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Abstract

A method using the extended Kalman filter (EKF) is proposed to identify the hydraulic parameters in leaky aquifer systems both

with and without considering the aquitard storage. In the case without considering the aquitard storage, Hantush and Jacob’s

model combined with EKF can optimally determine the parameters for the leaky aquifer when analyzing the drawdown data.

Coupled with Neuman and Witherspoon’s model, the EKF is also employed to estimate the four parameters of aquifers. The

observed drawdown data may be either interpolated using the Lagrangian polynomial or recursively used while implementing the

EKF. The proposed method can identify the parameters, using part of the interpolated drawdown data or recursively used data, and

obtains results with good accuracy. In the field-pumping test, a long pumping time may not be necessary if the proposed method is

implemented on a computer, which is connected to pressure transducers and a data logger. In the process of parameter estimation,

the leakage coefficient changes marginally for the first few observations. This phenomenon reflects the fact that there is a time lag

between the start of pumping and the leakage effect on the drawdown. The analyses of the data uncertainty demonstrate that the

EKF approach is applicable for drawdown data even when it contains white noise or temporal correlated noise. Finally, the choice

between Hantush and Jacob’s model and Neuman and Witherspoon’s model depends on the hydrogeological condition of the

aquifer system indicated in the analyses of the model uncertainty. Hantush and Jacob’s model is shown to be a good choice for

representing the leaky aquifer system if the aquitard storage is comparatively small.
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1. Introduction

Hydrogeologic parameters are very important in

site characterization, so groundwater hydrologists
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often conduct pumping tests to determine hydrogeo-

logic parameters, such as hydraulic conductivity and

storage coefficient. These parameters are necessary

information for quantitative and/or qualitative

groundwater studies. In a leaky aquifer the semi-

pervious bed (also known as the aquitard), although of

very low permeability, may yield significant amounts

of water to the adjacent pumped aquifer. As time
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increased, leakage across the semi-impervious bed

may become appreciable and flow is not restricted to

the pumped aquifer alone. The additional water may

be derived from storage of the aquitard and adjacent

unpumped aquifers. Therefore, the leaky aquifer

must be viewed as part of a complex multiple

aquifer system.

Two approaches have been developed for dealing

with leaky aquifers, one based on the assumption that

the aquitard storage is negligible, and the other

considering the aquitard storage. Jacob (1946)

developed a partial differential equation for non-

steady radial flow in a leaky aquifer, assuming that

hydraulic head in the unpumped adjacent aquifer is

constant and the storage capacity of the aquitard is

negligible. These two assumptions greatly facilitated

mathematical treatment of the problem, and Jacob

used this approach to develop a large number of

solutions to various problems involving flow in

aquifers with vertical leakage.

Hantush and Jacob (1955) described non-steady

radial flow to a well in a fully penetrated leaky aquifer

under a constant pumping rate. In their model, the

aquitard is overlain by an unconfined aquifer, and the

main aquifer is underlain by an impermeable bed.

Their solution is herein called the three-parameter

model. Hantush (1960) also presented a modified

approach to include the effect of the aquitard storage.

Neuman and Witherspoon (1969) gave a solution

describing the drawdown of the lower and pumped

aquifer in a hydrogeologic system, which is

composed of two confined aquifers and one aquitard.

Their solution, which considers the effect of aquitard

storage and neglects the drawdown in the unpumped

aquifer, is called the four-parameter model. Both the

three-parameter and four-parameter models are also

mentioned in several recent textbooks, for example,

Dawson and Istok (1991) and Batu (1998).

In the three-parameter model, the graphical

method based on Hantush’s or Walton’s type curves

(Batu, 1998) requires data plotting work and individ-

ual judgment during the curve fitting procedure.

Therefore, errors may be introduced during the fitting

process. In the four-parameter model, the use of the

graphical matching method based on the Neuman and

Witherspoon’s model is practically impossible

since there will be several families of type curves.

Yeh (1987) used the non-linear least-squares
and finite-difference Newton’s method (NLN) for

identifying the parameters of the confined aquifer, a

method which has the advantages of high accuracy

and quick convergence. Yeh and Han (1989) sub-

sequently used NLN to determine the hydraulic

parameters of the leaky aquifers.

The Kalman filter was developed by R.E. Kalman

in the late 1950s, and its main applications have been

in control systems, tracking and navigation of all sorts

of vehicles, as well as predictive design of estimation

and control systems. Works using the Kalman filter

for hydraulic-parameter and water table-related

estimations may be divided into two categories. One

applies the Kalman filter in a linear system (e.g. Van

Geer and Van Der Kloet, 1985; Van Geer and te

Stroet, 1990; Van Geer et al., 1990; Lee et al., 2000;

Bierkens et al., 2001) and the other deals with

non-linear problems using the extended Kalman filter

(EKF) (e.g. Chander et al., 1981; Katul et al., 1993;

Bierkens, 1998; Cahill et al., 1999).

Chander et al. (1981) estimated the parameters for

both non-leaky and leaky aquifers by the iterated

EKF. For the leaky aquifer, the measurement equation

was a truncated form of Hantush and Jacob’s well

function (1955), which was suitable for small leakage

coefficient and/or large pumping time. Van Geer

and Van Der Kloet (1985) presented two linear,

filter-based schemes for parameter estimation in

groundwater flow problems. An optimal estimate

was simultaneously computed for the original state,

i.e., heads and the parameter state. Van Geer and te

Stroet (1990) combined MODFLOW with a filtering

framework and updated the prior estimates of

hydraulic parameter values using an off-line pro-

cedure, when minimizing the difference between the

actual head measurements and those predicted from

the MODFLOW–Kalman filter framework. Van Geer

et al. (1990) also adopted the idea of using a filter for

state estimation in the absence of significant dynamic

behavior and studied the applicability of the filter to a

relatively quickly reacting groundwater system.

Katul et al. (1993) applied the EKF to test the

determination of the hydraulic conductivity function

from a field drainage experiment. Bierkens (1998)

embedded the stochastic differential equation in the

EKF algorithm to calibrate the parameters and noise

statistics of the stochastic differential equation on a

time series of water table depths. Eigbe et al. (1998)
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reviewed the problems of using a filter with

groundwater flow models, and identified procedures

that would improve its efficiency and convenience for

field applications. Cahill et al. (1999) derived optimal

parameters for an effective large-scale hydraulic

conductivity field that considers both the temporal

and spatial variations of the moisture content. Lee

et al. (2000) presented a linear model to automatically

decide the terminal time of a pumping test and to

optimally identify the storage coefficient and aniso-

tropic aquifer transmissivities and of a confined

aquifer, using Cooper and Jacob’s equation and

Papadopulos’ approach. Bierkens et al. (2001)

modeled the spatiotemporal variation of shallow

water table depth with a regionalized version of an

autoregressive exogenous (ARX) time series model.

There, the regionalized ARX parameters were

estimated by embedding the regionalized ARX

model in a space–time Kalman filter.

