooks to
the users via a limited feedback channel.

3 Efficient QR-Based Multi-Mode Precoding and Detection Schemes

To lessen the search complexity in this section, alternative efficient schemes based on the
QRD are proposed to achieve the multi-mode precoding and detection in a limited feedback
MU-MIMO system. With maximizing the free distance to design a good precoder strategy,
channel’s free distance involved diagonal entries of the R-factor of QRD is firstly developed
in EMS to determine the transmission mode. Based on this transmission mode, the tree-
structured codebook in terms of the singular value vector of channel is building to cluster
few precoder candidates to reduce the complexity of QRDs. The proposed schemes are
illustrated in 3.1. EMS, 3.2. Efficient precoder selection via tree search algorithm, and 3.3.
Efficient QR-based MMSE V-BLAST detection as follows.

3.1 Efficient Mode Selection

For a large number of users, (9) and (10) become computationally intensive to perform the
exhaustive search by doing total QRDs to find the optimum precoder. We here suggest a low-
complexity method with EMS to reduce the complexity. This approach performs fewer QRDs
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974 C.-H. Pan, T.-S. Lee

by exploiting the SVD of the original sub-channel matrix with which each user computes
the minimum distance bound for each mode by the following property to choose a suitable
reference precoder EMq :

Property 1 Given the SVD Hq = Uq�qVH
q with singular values λ1 ≥ λ2 ≥ · · · ≥ λNq > 0,

we have the QRD HqVMq = Uq�Mq , where VMq consists of the first Mq columns of VH
q ,

and �Mq consists of the first Mq columns of �q .

The proof is straightforward and thus omitted for brevity. It follows that a reasonable
choice for the reference precoder is EMq = VMq for Mq < Nq because it gives an effective
channel matrix with Mq largest diagonal entries in its QRD.

For Mq = Nq , the reference precoder is chosen to be EMq = Pq , where Hq = QqRq PH
q

is the GMD of Hq . Recall that the GMD based precoder provides the optimum performance
by exploiting equal QRD [14,15]. Based on the selection of the reference precoder EMq ,
the free distance [14] for the (Mq)th transmission mode at the qth user can be achieved as
follows:

Theorem 1 Assuming Hq ∈ C Mr×Nq with singular values λ1 ≥ λ2 ≥ · · · ≥ λNq > 0, the
reference precoder EMq satisfies

dfree(HqEMq ) = min
1≤i≤Mq

|rq
i,i (HqEMq )| · dmin(Mq , Wq), (11)

where rq
i,i (HqEMq) is the (i, i)th entry of the diagonal matrix �Mq of QRD of HqEMq as

depicted in Property 1, dmin(Mq , Wq) is the minimum distance in (7) and dfree(Hq EMq) is
the free distance of HqEMq . Moreover, the free distance in (11) can be maximized.

Proof See “Appendix 1”.

Using (11), the optimum transmission mode and corresponding precoder that minimizes
the error probability can be obtained by

Mq = arg max
Mq∈Mq

min
1≤i≤Mq

|rq
i,i (HqEMq )| · dmin(Mq , Wq), (12)

FQ R = arg max
FMq∈FMq

min
1≤i≤B

|ri,i ([H1FM1 · · ·HqFMq · · ·HQFMQ ])|. (13)

In contrast to the exhaustive search in (9)–(10), the transmission mode of each user can be
independently determined beforehand enabling the optimal precoder to be identified within
the selected mode.

3.2 Efficient Precoder Selection Via Tree Search Algorithm

To reduce the search complexity, the modified random vector quantization codebook with
binary tree structure is developed in Santipach [16] to select the vector to maximize capacity.
Based on this structure, the tree search technique is adopted to avoid the exhaustive QRDs
in (9) and (13) in finding the precoder. The precoders of the M th

q codebook converted into
a binary search tree exploited by the constellation point, using a separation of real and
imaginary, are firstly developed in Table 1. Partial precoder search can then be conducted
using the binary search tree [17] in which (1) the left subtree of a node includes only nodes
with numbers smaller than the node’s number, (2) the right subtree of a node includes only
nodes with numbers larger than or equal to the node’s number.
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Table 1 Conversion of
codebook into a binary tree P.1 For i = 1 : NMq

