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For an n-by-n complex matrix A, we define its zero-dilation index
d(A) as the largest size of a zero matrix which can be dilated to
A. This is the same as the maximum k (� 1) for which 0 is in the
rank-k numerical range of A. Using a result of Li and Sze, we show
that if d(A) > �2n/3�, then, under unitary similarity, A has the zero
matrix of size 3d(A)−2n as a direct summand. It complements the
known fact that if d(A) > �n/2�, then 0 is an eigenvalue of A. We
then use it to give a complete characterization of n-by-n matrices A
with d(A) = n−1, namely, A satisfies this condition if and only if it
is unitarily similar to B ⊕ 0n−3, where B is a 3-by-3 matrix whose
numerical range W (B) is an elliptic disc and whose eigenvalue
other than the two foci of ∂W (B) is 0. We also determine the value
of d(A) for any normal matrix A and any weighted permutation
matrix A with zero diagonals.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an n-by-n complex matrix. In this paper, we define the zero-dilation index of A by

d(A) = max{k � 1: 0k dilates to A},
where 0k denotes the k-by-k zero matrix. Recall that a k-by-k matrix B is said to dilate to A (or B is a
compression of A) if B = V ∗ AV for some n-by-k matrix V with V ∗V = Ik , the k-by-k identity matrix,
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or, equivalently, if A is unitarily similar to a matrix of the form
[ B ∗

∗ ∗
]
. Another way to express d(A)

is via the totally isotropic subspaces of A. Note that a subspace M of C
n is totally isotropic for A if

〈Ax, y〉 = 0 for all x and y in M , where 〈·,·〉 denotes the standard inner product in C
n . Thus d(A) is

the same as the maximum dimension of the totally isotropic subspaces of A.
The notion of the zero-dilation index is closely related to that of the higher-rank numerical range.

Recall that for an n-by-n matrix A and a k, 1 � k � n, the rank-k numerical range Λk(A) of A is the
subset {λ ∈ C: λIk dilates to A} of the complex plane. In particular, Λ1(A) is simply the classical nu-
merical range W (A) of A. The study of the higher-rank numerical ranges is a hotly pursued one in
recent years starting with the paper [2] by Choi, Kribs and Życzkowski. It is known that the Λk(A)’s
are always convex (cf. [11, Theorem 0.1] or [9, Corollary 2.3]). Obviously, d(A) is equal to the maxi-
mum k for which Λk(A) contains 0. In proving the convexity of the Λk(A)’s, Li and Sze gave a more
specific description of Λk(A) [9, Theorem 2.2], namely,

Λk(A) =
⋂
θ∈R

{
λ ∈C: Re

(
e−iθλ

)
� λk

(
Re

(
e−iθ A

))}
,

where, for a complex number z and a matrix B , Re z = (z + z)/2 and Re B = (B + B∗)/2 are their real
parts, and, for an n-by-n Hermitian matrix C , λ1(C) � · · · � λn(C) denote its eigenvalues arranged in
decreasing order. In terms of this description, they also gave in [9, Theorem 3.1] the expression

d(A) = min
{
kθ : λkθ

(
Re

(
e−iθ A

))
� 0, λkθ+1

(
Re

(
e−iθ A

))
< 0, θ ∈R

}
for d(A).

In Section 2 below, we first give some basic properties of the zero-dilation index, some of which
are based on the Li–Sze theorem. For example, we show in Proposition 2.1 that if A is an n-by-n
matrix with 0 in ∂W (A), then d(A) � dim

∨{x ∈ C
n: 〈Ax, x〉 = 0} and, moreover, the equality holds

if and only if 0 is an extreme point of W (A). Theorem 2.2 is the Li–Sze theorem and Corollary 2.4
is an easy consequence of it. The latter says that d(A) = min{d(Re(e−iθ A)): θ ∈ R} for any matrix A,
which essentially reduces the computation of the zero-dilation index of a general matrix to those of
Hermitian matrices. The latter can be done quite easily as in Corollary 2.3.