Beck (1987) reviewed the role of uncertainty in the

identification of mathematical models of water quality

and in the application of these models to problem of

prediction. Eisenberg et al. (1989) selected five broad

classes of sources of uncertainty in the area of the

geologic repository for radioactive waste. The five

types of uncertainty they considered are: (1) systema-

tic and random error in measurement; (2) spatial

variations in geologic parameters; (3) conceptual

model uncertainties relative to geometrical configur-

ation, major features, and boundary conditions;

(4) physicochemical process modeling; and (5) future

states of nature. Freeze et al. (1992) presented an

overview and examples of the concepts and tech-

niques for dealing with uncertainty in the framework

of hydrogeological decision analysis. Wheater et al.

(2000) reviewed the problems of uncertainty in the

definition of aquifer properties and the scale-

dependence of dispersion with specific regard to

well-capture zones. Christiaens and Feyen (2001)

compared and evaluated the uncertainties resulting

from four ways to obtain soil hydraulic parameters

with respect to their resulting uncertainties on

different hydrological model outputs. Zheng and

Bennett (2002) listed three methods: sensitivity

analysis, Monte Carlo method, and the first-order

error analysis for evaluating uncertainty.

In this current study, the EKF is used to determine

the hydraulic parameters of the leaky aquifer system.
The state vector of the EKF is comprised of the

hydraulic parameters and a model, i.e. either Hantush

and Jacob’s model or Neuman and Witherspoon’s

model, is used as the measurement equation of the

EKF. The unknown parameters can be estimated on-

line as the measurement data come in and are

interpolated by the Lagrangian polynomial. Thus,

this proposed approach can be implemented on a

computer, which can be connected with a data logger

and a pressure transducer that measures the water

level in the observation well during the pumping test.

The desired hydraulic parameters can thus be

estimated in the field on-line and once stable estimates

of the parameters are obtained, then the pumping test

may be terminated.

The five objectives of this paper are: (1) to develop a

numerical approach based on the EKF method which

can identify the hydraulic parameters of leaky aquifer

in the field on-line; (2) to examine the accuracy and

applicability of Chander et al.’s approach (1981) while

using the simplified formula of the Hantush and

Jacob’s model (1955); (3) to determine four hydraulic

parameters using the EKF method based on Neuman

and Witherspoon’s model (1969); (4) to test the

applicability of the EKF approach if the drawdown

data contain white noise or temporal correlated noise;

(5) to compare the choice between either Hantush and

Jacob’s model or Neuman and Witherspoon’s model

for parameter estimation. The data measurement error

(herein treated as noise) is related to the problem of

measurement data uncertainty, and the choice among

various mathematical models for representing a target

aquifer belongs to the issue of model uncertainty.
2. Methodology

This section includes two parts: one is the basic

framework of the EKF and the other is the Lagrangian

polynomial. To implement EKF, the latter approach is

applied to interpolate the drawdown data with

non-uniform time intervals having a small and

uniform time interval.

2.1. Discrete extended Kalman filter

Consider a non-linear dynamical system

whose state vector is described as follows
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(Grewal and Andrews, 1993)

xk Z f ðxkK1; k K1ÞCwk (2.1)

where xk is the state vector of system at time step

k, f(xkK1,kK1) is the non-linear function of the

system, and wk is the state noise assumed to be

normally distributed with zero mean white (uncor-

related) sequence with known covariance Qk. Note

that Qk is assumed to be a zero vector throughout

the filtering steps.

For computing the predicted state estimate, the

non-linear implementation equations for the state

vector can be described as

x̂kðKÞ Z f ðx̂kK1ðCÞ; k K1Þ (2.2)

where x̂kðKÞ denotes the a priori estimate at k step and

x̂kðCÞ epresents the a posteriori estimate at kK1 step.

A measurement model of system can be described

as (Grewal and Andrews, 1993)

zk Z hðxk; kÞCyk (2.3)

where h(xk,k) is the function for the measurement

system and zk is the measurement vector at time step k.

The measurement noise yk is assumed to be a white

sequence with known covariance structure Rk. Note

that the covariance matrix Rk is assumed constant

throughout the filtering process.

As in Eq. (2.2) for computing the predicted

measurement, the non-linear implementation equation

for the measurement is

ẑk Z hðx̂kðKÞ; kÞ (2.4)

where ẑk is predicted measurement vector.

This method requires an initial estimate of the

process at some point in time step k, and that estimate

is based on the knowledge about the process. The

error covariance matrix associated with x̂kðKÞ is

also assumed to be known. The prior estimation

error ek(K)is defined as xk K x̂kðKÞ: Initially, the a

priori error covariance matrix of xk K x̂kðKÞ; denoted

as Pk(K), is

PkðKÞ Z E½ekðKÞeT
k ðKÞ�

Z E b ðxk K x̂kðKÞÞðxk K x̂kðKÞÞT c (2.5)

With the assumption of the a priori error estimate

x̂kðKÞ; the measurement zk is used to improve
the a priori estimate, as follows

x̂kðCÞ Z x̂kðKÞC �Kkðzk K ẑkÞ (2.6)

where �Kk is defined as the Kalman gain and x̂kðCÞ is

the updated estimate at step k.

The Kalman filter uses minimum mean-square

error as the performance criterion to find the particular
�Kk that yields an updated estimate. Therefore, the

particular Kalman gain that minimizes the mean-

square estimation error is

�Kk Z PkðKÞHT
k ½HkPkðKÞHT

k CRk�
K1 (2.7)

where the measurement matrix Hk is approximated by

the derivative of estimated measurement ẑk from

Eq. (2.4) with respect to each of the state vector. It can

be expressed as

Hk z
vhðx; kÞ

vx
xZx̂kðKÞ

�� (2.8)

Therefore, �Kk can be estimated with known Pk(K),

Hk, and Rk. Detailed derivations of the minimization

process may be found in Grewal and Andrews (1993).

The error covariance matrix derived from Eq. (2.5)

can also be expressed as

PkðKÞ Z FkK1PkK1ðCÞFT
kK1 CQkK1 (2.9)

where FkK1 is the state transition matrix. This may be

expressed by the derivative of the state vector

estimation equation from Eq. (2.2) as

FkK1 z
vf ðx; k K1Þ

vx
xZx̂kK1ðKÞ

�� (2.10)

The error covariance matrix associated with the

updated (a posteriori) estimate can be written as

PkðCÞ Z fI K �KkHkgPkðKÞ (2.11)

where Pk(C) denotes the error covariance updated by

the Kalman gain and the prior error covariance and I

represents an identity matrix.

Using Eqs. (2.2), (2.4), (2.6), (2.7), (2.9), and

(2.11), the recursive process of EKF is then

established.
2.2. Lagrangian polynomial

Data where the x-values are not evenly spaced

often occur as the result of experimental observations
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or when historical data are examined. The Lagrangian

polynomial is perhaps the simplest way used to

interpolate the unevenly spaced data.

The general form of Lagrangian polynomial is

(Gerald and Wheatley, 1994)

PnðxÞ Z
XnC1

iZ1

XnC1

i Z 1

isj

x Kxi

xi Kxj

f ðxiÞ (2.12)

It is easy to see that the Lagrangian polynomial

passes through each of the points used in its

construction. Note that this study utilizes a second-

degree Lagrangian polynomial to generate interp-

olated data points.
3. Application of discrete EKF

This section illustrates how the Kalman filter is

coupled with three- and four-parameter models to

identify the hydraulic parameters. The difference

between the present study and Chander et al. (1981)

on the three-parameter model is clearly demonstrated.