P.2 node← insert(node, C(FMq,i ))

//C(FMq,i ): convert FMq,i to a number with constellation point

P.3 end

P.4 Tree(:,:,Mq )← node

P.5 Structure node* insert(node, data)

P.6 if node == null

P.7 return (newnode(data))

P.8 elseif node.data ≥ data

P.9 insert(node.left, data)

P.10 elseif node.data < data

P.11 insert(node.right, data)

P.12 end

Based on Table 1, the precoder can be further determined by the following optimization
problem as

FT,Mq = arg min
1≤ j≤NMq ,FMq, j

∈FMq

( Mt∑

t=1

B∑

b=1

|Re(FMq , j (t, b)− EMq (t, b))| + |Im(FMq , j (t, b)

−EMq (t, b))|) , (14)

where Re(·) and Im(·) denote the real part and the imaginary part of (·), respectively. To avoid
the exhaustive search, the tree search is employed to determine the precoder FT,Mq in (14)
with which a partial set of CMq adjacent nodes in the tree of the M th

q codebook are selected
[16,17]. Candidate precoders of the reduced set PMq are then selected from the adjacent
nodes of FT,Mq as given by

PMq ← C ′Mq
s adjacent nodes of FT,Mq . (15)

Particularly, absolute value and subtraction in (14) to cluster few candidate precoders have less
computational complexity than the QRD in (13). Thus, the tree search reduces the complexity
of (NM1 · NM2 · . . . NM Q) QRDs to (CM1 ·CM2 · . . . CM Q) QRDs in finding the precoders.
With (15), the optimum transmission mode and corresponding precoder can be obtained by

Mq = arg max
Mq∈Mq

min
1≤i≤Mq

|rq
i,i (HqEMq )| · dmin(Mq , Wq), (16)

FQ R = arg max
FMq∈PMq

min
1≤i≤B

|ri,i ([H1FM1 · · ·HqFMq · · ·HQFMQ ])|, (17)

which shows that a transmission mode can be firstly determined in (16) and then only the
partial set of precoders in PMq need be computed to find the precoder in (17). The procedure
is depicted in Table 2.

3.3 Efficient QR-Based MMSE V-BLAST Detection

In MU-MIMO precoding, the total number of data streams is at least Q, as mentioned in
Lemma 1. In this case, conventional QR-based detection may fail to separate the data streams
of different users under correlated channels because of the ill-conditioned channel matrix.
In [18,19], QR-based detection methods have been proposed to reduce the complexity of
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Table 2 Proposed tree search
based precoding with Q = 2 S.1 Precoders of each codebook are converted into binary tree

S.2 EMq is computed by SVD or GMD of Hq

S.3 EMS is used to determine the mode for respective users

S.4 FT,Mq ← search(Tree(:,:,Mq ), C(EMq ))

//C(EMq ): convert EMq to a number with constellation point

S.5 Find CMq ’s adjacent nodes of FT,Mq to be PMq

S.6 For i = 1 : CM1

S.7 For j = 1 : CM2

S.8 [Q, R] = qr([H1PM1(:, :, i)H2PM2(:, :, j)])
S.9 rmin(:, j) = min(abs(diag(R)))

S.10 end

S.11 [val(i), id(i)] = max(rmin)

S.12 end

S.13 [m_v,m_i ]=max(val)

S.14 FQ R = blkdiag(PM1(:,:,m_i), PM2(:,:,id(m_i)))

S.15 Structure node* search(node, P)

S.16 if node == null

S.17 return null

S.18 elseif node is a leave

S.19 return node

S.20 elseif node.data ≥ P

S.21 search(node.leftchild, data)

S.22 elseif node.data < P

S.23 serach(node.rightchild, data)

S.24 end

MMSE V-BLAST. These modified MMSE V-BLAST detectors are robust to ill-conditioned
channels and are suitable for the MU-MIMO precoded system. On the other hand, detection
ordering is essential in order to avoid error propagation. In this subsection, an efficient scheme
is introduced to implement QR-based MMSE V-BLAST detection. The proposed scheme can
avoid the Givens rotations as required in [18,19]. We first consider the QRD of the augmented
channel matrix:

H =
[ H

σvIB

]
=

[QF

QB

]
R = QR, (18)

where H = HFQ R, Q ∈ C (Mr+B)×B , R ∈ C B×B , QF ∈ C Mr×B and QB ∈ C B×B . The
transmitted signals in MMSE detection can be estimated as

x̂ = (HH H + σvIB)−1HH y =H†
[

y
0B

]
=R−1QH

F y, (19)

where H† = (HH H)−1HH
. Using (19), the interference cancellation in V-BLAST itera-

tions indexed by B, B − 1, . . ., 1 yields HB , HB−1, . . ., H1 with HB =H as described in
the following.

Given the minimum-norm row i with i ≤ B−m+1 in the mth iteration, 1 ≤ m ≤ B, the
ordered rows i, i+1, i+2, . . ., B−m, B−m+1 of R−1

B−m+1 with RB =R is permuted into

123
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the new order i+1, i+2, . . ., B−m, B−m+1, i . That is, we have J (B−m+1, i)R−1
B−m+1

with J (B −m + 1, i) being the permutation matrix with the minimum-norm row in the last
row:

[
R−1

B−m+1
R−1

B−m+1(i, :)

]

= J (B − m + 1, i)R−1
B−m+1, (20)

where R−1
B−m+1 = [R−T

B−m+1(1, :) . . . R−T
B−m+1(i − 1, :) R−T

B−m+1(i + 1, :) . . . R−T
B−m+1

(B − m + 1, :)]T , R−T
B−m+1(i, :) is the i th row of R−T

B−m+1, and R−T
B−m+1 is the inverse of

RT
B−m+1. In the m th iteration, we have

J (B − m + 1, i)(HH
B−m+1HB−m+1 + σ 2

v IB)−1J (B − m + 1, i)HH
B−m+1

= J (B − m + 1, i)R−1
B−m+1�B−m+1�

H
B−m+1R−H

B−m+1J(B − m + 1, i)HH
B−m+1

=
[R−1

B−m rB−m+1

0T
B−m rB−m+1

] [R−1
B−m rB−m+1

0T
B−m rB−m+1

]H

HH
B−m+1

=
[R−1

B−mR−H
B−m + rB−m+1rH

B−m+1 rB−m+1rB−m+1

rB−m+1rH
B−m+1 rB−m+1rB−m+1

]
HH

B−m+1, (21)

where �B−m+1 represnets a sequence of Givens rotations for the upper triangular matrix
R−1

B−m [19]. The nulling vector is then given by

gB−m+1 =
[

rB−m+1rH
B−m+1 rB−m+1rB−m+1

] HH
B−m+1. (22)

In “Appendix 2”, it is shown that rB−m+1 can be obtained by

rB−m+1 =
(

det(R−1
B−m+1R−H

B−m+1)

det(H−1
B−mH−H

B−m)

)1/2

, (23)

without resorting to the Givens rotations. Given rB−m+1, rB−m+1 can be obtained by

rB−m+1 = r−1
B−m+1GB−m+1(1 : B − m, B − m + 1), (24)

where GB−m+1 = J (B − m + 1, i)((HB−m+1)
H HB−m+1 + σ 2

v IB)−1J (B − m + 1, i). Using
(22), the estimated signal in the mth iteration is

x̃B−m+1 = slice(gB−m+1yB−m+1). (25)

and interference cancellation due to x̃B−m+1 is given by

yB−m = yB−m+1 − hB−m+1 x̃B−m+1, (26)

Finally, the QRD of the augmented channel matrix is updated according to
[HB−m

σvIB−m

]
=

[QB−m,F

QB−m,B

]
RB−m = QB−mRB−m . (27)

By repeating the steps in (20)–(27), the proposed scheme exploiting the matrix determinant
can implement the MMSE V-BLAST detection in an efficient manner and further improve
the detection performance. In particular, the proposed scheme requires

∑B−1
m=1 B − m + 1

multiplications in (22), which has a lower complexity than the scheme using the Givens
rotations which requires 1

2

∑B−1
m=1 (B − m + 1)3 multiplications [19].
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4 Performance Analysis

In this section, the proposed QR-based selection criterion in multi-mode precoding for MU-
MIMO is analyzed in 4.1. Detection performance, and 4.2. Computational complexity.