The three parameter values, i.e. transmissivity T,

storage coefficient S, and leakage coefficient L are

optimally determined when using the three-parameter

model coupled with EKF to analyze the measurement

drawdown data. Likewise, the four-parameter model,

which has an additional parameter j accounting for

the effect of the aquitard storage, combined with

EKF can estimate four hydraulic parameters in a

similar procedure.

3.1. Leaky aquifer without storage effect

in an aquitard

3.1.1. Hantush and Jacob’s model

With reasonable initial guess values for T, S, L,

PkK1(C), and Rk, the algorithm of EKF combined

with the Hantush and Jacob’s model can determine the

best-fit T, S, and L at each identification step. In their

model, the aquitard, with a negligible storage, is

overlain by an unconfined aquifer, and the main

aquifer is underlain by an impermeable bed. The

model of Hantush and Jacob describing the drawdown

cone within a leaky aquifer in response to
the pumping as a function of radial distance and

time is (Hantush and Jacob, 1955, p.98)

s Z
Q

4pT
W u;

r

B

� �
(3.1)

where s is drawdown, r is the distance between

pumping well and observation well, u is dimension-

less variable defined as r2S/4Tt, K 0 is the vertical

conductivity of the aquitard, b 0 is thickness of the

aquitard, r/B is the leakage coefficient L and B is

defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK 0=b0Þ=T

p
; Q is the pumping rate, and

W(u,r/B) is the leaky well function.

The leaky well function W(u,r/B) can be

expressed as

W u;
r

B

� �
Z

ðN

u

1

y
exp Ky K

ðr=BÞ2

4y

� 	
dy (3.2)

where y is a dummy variable. Since the right hand side

of Eq. (3.2) is an integral form, a numerical approach

is required to evaluate the integration. Both the

Laguerre quadrature formula and Gaussian quadrature

formula (Carnahan et al., 1969) are employed to

evaluate the values of leaky well function with the

accuracy to the fourth decimal. The Laguerre

integration used to approximate an integral function

is usually expressed asðN

0
f ðxÞeKx dx Z

Xn

iZ1

wif ðxiÞ (3.3)

where the wi is weighting factor and xi is correspond-

ing to zero of the nth-order Laguerre polynomials. For

a small value of u, the Laguerre quadrature formula

cannot give the desired accuracy. Therefore, the

Gaussian quadrature formula is employed to evaluate

the integration of Eq. (3.2) when u is small.

3.1.2. Dynamic and measurement models for Hantush

and Jacob’s model

Parameters T, S, and L, considered as time

invariants during the pumping test, constitute the

state vector which is to be estimated at each time step

The state vector in Eq. (2.2) may be expressed as

x̂kðKÞ Z T S L

 �T

(3.4)

After each time step, the renewed state vector,

Eq. (3.4), can be substituted into Hantush and

Jacob’s model, therefore forming the estimated
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drawdown. The estimated measurement from

Eq. (2.4) may be combined with Eqs. (3.1) and

(3.2) and computed as

ẑk Z
Q

4pT

ðN

u

1

y
exp Ky K

ðr=BÞ2

4y

� 	
dy (3.5)
3.1.3. Linear approximation equations for Hantush

and Jacob’s model

The first-order approximation for the transition

matrix for Eq. (2.10) is given as

FKK1 z

vT

vT

vT

vS

vT

vL
vS

vT

vS

vS

vS

vL
vL

vT

vL

vS

vL

vL

2
666664

3
777775 (3.6)

Based on Eq. (3.13), Pk(K) can be estimated with

known transition matrix FkK1. Since the state of the

system is described by the parameters, which are

mutually independent, thus, FkK1 in Eq. (3.6) is an

identity matrix. Assuming that QkK1 is equal to zero,

Eq. (2.9) can be reduced to

PkðKÞ Z PkK1ðCÞ (3.7)

To update the hydraulic parameters in Eq. (2.7), the

Kalman gain �Kk; estimated by known Hk and the prior

covariance matrix Pk(K), is required. The input zk in

Eq. (2.6) is the drawdown data generated by the

Lagrangian polynomial. The measurement matrix Hk

from Eq. (2.8) consists of three elements, which are the

partial derivatives of the estimated drawdown ẑk with

respect to T, S, and L, respectively; that is

Hk z vẑk

vT
vẑk

vS
vẑk

vL

h iT

(3.8)

The posterior covariance matrix Pk(C) is then

calculated by inserting the Kalman gain and prior

covariance matrix Pk(K). The posterior covariance

matrix is used recursively as the prior covariance at the

next time step.

One of the criteria to stop this recursive process is

TOLT Z jTðk C1ÞKTðkÞj (3.9)

where TOLT is the tolerance criterion for T.

The tolerance criterion TOLs for S and TOLL for

L can be expressed in a similar way. When all
the criteria are met, the recursive process is

terminated and the optimal parameters may then be

determined.
3.2. Leaky aquifer with storage effect in aquitard

Here, the EKF method along with Neuman and

Witherspoon’s model (1969) is applied to leaky

aquifer considering the effect of aquitard storage

Given the initial guesses of parameters, error

covariance, and measurement noise, the four best-fit

parameters are identified when the convergence

criteria are met.

Neuman and Witherspoon presented a closed-

form solution for the problem of flow to a well in a

confined infinite radial system composed of two

confined aquifers that are separated by an aquitard

(Neuman and Witherspoon, 1969). Differing from

Hantush and Jacob’ work (1955), Neuman and

Witherspoon’s model includes the effect of the

aquitard storage on the drawdown of the pumping

aquifer. Their mathematical model may be

written as

s Z
Q

2pT

ðN

0

1

y
½1 KexpðKy2�tDÞ�J0½wðyÞ�dy (3.10)

where �tD Z tDL2=16j2, tDZTt/r2S, LZr/B, jZb/L,

BZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb0=K 0

p
; bZr

ffiffiffiffi
S0

p
=4B

ffiffiffi
S

p
; and w2ðyÞZL2y2=16j2

KL2y cot y. Note that Eq. (3.10) is valid for all

values of time intervals and the Bessel function

J0[w(y)] must be set to zero when w2(y)!0.

The state vector of Eq. (2.2) at each time step is

x̂kðKÞ Z T S L j

 �T

(3.11)

Note that those four parameters are also taken as

time invariants during the pumping test. After each

time step, the renewed state vector x̂kðKÞ from

Eq. (3.11) can be substituted into Neuman and

Witherspoon’s model, consequently forming the

estimated drawdown ẑk: The estimated measure-

ment ẑk from Eq. (2.4) is expressed as

ẑk Z
Q

2pT

ðN

0

1

y
½1 KexpðKy2�tDÞ�J0½wðyÞ�dy (3.12)

The measurement ẑk estimated by Eq. (3.12) is

used in Eq. (2.6) to obtain the updated state vector.