4.1 Detection Performance

In this subsection, the detection performance achieved with the proposed QR-based selec-
tion criterion is analyzed. We first show that the QR-based selection criterion has a smaller
distortion than the SV-based selection criterion [4] as follows.

Case 1: For B < Mt , when the number of substreams is given, the distortion between
the optimal precoder and the selected precoder [4,21] in the proposed QR-based selection
scheme can be expressed as

� = EH

{
d̃2

min(B, W )

B

[
min

1≤i≤B
r2

i,i (HEM )− max
FM∈FM

min
1≤i≤B

r2
i,i (HFM )

]}

≤ d̃2
min(B, W )

B
EH

[
λ

2
(H)

(
1− max

FM∈FM
min

1≤i≤B
r2

i,i (E
H
M FM )

)]

≤ d̃2
min(B, W )

B
EH

[
λ

2
(H)

(
1− max

FM∈FM
min

1≤i≤B
λ2

i (E
H
M FM )

)]
, (28)

where the optimal precoder EM satisfies ri,i (HEM ) = λ(HVM ) with λ(H) :=
(∏B

i=1 λi

(HVM ))1/B , VM consists of the first M columns of VH with H = U�V H being the SVD.
Equation (28) shows that the QR-based selection criterion has a smaller distortion than SV-
based selection criterion in [4] due to min

1≤i≤B
r2

i,i (E
H
M FM ) ≥ min

1≤i≤B
λ2

i (E
H
M FM ) [7].

Case 2: For B = Mt , the i th precoder matrix is generated using the following Householder
generating vector ui ∈ C Nt [22]:

FMt ,i = INt −
2ui uH

i

‖ui‖2
with FMt ,i ∈ FMt . (29)

The distortion between the optimal precoder and selected precoder is given by (28). Thus,
the efficacy of the proposed QR-based selection scheme can be confirmed and the associated
distortion can be bounded as depicted in (28) in the construction of the codebook.

4.2 Computational Complexity

In this subsection, the computational complexity of the QR-based (with both full and partial
search) [7] and SV-based multimode precoded systems [4] is investigated. The QR-based
system requires the functions of the QR-based precoder selection combined with QR detection
at the receiver. The SV-based system requires the functions of the SV-based precoder selection
combined with MMSE detection at the receiver. The SV-based selection criteria to find the
mode and precoder are similar to those found in (9)–(10). Table 3 presents the breakdowns of
complexity in terms of complex multiplications associated with these precoding schemes. It
can be noted in all schemes that the transmitter only requires multiplying the symbol vector by
the precoding matrix determined at the receiver via the limited feedback channel, involving
a complexity of N1 M1 + N2 M2 + · · · + NQ MQ , as shown in (1).
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Table 3 Computational complexity for various MU-MIMO precoding systems

Selection criterion +
detection

Complex multiplication
counts

QR-selection with
full or partial
search + QR
detection

Full search for precoder:

(B2 + B)/2
︸ ︷︷ ︸
QRD detection

+
∑

M∈M

Q∏

q=1

{NMq · (4M2
r B − 2Mr B2 − 2B3

3
+ Mr Mt B)}

︸ ︷︷ ︸
Complexity of full search for QRD of HF′

Partial search for precoder:

(B2 + B)/2
︸ ︷︷ ︸
QRD detection

+
∑

M∈M

Q∏

q=1

{CMq · (4M2
r B − 2Mr B2 − 2B3

3
+ Mr Mt B)}

︸ ︷︷ ︸
Complexity of partial search for QRD of HF′

Full search for precoder with EMS:

(B2 + B)/2
︸ ︷︷ ︸
QRD detection

+
Q∏

q=1

{NMq · (4M2
r B − 2Mr B2 − 2B3

3
+ Mr Mt B)}

︸ ︷︷ ︸
Complexity of EMSsearch for QRD of HFM

Q∑

q=1

(4N 2
q Mr + 8Nq M2

r + 9M3
r )+

B∑

j=1

(4 j + 1)

︸ ︷︷ ︸
SVD+ GMD ofHq for EMS

QR-based
MMSE
V-BLAST
detection

1.Ordering in (20):
∑B−1

m=2 m(B − m + 1)2

2. Nulling vector computation:
∑B−1

m=1 4(Mr + B − m + 1)2(B − m + 1)
︸ ︷︷ ︸

Computational complexity of R−1
B−m+1

− 2(Mr + B − m + 1)(B − m + 1)2
︸ ︷︷ ︸

Complexity of QRD in (27)

+
∑B−1

m=1
(Mr Mt − 2

3
)(B − m + 1)

︸ ︷︷ ︸
Complexity of QRD in (27)

+∑B−1
m=2 (B − m + 1)3/3

︸ ︷︷ ︸
LDLH of GB−m+1

+

∑B−1

m=1
B − m + 1

︸ ︷︷ ︸
Complexity of (23)

+
∑B−1

m=1
m(B − m + 1)2

︸ ︷︷ ︸
(22)

3. Interference cancellation:
∑B−1

m=2 B − m + 1

SV-selection with
full search +
MMSE detection

1.Full search for precoder:

34M2
r B + M3

r + 7M2
r︸ ︷︷ ︸

MMSE detector

+
∑

M∈M

Q∏

q=1

{NMq · (4B2 Mr + 8M2
r B + 9M3 + Mr Mt B)}

︸ ︷︷ ︸
Complexity of full search for SVDs of HF′

Complexity of multi-mode precoding at transmitter is N1 M1 + N2 M2 + · · · + NQ MQ
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(i) With a full search in the QR-based system, the receiver involves precoder selec-
tion and the corresponding QR detection. The precoder selection involves a total of
�M∈M(NM1 · NM2 · . . . NM Q) QRDs of the effective channel matrix as shown in

(3), each involving a complexity of 4M2
r B − 2Mr B2 − 2B3

3 [24] (for QRD of HFM )

plus Mr Mt B (for computing HFM ). The detection part requires only a complexity of
(B2 + B)/2 since the same QRD used to identify the precoder is available for symbol
detection.

(ii) For EMS, the receiver requires first determining a reference precoder by SVD (B < Mt )
involving about a complexity of 4B2 Mr + 8B M2

r + 9M3
r [23], or GMD (B = Mt )

involving about a complexity of 4B2 Mr+8B M2
r +9M3

r +
∑B

j=1 4( j + 1). The Givens

rotations require about a complexity of
∑B

j=i 4( j + 1) for the worse case [19].
(iii) For tree search, the precoder selection requires a total of �M∈M(CM1 ·CM2 · . . .CM Q)

QRDs of the effective channel matrix as in (3), each having a complexity of 4M2
r B −

2Mr B2− 2B3

3 (for QRD of HFM ) plus Mr Mt B (for computing HFM ). The complexity
of a binary search is about log2 N Mq for the worse case. The complexity for precoders
converted to a binary search tree can be neglected since precoders of the codebook are
known before transmission.

(iv) For QR-based MMSE V-BLAST detection in Table 3, a complexity of
∑B−1

m=2 m(B −
m+1)2 for ordering, a complexity of 4(Mr+B)2 B−2(Mr+B)B2−2B3/3+Mr Mt B
for the QRD of H and a complexity of B3/3 + B for computing the inverse term in
(19) by using LDLH are required, respectively.

(v) For SV-based systems, the receiver needs to do precoder selection and the corresponding
MMSE detection. The precoder selection involves a total of �M∈M(NM1 · NM2 ·
. . .NM Q) SVDs of the effective channel matrix, each having a complexity of 4B2 Mr +
8M2

r B+9B3 [24] (for SVD of HFM ) plus Mr Mt B (for computing HFM ). The MMSE
detection needs a complexity of 34M2

r B + M3
r + 7M2

r .