The first-order approximation for the transition
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matrix of Eq. (2.10) is given as

FkK1 z

vT

vT

vT

vS

vT

vL

vT

vj
vS

vT

vS

vS

vS

vL

vS

vj
vL

vT

vL

vS

vL

vL

vL

vj
vj

vT

vj

vS

vj

vL

vj

vj

2
66666666664

3
77777777775

(3.13)

The relation between Pk(K) and PkK1(C) can also

be described by Eq. (3.7). Both Hk and Pk(K)

should be calculated in advance by Eqs. (2.8) and

(2.9), respectively. The input zk is the measurement

data produced by the Lagrangian polynomial. The

measurement matrix Hk is composed of vẑk=vT ;

vẑk=vS; vẑk=vL; and vẑk=vj; which can be approxi-

mated by the finite-difference formula.

The posterior covariance matrix Pk(C) is then

updated by the Kalman gain and the prior covariance

matrix PK(K). The updated covariance Pk(C) can

function as the prior covariance in the next time step

for the recursive process.

The tolerance criteria of the four-parameter model

are the same as those of the three-parameter model,

except that the additional criterion, e.g. TOLj, is for

the parameter j.
3.3. Evaluation of Hk

In Hantush and Jacob’ model (1955), the value of

the drawdown depends on the decision variables, T, S,

and L, which may be written as

s Z
Q

4pT
wðT ; S;LÞ (3.14)

where the leaky well function w(T,S,L) represents the

integral in Eq. (3.2).

The derivatives vẑk=vT ; vẑk=vS; vẑk=vL, are,

respectively,

vẑk

vT
ZK

Q

4pT2
w C

Q

4pT

vw

vT
(3.15)

vẑk

vS
Z

Q

4pT

vw

vS
(3.16)
vẑk

vL
Z

Q

4pT

vw

vL
(3.17)

where vw/vT is approximated by forward

differencing as

vw

vT
Z

wðT CDT ; S; LÞKwðT ; S; LÞ

DT
(3.18)

and the other partial derivatives can also be expressed

in a similar manner. The increment shown in the

denominator of Eq. (3.18) may be approximated by

the parameter value times a factor of 10K3 or less,

e.g. DTZ10K3T

In the four-parameter model, the values of draw-

down depend on the decision variables, T, S, L, and j,

which may be written as

s Z
Q

2pT
GðT ; S;L;jÞ (3.19)

where the function G(T,S,L,j) represents the integral

in Eq. (3.10).

In this model, three derivatives vẑk=vT ; vẑk=vS; and

vẑk=vL are, respectively, given in Eqs. (3.14)–(3.16)

and the additional derivative vẑk=vj is

vẑk

vj
Z

Q

2pT

vG

vj
(3.20)

where vG/vT is approximated by forward

difference as

vG

vT
Z

GðT CDT ; S;L;jÞKGðT ; S; L;jÞ

DT
(3.21)

and the other partial derivatives vG/vS, vG/vL, and

vG/vj are also expressed in a similar manner.
4. Two practical problems

4.1. Problems in Chander et al. (1981)

Chander et al. (1981) used the Kalman filter to

identify the parameters of confined and leaky aquifers.

For the leaky aquifer, they combined the Kalman filter

with approximate drawdown function without con-

sidering the effect of the aquitard storage. Their well

function was a truncated form of Eq. (3.2) and may be

only suitable for long pumping time or/and small



Fig. 2. The pumping test data of Sridharan et al. (1987) and the

estimated drawdown based on Neuman and Witherspoon’s model

(1969) for the leaky aquifer with considering the storage effect.

Fig. 1. The pumping test data of Cooper (1963) and the estimated

drawdown based on Hantush and Jacob’s model (1955) for the leaky

aquifer without considering the storage effect.
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leakage coefficient. The drawdown equation that they

used was

s Z
Q

4pT
2K0

r

L

� �
Kw

Tt

L2S

� �� 	
(4.1)

This equation may be expanded as
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The results from applying Chander et al.’s method may

have significant errors when the pumping time is short

or/and the leakage coefficient is large. In addition,

there are two drawbacks in their study. First, laborious

works are required to estimate the initial guesses before

applying the EKF. The guess values of T and S were

determined by using a truncated Theis equation

(Chander et al., 1981, Eq. (4)) to the first two

drawdown data. The guess value of L was calculated

by using the last available observation and applying the

approximate steady-state drawdown relationship for

the leaky aquifer as used in the Hantush I method

(Kruseman and de Ridder, 1970). These strategies may

not yield better initial estimates and lose the superiority

of on-line estimation of EKF over other parameter

estimation methods. Second, Chander et al. (1981) did

not specify stopping criteria for their EKF algorithm.

It seems to us that Figs. 1 and 2 in their manuscript

indicate that the EKF identification process terminated

at the time when running out of the observation data.

Under this circumstance, the estimated parameters are

not warranted to have desired accuracy. The EKF

usually takes more than 200 steps to get convergent

results, as shown later in this study. In reality, the

number of steps needed when using the EKF to

determine the hydraulic parameters depends on those

guess values mentioned above. The available observed

pumping data given in Chander et al.’s study is no more

than 12. Thus, the EKF may run out of data very

quickly before the hydraulic parameters converge to

satisfactory results.
4.2. Problem of small amount of drawdown data

Usually, the changes for the estimated para-

meters and the elements of error covariance matrix



Table 1

Time–drawdown data obtained from three observation wells

(Cooper, 1963, p. 31)

Time (min) Observation well (m)

1 2 3

0.2 0.536 0.003 0.000

0.5 0.838 0.043 0.000

1 1.094 0.137 0.006

2 1.298 0.284 0.043

5 1.609 0.536 0.168

10 1.798 0.713 0.302

20 1.972 0.869 0.445

50 2.109 1.009 0.594

100 2.167 1.067 0.640

200 2.195 1.070 0.643
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of the state vector in each step of the EKF are fairly

small Therefore, the parameter estimation using EKF

usually requires the preparing action of a large amount

of the drawdown data. However, the number of field

measurements is usually limited, say less than 50.

Two approaches suggested here to solve this problem

are: (1) applying the Lagrangian polynomial to

interpolate the field measurement data with smaller

time intervals, and (2) recursively using the field

measurement data during the step-wise identification

process. The first approach is suitable to be used for

on-line measurement of the field-pumping test,

whereas the second approach is recommended to be

applied for an existing drawdown data set.

500 2.198 1.073 0.643

1000 2.198 1.073 0.643

The unit of drawdown is meter.

Table 2

Pumping test data (Sridharan et al., 1987, p. 170)

Time (min) Drawdown (m)

5 0.3

28 0.95

41 1.1

60 1.25

75 1.34

250 1.75

500 1.9

700 1.95

970 1.98

1000 1.99

1200 1.99

QZ136.26 m3/day; rZ29.00 m.
5. Data analyses and discussion

5.1. Two sets of pumping test data

Two sets of pumping test data are chosen, one

for the three-parameter model and the other for

the four-parameter model. Three time–drawdown data

sets measured from observation wells, as reported in

Cooper (1963) and cited by Lohman (1972, p.31,

Table 11), are selected for data analyses. The

distances between the pumping well and the obser-

vation wells 1, 2, and 3, are respectively, 30.48, 152.4,

and 304.8 m. The pumping rate Q is 5450.98 m3/day,

the thickness of the aquitard is 30.48 m and total

pumping time is 1000 min (16.67 h). The data set for

the four-parameter model is taken from Sridharan

et al. (1987). The distance between the observation

well and pumping well is 29.0 m and the pumping rate

Q is 136.26 m3/day. The total pumping time is

1200 min (20.00 h). These two sets of the pumping

test data are shown in Tables 1 and 2 and interpolated

using the Lagrangian polynomial.

The time intervals of the pumping test data are

normally non-uniform. A small and uniform time

interval, say 6 s (i.e. 0.1 min), was chosen when

applying the Lagrangian polynomial to interpolate

the data. In order to smooth the interpolation results,

the time coordinate (t) was transferred to the

logarithmic scale (log t) before interpolation and

then the second-degree Lagrangian polynomial

was employed to interpolate drawdown data for

the drawdown versus log t. At the beginning of
the pumping test, the first three drawdown data

points were utilized to generate interpolated data

between the first and third data points. Once a new

drawdown point is measured, the second, third, and

the new measured data point (i.e. the fourth data

point) were used to generate interpolated data

between the third and new data points. Such an

interpolation procedure can keep going on in the

field until the estimated parameters meet the

convergent criteria. For the data sets from Cooper

(1963) and Sridharan et al. (1987), the total numbers

of the interpolated drawdown data generated by the

Lagrangian polynomial are 10,000 and 12,000,

respectively. The interpolated time–drawdown data

are then ready for EKF identification process.
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5.2. Assessment for prediction errors

To assess the accuracy of the estimated

parameters or the goodness-of-fit of the estimated

drawdown to the observed drawdown, two error

criteria, mean error (ME) and standard error of

estimate (SEE), are used to calculate the prediction

errors between the observed and predicted draw-

downs. The ME is defined as

ME Z
1

n

Xn

iZ1

ei (5.1)

The principle of least-squares assumes that the

errors are normally distributed with zero mean and

constant variance (McCuen, 1985). When the ME

value is equal to or very close to zero, the

assumption that errors having zero mean will be

satisfied.
Table 3

Initial guess values for EKF and the estimated parameters and predictio

Cooper’s data (Cooper, 1963) for leaky aquifer without considering the e

Three-parameter model

Case no. Initial guesses for hydraulic parameters In

p

T S L T

1 1000 2.00!10K4 1.00!10K2 5

2 1000 2.00!10K4 1.00!10K1 5

3 1000 2.00!10K4 1.00!10K1 5

Case no. Estimated parameters P

T S L M

EKF on interpolated data

1 1257.9 9.09!10K5 4.82!10K2 K

2 1311.4 9.29!10K5 2.28!10K1

3 1228.0 1.00!10K4 5.08!10K1 K

EKF on recursively used data

1 1239.4 9.78!10K5 4.94!10K2 1

NLN

1 1239.1 9.80!10K5 4.94!10K2 K

2 1242.1 9.80!10K5 2.52!10K1

3 1215.2 9.70!10K5 5.12!10K1 K

Graphical method

1 1234.5 1.00!10K4 5.00!10K2 K
2 1234.5 1.00!10K4 2.50!10K1

3 1234.5 1.00!10K4 5.00!10K1

The convergence criteria for EKF are TOLTZ1.0!10K4, TOLSZ1.0!1
The SEE is defined as

SEE Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

iZ1

e2
i

s
(5.2)

where v is the degree of freedom, which is equal to the

number of observed data points minus the number of

estimate parameters.
5.3. Parameter identification for leaky aquifer without

considering the aquitard storage

The initial guesses of the aquifer parameters T, S,

and L are given in Table 3. For the initial error

covariance matrix, PkK1(C), the diagonal elements

could be assigned as, for example, 55,000, 1.0!10K9

and 1.0!10K6, for T, S, and L, respectively; while

and the off-diagonal elements of PkK1(C) are set to

zero. There is no specific rule to decide the initial
n errors when using EKF, NLN, and graphical method to analyze

ffect of aquitard storage

itial error covariance matrix for hydraulic

arameters

S L

5,000 1.00!10K9 1.00!10K3

5,000 1.00!10K9 2.00!10K2

5,000 1.00!10K9 1.00!10K2

rediction errors Step

E RMSE SEE

6.53!10K4 1.46!10K2 1.69!10K2 236

3.72!10K3 7.46!10K3 8.62!10K3 1508

2.44!10K4 3.42!10K3 4.09!10K3 7603

.56!10K4 1.15!10K2 1.33!10K2 14,656

1.10!10K4 1.15!10K2 1.33!10K2

4.98!10K4 4.93!10K3 5.71!10K3

1.90!10K4 3.22!10K3 3.72!10K3

2.15!10K4 1.19!10K2 1.38!10K2

2.55!10K3 9.10!10K3 1.05!10K2

2.33!10K3 4.13!10K3 4.77!10K3

0K8, and TOLLZ1.0!10K6.
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diagonal values. However, since PkK1(C) is equal to

the expected value of squared estimation error

E b ðx̂kK1ðCÞKxkK1Þðx̂kK1ðCÞKxkK1Þ
T c , a reasonable

range of initial guess for PkK1(C) can be easily made.

With the computation of EKF method to analyze the

measured drawdown data obtained from observation

well 1, the values of PkK1(C) are minimized, as are the

estimation errors at each time step. The measurement

covariance Rk is set to 10K5 and kept constant

throughout the identification process. Reasonable

magnitudes of the measurement error covariance

range from 10K4 to 10K6. Thus, the median value of

Rk is selected in this study. Given the initial guess

values for T, S, and L, along with the initial

error covariance matrix, EKF coupled with Hantush

and Jacob’s model can identify the hydraulic par-

ameters in a step-wise manner. The identification

process is terminated when the specified convergence

criteria are all satisfied, i.e. TOLT%10K4,

TOLS%10K8, and TOLL%10K6. The parameters,

i.e. transmissivity, storage coefficient, and leakage

coefficient, are successfully determined and achieve

acceptable accuracy. The estimated three hydraulic

parameters are TZ1257.9 m2/day, SZ9.09!10K5,

LZ4.82!10K2, and the related SEE value is

1.69!10K2 when analyzing the pumping test data in

the observation well 1, TZ1311.4 m2/day, SZ
9.29!10K5, LZ2.28!10K2, and the related SEE

value is 8.62!10K3 when analyzing the pumping test

data in the observation well 2, and TZ1228.0 m2/day,

SZ100!10K4, LZ5.08!10K2, and the related SEE
Table 4

Initial guess values for EKF and estimated parameters and prediction erro

et al. (1987) for leaky aquifer with considering the effect of aquitard stora

Method Initial guesses for hydraulic parameters

T S L j

50 2.00!10K4 2.00!10K1 5.00!10K4

Estimated parameters

T S L j

EKF on

interpolated

data

22.6 1.73!10K4 1.42!10K1 3.16!10K4

EKF on

recursively

used data

23.3 1.64!10K4 1.33!10K1 3.19!10K4

NLN 23.3 1.65!10K4 1.34!10K1 7.04!10K4

The convergence criteria for EKF are TOLTZ1.0!10K5, TOLSZ1.0!1
value is 4.09!10K3 when analyzing the pumping test