As anticipated, Table 3 shows that with the reduction of QRD computations, the EMS and
tree search schemes effectively reduce the computational complexity substantially.

5 Simulation Results

This section uses several numerical examples to demonstrate the bit error rate (BER) perfor-
mance of the proposed schemes for multi-mode precoding in an uplink MU-MIMO system.
The considered codebooks are obtained from [25] (for B < Mt ) and [22] (for B = Mt ),
respectively. For a fair comparison, all precoders are properly normalized in accordance with
F1, F2/

√
2 and F4/2 for Mq = 1, Mq = 2 and Mq = 4, respectively; so the total transmit

power is maintained equal for all transmission modes. This multi-mode precoding system
with feedback informs the transmitter of the determined precoder assuming the perfect CSI
at the receiver. Assuming a Ricean channel, Hsp indicates the specular component that is
spatially deterministic from one antenna to another, and Hsc indicates the scattered compo-
nent that varies randomly from one antenna to another (Rayleigh-distribution). The channel
response is thus given by [26]

H =
√

κ
κ + 1Hsp +

√
1

κ + 1
Hsc, (30)

where the Ricean factor κ denotes as the deterministic-to-scattered power ratio; the channel
is rich-scattered as κ → 0 and the channel is strongly correlated as κ →∞. The examples
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Fig. 2 BER versus SNR for an SU single mode precoded MIMO system (M = {1}, {2} and {4}) with
Mt = Mr = 4, N1 = N2 = 64, N4 = 16 and W = 4 bits/symbol. a κ = 0; b κ = 10

κ = 0 and κ = 10, respectively, correspond to the channels with independent fading and
being almost light-of-sight. In the following, we evaluate the proposed schemes in 5.1 Detec-
tion performance of SU-MIMO precoding with EMS and 5.2 Detection performance of
MU-MIMO precoding.

5.1 Detection Performance of SU-MIMO Precoding with EMS

In this set of simulations, the effectiveness of mode selection is investigated. SU-MIMO
precoding with Mt = Mr = 4, Q = 1 and W = 4 bits/symbol is considered, and both the
single mode precoder and multi-mode precoder with EMS are assessed.

Case 1: we consider single mode precoding with M = {1}, {2} and {4}, respectively,
and demonstrate the performance of the QR-based selection criteria via (9) (QR, full) in
conjunction with QR detection, and via SV-based selection criteria (SV, full) in conjunction
with MSE detection at [4] for κ = 0 and κ = 10. With a well-conditioned channel by κ = 0,
Fig. 2a shows that M = 2 provides the best detection performance compared to others. This
is because the system is able to support two effective spatial channels with a smaller singular
value spread. On the other hand, with an ill-conditioned channel by κ = 10, Fig. 2b shows that
M = 2 provides worse detection performance than M = 1 leading to the opposite trend to
Fig. 2a. For the correlated channel with κ = 10, M = 1 (beamforming) would naturally be the
best strategy to adopt since the SU-MIMO system is only able to support one effective spatial
channel with a large singular value spread. In both cases, M= 4 gives the worst performance
because the system cannot reliably support four spatial channels. It is noteworthy that for the
optimal mode, the proposed QR-based selection criteria with QR detection results in a similar
detection performance compared to the more complicated SV-based selection criterion with
MMSE detection, confirming the effective bound for mode/precoder selection described in
Sect. 4.1.