data in the observation well 3. The comparisons for the

results when using EKF, NLN, and the graphical

method to analyze drawdown data are listed in Table 3.
5.4. Parameter identification for leaky aquifer

with considering the aquitard storage

The initial guesses of the aquifer parameters T, S,

and L are listed in Table 4. With the off-diagonal

elements set to zero, the diagonal elements of initial

error covariance matrix PkK1(C) could have the

values, for example, of 100, 10K10, 10K4 and 4.0!
10K7, for T, S, L, and j, respectively. The values of

error covariance matrix PkK1(C) can be assigned

similarly to the descriptions in Section 5.3. The

measurement covariance Rk is also set to 10K5, and

is kept constant throughout the identification pro-

cess. With initial guesses for the hydraulic par-

ameters, the application of EKF method to Neuman

and Witherspoon’s model can identify the values of

those four hydraulic parameters step-by-step.

The four hydraulic parameters estimated by EKF

on interpolated data, also shown in Table 4, are

TZ22.6 m2/day, SZ1.73!10K4, LZ1.42!10K1

and jZ3.16!10K4; while the related prediction

error of the SEE value is 1.37!10K2. On the other

hand, the estimated transmissivity, which is the

most important hydraulic parameter, by the NLN is

23.3 m2/day and its SEE value is 1.06!10K2.
rs when using EKF and NLN to analyze data reported in Sridharan

ge

Initial error covariance matrix for hydraulic parameters

T S L j

100 1.00!10K10 1.00!10K4 4.00!10K7

Prediction errors

ME RMSE SEE Step

1.49!10K3 1.08!10K2 1.37!10K2 839

K5.28!10K5 9.04!10K3 1.13!10K2 2001

K1.54!10K3 8.50!10K3 1.06!10K2

0K9, TOLLZ1.0E!10K6, and TOLjZ1.0!10K9.
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5.5. Parameter identification while analyzing

the pumping data being recursively used

As mentioned above, the EKF method can be

applied to analyze the existing pumping data set in a

repeated manner In other words, the pumping data can

be repeatedly used once the EKF has gone through all

the available data. Again, the first data set of Cooper

(1963) and the pumping data of Sridharan et al. (1987)

are chosen for parameter estimations using the

three-parameter and four-parameter models,

respectively. The analyzed results are also demon-

strated in Tables 3 and 4.

5.6. Discussion

Table 3 lists the estimated parameters and predic-

tion errors when using EKF, NLN, and graphical

method to analyze Cooper’s data (1963) for leaky

aquifer without storage effect Compared with NLN

and graphical method, EKF on interpolated data can

quickly identify the parameters and achieve good

accuracy, using only part of the measured drawdown

data. The parameters, i.e. transmissivity, storage

coefficient, and leakage coefficient, are successfully

determined and achieve acceptable accuracy, com-

pared with those estimated by NLN as indicated in

Table 3 when analyzing Cooper’s three drawdown

data sets (1963). Note that both computer methods,

EKF and NLN, give slightly better estimation for the

hydraulic parameters judging from the prediction

error of the SEE value. The parameters for

observation well 1 is quickly determined and the

identification process takes less than 236 steps, i.e.

23.6 min of the pumping time to get convergent

results. An aquifer test with long pumping time is

usually required for leaky aquifers by conventional

graphical methods. The total pumping time for the

recorded data are 1000 min (16.67 h). However, a

long period of pumping time may not be necessary if

the EKF is employed. In this case, EKF can save

97.6% of the time required to obtain results from the

pumping test. The total numbers of steps for EKF to

get convergent values of parameters when analyzing

the drawdown data of the observation wells 2 and 3

are significantly larger than that of the observation

well 1. This reflects that a larger distance from the

observation well to the pumping well requires a longer
observation time. Furthermore, it is found that the

estimate leakage coefficient for observation well 1

varies only marginally at the first few observations,

but changes dramatically later on during the identi-

fication process. This may be attributed to the fact that

there is some time lag between the start of pumping

and the leakage effect influencing the drawdown.

Table 4 exhibits the estimated parameters and

prediction errors when using EKF and NLN to

analyze data reported in Sridharan et al. (1987) for

the leaky aquifer considering the aquitard storage. The

EKF on interpolated data gives results very close to

the estimated parameters and prediction errors to

those of NLN. There is a total of 839 steps used in the

identification process, i.e. 83.9 min of the pumping

time. On the other hand, the total pumping time for the

observed data are 1200 min (20 h). Clearly, the EKF

method can save 93.0% of the pumping test time in

this case.

Fig. 1 shows the observed drawdown and the

estimated drawdown of those three observation wells

based on Hantush and Jacob’s model. This indicates

that the estimated drawdowns fit the pumping test data

quite well. Fig. 2 exhibits that the plot of the observed

drawdown and the estimated drawdown based on

Neuman and Witherspoon’s model. The figure implies

that the parameters estimated by the EKF method are

suitable to represent the hydraulic characteristic of

the aquifer.

Tables 3 and 4 also display the results of estimated

parameters and prediction errors while measurement

data are recursively used in the EKF identification

process using the three-parameter and four-parameter

models, respectively. Both tables indicate that the EKF

method gives slightly more accurate results, even

though many more time steps are needed, due to the

measurement data that is recursively used. The state

vector defined in Eq. (2.2) is assumed to be noise-free

and independent of time, so the state transition matrix,

Eq. (2.10), is time-invariant and is an identity matrix.

The associated measurement model, Eq. (2.3), assum-

ing known error covariance structure, can be evaluated

at any time. Thus, the EKF method can be applied for

any sampling time, even for analyzing recursively used

data. Nevertheless, there are two advantages involved

if applying the EKF on the interpolated data with a

smaller time interval. First, the measurement of the

field-pumping test and the estimation of the hydraulic



Table 5

The relative error (%) of truncated leaky well function for various values of u and leakage coefficient L

u L

0.01 0.02 0.05 0.1 0.2 0.25 0.5 1

0.00001 0.08 – – – – – – –

0.00005 0.22 0.22 – – – – – –

0.0001 0.24 0.26 93.57 – – – – –

0.0002 0.26 0.27 0.58 – – – – –

0.0005 0.29 0.29 0.33 27.01 – – – –

0.001 0.33 0.33 0.35 0.16 – – – –

0.002 0.39 0.38 0.39 0.43 37.40 – – –

0.005 0.52 0.52 0.50 0.50 0.51 1.39 – –

0.01 0.74 0.73 0.70 0.66 0.66 0.68 – –

0.02 1.18 1.17 1.12 1.03 0.90 0.87 1.81 –

0.05 2.80 2.78 2.70 2.50 2.09 1.90 1.63 –

0.1 6.43 6.40 6.27 5.94 5.14 4.73 3.36 7.09

0.2 17.18 17.14 16.91 16.33 14.80 13.94 10.27 12.25

0.5 82.79 82.69 82.13 80.62 76.37 73.80 61.09 49.21

1 – – – – – – – –

Symbol ‘–’ represents that the relative error is larger than 100%.
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parameters can be done with the same on-line

measurements in the field. Second, the EKF method

usually takes significantly less steps in the identifi-

cation process to get convergent results.

Chander et al. (1981) combined the truncated leaky

well function with EKF to identify three hydraulic

parameters, so the applicable ranges of the pumping

time and leakage coefficient L for using their method

may be limited. Table 5 shows the relative errors of

truncated leaky well function versus various values of

u and L, indicating that when the leakage coefficient is

large, the applicable range of the truncated leaky well

function is small if the relative error is restricted to be

less than 5%. On the other hand, the relative errors are

larger than 5% when uO0.1 and L!0.2. Clearly,

Chander et al.’s method may yield significant errors

in parameter estimation when the pumping test data do

not fall in the appropriate range, as indicated in Table 5.
6. Analyses for model and data measurement

uncertainties

In this study, the uncertainties of the measurement

data are represented by white noise and temporally

correlated noise, and sensitivity analyses for the EKF

method are then performed for data with those two

types of noise. The model uncertainty in the parameter
estimation is assessed for the case of employing both

three-parameter and four-parameter models for ana-

lyzing three data sets.

6.1. Measurement data uncertainty

The MATLAB function randn (m, n) with mZ200

and nZ1 is first chosen to generate a realization of

white noise (The MathWorks, 1995). The elements in

this realization are normally distributed random

numbers with zero mean and unit variance. Each

element is then multiplied by 4.09!10K3, which is

taken from the case of the least prediction error

(SEE values) by EKF for observation well 3 in the

three-parameter model. Finally, 130 data points are

taken from this realization and divided into 10 data

sets, so each data set contains 13 elements (i.e. 13

data points). Hantush and Jacob’s model along with

the given parameters, say TZ1000 m3/day, SZ10K4,

and LZ0.1, was employed to generate 13 synthetic

sets of drawdown data. Thus, a set of synthetic

drawdown data was generated by simply adding the

adjusted noise data to the predicted drawdown

data one by one. Accordingly, 10 sets of synthetic

drawdown data with uncorrelated noise were

obtained.

The original realization of white noise is employed to

generate temporally correlated noise. The MATLAB



Table 6

The estimated parameters and prediction errors for drawdown data with correlated noises

Case Estimated parameters Prediction errors

T S L ME SEE STEP

1 1033.97 9.26!10K5 0.092 2.05!10K3 1.02!10K2 673

2 1019.79 9.49!10K5 0.095 4.95!10K3 7.62!10K3 1655

3 1023.91 9.39!10K5 0.094 5.39!10K3 8.83!10K3 911

4 1041.93 9.29!10K5 0.089 6.05!10K3 1.20!10K2 300

5 1021.01 9.54!10K5 0.095 3.89!10K3 6.56!10K3 352

6 1042.00 9.31!10K5 0.090 2.72!10K3 1.02!10K2 312

7 1029.79 9.29!10K5 0.092 6.06!10K3 1.02!10K2 346

8 1016.93 9.29!10K5 0.096 7.35!10K3 1.26!10K2 918

9 1020.55 9.47!10K5 0.095 5.61!10K3 8.14!10K3 1173

10 1039.74 9.22!10K5 0.090 5.22!10K3 1.09!10K2 697
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function Hamming(n) with nZ5 is used to produce five

coefficients of a Hamming window (The MathWorks,

1995). The MATLAB function conv(a, b) is applied to

convolve vectors a and b (The MathWorks, 1995),

where vector a represents the original realization and

vector b represents the coefficients of the Hamming

window. Algebraically, convolution is an operation

which multiplies two polynomials with coefficients

containing the elements of a and b. The product of the

convolution is adjusted by a factor of 2.88!10K3,

which is calculated based on the data variance and the

SEE value for the result of observation well 3. The result

after the adjustment represents a new realization with

temporal correlated noise. Thus, 10 sets of synthetic

drawdown data with temporally correlated noise can be

formed in a similar manner.

Table 6 lists the results of data uncertainty analysis

for the case with correlated measurement noise.
Table 7

The estimated parameters and prediction errors for drawdown data with w

Case Estimated parameters

T S L

1 1033.97 9.24!10K5 0.092

2 1019.79 9.49!10K5 0.094

3 1023.91 9.15!10K5 0.090

4 1041.93 9.57!10K5 0.096

5 1021.01 9.44!10K5 0.095

6 1042.00 9.62!10K5 0.096

7 1029.79 9.31!10K5 0.092

8 1016.93 9.42!10K5 0.096

9 1020.55 9.65!10K5 0.097

10 1039.74 9.49!10K5 0.095
The estimated parameter T ranges from 1016.93 to

1042 m3/day, S ranges from 9.22!10K5 to 9.54!
10K5, and L ranges from 8.88!10K2 to 9.60!10K2.

The SEE values of all cases are on the same order of

magnitude. Table 7 shows similar results for data with

the white noise. Thus, the effect of data with either

white noise or temporal noise is negligible in the

identification procedure.
6.2. Model uncertainty

The third type of uncertainty listed in Eisenberg

et al. (1989) is the conceptual model uncertainty

regarding to the geometrical configuration, major

features, and boundary conditions. Generally speak-

ing, field hydrogeologic information is never known

in sufficient detail. Also, the development of a

mathematical model usually depends on some
hite noises

Prediction errors

ME SEE STEP

5.71!10K3 1.06!10K2 1033

5.89!10K3 8.29!10K3 316

8.60!10K3 1.31!10K2 400

1.75!10K3 6.30!10K3 496

2.39!10K3 8.68!10K3 1154

1.76!10K3 5.01!10K3 1587

5.53!10K3 9.71!10K3 1293

2.60!10K3 9.50!10K3 592

3.42!10K3 5.73!10K3 1132

5.65!10K3 8.03!10K3 1001



Table 8

Pumping test data (Batu, 1998, p. 265)

Time (min) Drawdown (m)

0.00 0.000

48.96 0.055

61.63 0.062

75.60 0.066

101.09 0.073

145.44 0.090

192.96 0.098

270.72 0.108

361.44 0.116

449.28 0.122

576.00 0.135

652.32 0.136

767.52 0.137

881.28 0.138

QZ625 m3/day, rZ105 m.
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assumptions and/or simplifications. Thus, the selec-

tion of a model for describing a target aquifer system

is always subject to some degree of uncertainty.

Hantush and Jacob (1955) deals with a confined

aquifer underlain by an impermeable bed and overlain

by an unconfined aquifer; and an aquitard with a

negligible storage exists between those two aquifers.