Case 2: we consider multi-mode precoding with M = {1, 2, 4}, and evaluate the perfor-
mance of the QR-based selection criteria via (9)–(10) (MM, QR, full) and EMS in (12)-(13)
(MM, QR, EMS) in conjunction with QR detection, and SV-based selection criterion (MM,
SV, full) in conjunction with MMSE detection [4]. With κ = 0, Fig. 3a shows that M = 2
is selected for this channel condition confirming the result in Fig. 2a. With κ = 10, Fig. 3b
shows that M = 1 (i.e., beamforming) is selected for this correlated channel confirming the
result in Fig. 2b. In both cases, the proposed EMS scheme has nearly the same detection per-
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Fig. 3 BER versus SNR for an SU multi-mode precoded MIMO system (M = {1, 2, 4}) with Mt = Mr =
4, N1 = N2 = 64, N4 = 16 and W = 4 bits/symbol. a κ = 0; b κ = 10

Table 4 Complex multiplication counts of QR- and SV-based SU-MIMO precoded systems

Selection criteria (MM, QR, Full) (MM, QR, EMS) (MM, SV, Full)

Multiplications 14,803 8,283 61,744

formance compared to the full search schemes, confirming the effectiveness of the reduced
complexity mode selection scheme described in Sect. 3.1.

Table 4 compares the counts of complex multiplications per execution of the proposed (full
and EMS) and SV-based precoded systems with the previous simulation setting. As observed,
the QR-based scheme employing EMS can reduce the overall computational complexity
(precoder selection plus detection) by about 45 and 87 % compared to QR-based full and SV-
based full schemes, respectively. This reduction in complexity confirms the previous results
summarized in Table 3.

5.2 Detection Performance of MU-MIMO Precoding

In this set of simulations, MU-MIMO multi-mode precoding with Mt=Mr =8, Nq=Wq=
4, Q=2, Mq ∈ {1, 2, 4} and W = 8 bits/symbol is considered, and both schemes with full
precoder search (NM1 = NM2 = 64 and NM4 = 16) and tree search (CM1 = CM2 = 3 and
CM4 = 2) are assessed.

Case 1: we evaluate the multi-mode detection performance of the QR-based selection
criteria via (9)–(10) (MM, QR, Full) and via the tree search summarized in Table 2 (MM,
QR, Tree) in conjunction with QR detection, and SV-based selection criterion (MM, SV, Full)
in conjunction with MMSE detection [4]. The proposed EMS is also incorporated to give the
result (MM, QR, EMS, Tree). With a well-conditioned channel by κ = 0, Fig. 4a shows that
the QR-based selection criterion (MM, QR, Full) has a better detection performance than
SV-based selection criterion due to a smaller distortion bound as described in Sect. 4.1. With
the large singular value spread by κ = 10, Fig. 4b shows that the proposed QR-based scheme
has a slightly worse detection performance due to the error propagation with a poor detection
ordering. To remedy this, the effect of column-ordering will be demonstrated in the next set
of simulations.

Figure 4 also shows that the proposed QR-based selection criterion via full mode selection
and tree search (MM, QR, Tree) and EMS with tree search (MM, QR, EMS, Tree) maintains
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Fig. 4 BER versus SNR for an MU multi-mode precoded MIMO system with Mt = Mr = 8, Q = 2 and
Wq = Nq = 4 bits/symbol. a κ = 0; b κ = 10

Table 5 Complex multiplication counts of QR- and SV-based MU-MIMO precoded systems

Selection criterion (MM, QR, Full) (MM, QR, Tree) (MM, QR, EMS, Tree) (MM, SV, Full)

Multiplications 17,978,118 61,058 23,302 64,089,836

a reliable detection performance compared to the full search scheme, though a slight drop is
observed.

Table 5 compares the complex multiplication counts per execution of the proposed (full,
tree search and EMS) and SV-based precoded systems in the previous simulation setting. As
observed, the QR-based scheme employing EMS and tree search (MM, QR, EMS, Tree) can
reduce the overall computational complexity (precoder selection plus detection) by about
99.9 and 99.9991 % compared to QR-based and SV-based full schemes, respectively. This
reduction in complexity confirms the previous results summarized in Table 3.