In contrast, Neuman and Witherspoon’ model (1969)

is composed of two confined aquifers that are

separated by an aquitard. Both of these models

assume that the hydraulic head of the top aquifer

maintains constant during the pumping, although

Neuman and Witherspoon’s model considers the

effect of the aquitard storage on the drawdown of

the pumped aquifer.
Table 9

The estimated parameters and prediction errors using EKF to analyze dat

Method Three-parameter model

Estimated parameters Prediction

T S L ME

Walton’s type—curve A 875 2.7!10K3 0.30 1.26!10

Walton’s type—curve B 899 2.8!10K3 0.30 9.50!10

EKF 907 3.5!10K3 0.34 K2.68!10

Method Four-parameter model

Estimated parameters

T S L j

EKF 893 3.43!10K3 0.34 4.88!10
Three different data sets obtained from pumping

tests in leaky aquifers are chosen to assess the

difference due to model uncertainty in parameter

estimation. The first two data sets, also mentioned

above, are taken from Cooper (1963) and Sridharan

et al. (1987), and the third data set is taken from Batu

(1998, p. 265). The estimated parameters based on the

three-parameter model are listed in Table 3, and those

based on the four-parameter model were listed in Table

4. Accordingly, the storage coefficient of the aquitard,

S 0, can be calculated with known values of j for the

four-parameter model; and the hydraulic conductivity

of the aquitard K 0 can be estimated based on the known

values of b 0 and L for both models, as listed in Table 10.

For Batu’ pumping test data (1998), the confined

aquifer is pumped at a uniform flow rate of 625 m3/day.

The observation well fully penetrating the aquifer

completely is located 105 m away from the pumped

well, and its drawdown data are given in Table 8. The

thicknesses of the aquifer and aquitard are estimated to

be 80 and 28 m, respectively. Walton’s type-curve

method was used to determine the hydraulic conduc-

tivity values of the aquifer and aquitard. Two different

match points were selected, point A was arbitrarily

chosen and point B was a point on the overlapping part

of the curve, as described in Batu (1998). The

estimated values of K, K 0, and S, by Walton’s type-

curve method and the EKF method using the three-

parameter model are shown in Table 9. The prediction

errors of SEE and ME clearly indicate that the EKF has

the better accuracy for the estimated hydraulic

parameters than the graphical approach of Walton’s

type-curve method.
a reported in Batu (1998, p. 265)

errors

RMSE SEE

K2 1.38!10K2 1.55!10K2

K2 1.06!10K2 1.19!10K2

K3 4.41!10K3 4.97!10K3

Prediction errors

ME RMSE SEE

K3 K1.51!10K3 3.89!10K3 4.61!10K3



Table 10

Estimated hydraulic conductivity and storage coefficient for aquifers and aquitards

Model Estimated parameters Prediction errors

T K K 0 S S 0 ME SEE

(Cooper’s data (1963, p. 54)a

Three-parameter 1257.9 N/A 9.59!10K2 9.09!10K5 K6.53!10K4 1.99!10K2

Four-parameter 1242.7 N/A 7.89!10K2 1.16!10K4 2.95!10K9 K1.81!10K3 5.79!10K2

Sridharan’s data (1987, p.170)

Three-parameter 21.60 N/A N/A 1.69!10K4 K1.95!10K2 2.73!10K2

Four-parameter 22.62 N/A N/A 1.73!10K4 2.76!10K10 1.49!10K3 1.37!10K2

Date reported in Batu (1998, p. 265)b

Three-parameter 907 11.34 0.26 3.5!10K3 K2.68!10K3 4.97!10K3

Four-parameter 893 11.16 0.26 3.43!10K3 1.31!10K6 K1.51!10K3 4.61!10K3

N/A represents that the data are not available because the aquifer thickness (b) or/and the aquitard thickness (b 0) is unknown.
a b 0Z30.480 m.
b bZ80 m and b 0Z28 m.
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Again, Batu’s data (1998) is analyzed by the EKF

method for the four-parameter model. The estimated

values of K, K 0, S, and S 0 are also reported in

Table 10. The four-parameter model gives slightly

better fit than the three-parameter model for

Sridharan’s and Batu’s pumping data sets, judging

from the prediction errors shown in Table 10. From

the viewpoint of curve-fitting, the four-parameter

model is more flexible to fit the measurement data

than the three-parameter model. However, the three-

parameter model yields fewer prediction errors than

the four-parameter model in the case of analyzing

Cooper’s data. This discrepancy may be caused by

the fact that the top aquifers of the leaky aquifer

system for Hantush and Jacob’s model (1955) and

Neuman and Witherspoon’s model (1969) are

different. The top aquifer in Hantush and Jacob’s

model is an unconfined aquifer, whereas in Neuman

and Witherspoon’s model it is a confined one.

Different geological settings may produce different

response of the groundwater flow system while

aquifers are under pumping. For the four-parameter

model, each estimated value of S 0 is at least three

orders of magnitude less than the value of S in the

same aquifer system for those three data sets as

shown in the table. The SEE values for both the

three-parameter and four-parameter models are on

the same order of magnitude suggesting that the

effect of S 0 is so small as to be negligible. Clearly,

the three-parameter model is a good choice for

representing a leaky aquifer system if S 0/S!10K3.
7. Concluding remarks

A method using EKF and the Lagrangian poly-

nomial is proposed to identify the hydraulic parameters

in leaky aquifer systems. Hantush and Jacob’s model

combined with EKF can optimally determine the

parameters for leaky aquifers without considering the

aquitard storage step-by-step in the identification

process. Neuman and Witherspoon’s model can also

be employed in a similar manner in leaky aquifer with

considering the aquitard storage. The drawdown data

with non-uniform time intervals from the pumping test

are interpolated by the Lagrangian polynomial to

obtain the data with a smaller time interval. This

interpolation approach facilitates the implementation

of the EKF to estimate the hydraulic parameters on-line

in a field-pumping test.

The proposed approach can quickly identify the

parameters, using only a few observed drawdown

data, and the obtained parameters are shown to

achieve good accuracy. At present, pumping tests

are usually performed in the field with a system

having pressure transducers installed in the obser-

vation wells to measure the water level and a data

logger to store the measured data transmitted from the

pressure transducers. Such a system may be linked to

a computer in which the EKF coupled with the aquifer

model is implemented and executed simultaneously.

Accordingly, the hydraulic parameters can be deter-

mined on-line in the field. Once stable estimates of the

hydraulic parameters have been reached, the pumping

test may be terminated.
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The analyses on Chander et al.’s truncated leaky

well function show that their approach of using EKF

to estimate the hydraulic parameters is only suitable

for cases where the pumping time is large or/and the

leakage coefficient is small. The identification process

of EKF has been shown to be able to reflect the

physical nature of the leaky aquifer. The slow

response of the leakage coefficient may be attributed

to the fact that there is some time lag between the start

of pumping and the leakage effects influencing the

drawdown.

Finally, the sensitivity test for the measurement

noise indicates that the effect of both the white noise

and the temporal correlated noise in measured draw-

down is insignificant when employing the EKF to

identify the hydrogeologic parameters of the leaky

aquifers. The choice between Hantush and Jacob’s

model and Neuman and Witherspoon’s model for

representing the leaky aquifer system depends on the

hydrogeological condition of the system indicated in

the analyses of the model uncertainty. However,

Hantush and Jacob’s model is suggested for use if the

ratio of the aquitard storage to the aquifer storage is

less than 10K3.
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