Case 2: we evaluate the multi-mode detection performance of the QR-based selection
criteria via (9)–(10) (MM, QR, Full) combined with QR detection, the proposed QR-based
MMSE V-BLAST detection (MM, QR, Full, Ordering) in (18)–(27), and SV-based selection
criterion (MM, SV, Full) combined with MMSE detection [4]. In MU-MIMO precoding,
detection ordering is essential for an ill-conditioned channel because the total number of data
streams is at least two, as mentioned in Lemma 1. In this case, the effect of error propagation
will degrade the detection performance as illustrated in Fig. 4b. With the proposed QR-
based MMSE V-BLAST detection incorporated, the results in Fig. 5 show that the BER
performance of the QR-based precoder is effectively improved. In particular, Fig. 5b shows
that the proposed QR-based MMSE V-BLAST detection overcomes the error propagation
problem in ill-conditioned channels.

6 Conclusion

In this paper, we propose efficient QR-based schemes for multi-user multi-mode precoding
in limited feedback MIMO systems. The MU-MIMO precoding is developed which takes
advantage of the overall precoder design among users in conjunction with QR detection. EMS
and tree search strategies are also suggested to further reduce the complexity of the precoder
selection procedure. To improve the detection performance effectively in correlated channels,

123



984 C.-H. Pan, T.-S. Lee

0 5 10 15 20

SNR (dB)

MM,SV,Full
MM,QR,Full
MM,QR,Full,Ordering

0 5 10 15 20 25 30

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

MM,QR,Full
MM,SV,Full
MM,QR,Full,Ordering

(a) (b)

Fig. 5 BER versus SNR for an MU multi-mode precoded MIMO system with Mt = Mr = 8, Q = 2 and
Wq = Nq = 4 bits/symbol. a κ = 0; b κ = 10

an efficient QR-based MMSE V-BLAST detection scheme is proposed. Performance analysis
and simulation results confirm that the proposed efficient QR-based precoding and detection
schemes can effectively optimize the error probability with a very lower computational com-
plexity. The proposed precoded system is a promising solution for practical MIMO wireless
communication systems for which implementation complexity at the mobile station is of
major concerns.
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Appendix 1: Proof of Theorem 1

Proof With EMq = VMq for Mq < Nq , the free distance between two symbols for the
(Mq)th mode is given by

dfree(Hq EMq ) = min
sq ,cq∈χ Mq ,sq �=cq

||HqEMq (sq − cq)|| = min
sq ,cq∈χ Mq ,sq �=cq

||�Mq (sq − cq)||

= min
1≤i≤Mq

|rq
i,i (HqEMq )| · dmin(Mq , Wq), (31)

where (31) holds due to property 1. With EMq = Pq for Mq = Nq , the free distance between
two symbols for the (Mq)th mode is given by

dfree(HqEMq ) = min
sq ,cq∈χ Mq ,sq �=cq

||HqEMq (sq − cq)|| = r · dmin(Mq , Wq), (32)

where (32) holds since r1,1 = r2,2 = · · · = rMq,Mq = r according to the property of GMD
of [15] and the proof is thus complete.
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Appendix 2: Proof of (22)

Proof By using Givens rotations in [19], J (B−m+1, i)R−1
B−m+1 are rotated into a triangular

matrix with a rotated sequence �B−m+1 = G(B−m+1, i)G(B−m+1, i+1) . . . G(B−m+
1, B−m), where the Givens rotation G(B−m+1, i) is used to eliminate the (B−m+1, i)th
non-zero entry of R−1

B−m+1. That is, the permutation and the Givens rotations for R−1
B−m

can be

J(B − m + 1, i)R−1
B−m+1 G(B − m + 1, i)G(B−m+1, i + 1) · · ·G(B−m + 1, B − m)︸ ︷︷ ︸

=�B−m+1

=
[R−1

B−m rB−m

0T
B−m rB−m+1

]
, (33)

where rB−m ∈ C B−m and R−1
B−m is determined for the next iteration [19]. Without Givens

rotations, rB−m+1 also can be computed by using the matrix determinant on (33) as

rB−m+1 =
(

det(R−1
B−m+1R−H

B−m+1)

det(R−1
B−mR−H

B−m)

)1/2

, (34)

where (34) holds due to det(R−1
B−mR−H

B−m) = det(H−1
B−mH−H

B−m), det(J(B−m+1, i)) = 1
and det(�B−m+1) = 1. Thus, proof is complete. ��
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