Section 3 relates large values of d(A) to the zero eigenvalue of A. In particular, Theorem 3.2 says
that if A is of size n and d(A) > �2n/3�, then A is unitarily similar to a matrix of the form B ⊕
03d(A)−2n and the number �2n/3� is sharp. This is in contrast to the situation for d(A) > �n/2�, in
which case we only have 0 as an eigenvalue of A (cf. [2, Proposition 2.2]). Using the former, we
characterize in Theorem 3.3 those n-by-n matrices A with d(A) = n − 1: this is the case if and only
if A is unitarily similar to B ⊕ 0n−3, where B is a 3-by-3 matrix whose numerical range W (B) is an
elliptic disc and whose eigenvalues are 0 and the two foci of the ellipse ∂W (B).

Finally, in Section 4, we determine the zero-dilation indices of normal and weighted permutation
matrices. If A is an n-by-n normal matrix and k is the number of nonzero eigenvalues of A, then
d(A) is an integer between k and �(n + k)/2�. We also characterize those normal A’s with their
d(A)’s attaining the extremal k and �(n + k)/2� (cf. Theorem 4.1). Since every weighted permutation
matrix (a square matrix with at most one nonzero entry on each of its rows and columns) with zero
diagonals is permutationally similar to the direct sum of a zero matrix and matrices of the forms⎡⎢⎢⎢⎣

0 w1

0
. . .
. . . wn−1

0

⎤⎥⎥⎥⎦ and

⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−1

wn 0

⎤⎥⎥⎥⎦ ,

where the w j ’s are all nonzero, its zero-dilation index can be determined from those of the latter
two types. It turns out that

d(A) =
{ 	 1

2 n
 if A is of the first type,

� 1 n� if A is of the second type
2
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(cf. Corollary 2.7 and Lemma 4.4, respectively), and hence the zero-dilation index of a weighted per-
mutation matrix (with zero diagonals) can be computed as in Theorem 4.5.

We end this section by fixing some notations. For any m-by-n matrix A, AT (resp., A∗) denotes
its transpose (resp., adjoint). We use 0mn to denote the m-by-n zero matrix; this is abbreviated to
0n if m = n. If A is a square matrix, then Re A = (A + A∗)/2 and Im A = (A − A∗)/(2i) are its real
and imaginary parts, respectively. Two n-by-n matrices A and B are permutationally similar if there
is a permutation matrix V , that is, one with exactly one 1 on each of its rows and columns, such
that V ∗ AV = B . We use diag(a1, . . . ,an) to denote the n-by-n diagonal matrix with the diagonals
a1, . . . ,an . For any subset K of Cn ,

∨
K denotes the subspace of Cn generated by the vectors in K . If

z is a nonzero complex number, then θ ≡ arg z is the unique number in [0,2π) satisfying z = |z|eiθ .
If x is a real number, then �x� (resp., 	x
) denotes the largest (resp., smallest) integer less than (resp.,
greater than) or equal to x. For any set �, #� denotes its cardinality. If � is a Lebesgue measurable
subset of R, then |�| denotes its Lebesgue measure. For a subset � of C, �∧ denotes its convex hull.

Our reference for general properties of numerical ranges of matrices is [6, Chapter 1].

2. Preliminaries

We start with the following proposition for the value of d(A) when 0 is in the boundary of the
numerical range of A.

Proposition 2.1. If A is an n-by-n matrix with 0 in ∂W (A), then d(A) � dim
∨{x ∈ C

n: 〈Ax, x〉 = 0}. More-
over, in this case, the equality holds if and only if 0 is an extreme point of W (A).

Recall that a point λ is an extreme point of the convex subset � of the plane if λ is in � and it
cannot be expressed as tλ1 + (1 − t)λ2 with λ1 and λ2 in � both distinct from λ and 0 < t < 1.

Proof of Proposition 2.1. Let d = d(A), K = {x ∈ C
n: 〈Ax, x〉 = 0} and k = dim

∨
K . Since U∗ AU =[ 0d ∗

∗ ∗
]

for some n-by-n unitary matrix U , we have 〈Ax, x〉 = 0 for all x in M ≡ U (Cd ⊕ {0}). This
shows that M ⊆ K ⊆ ∨

K and hence d = dim M � dim
∨

K = k.
If d = k, then M = K = ∨

K from above. Hence K is a subspace of C
n , which is equivalent to 0

being an extreme point of W (A) (cf. [3, Theorem 1(i)]). Conversely, if 0 is extreme for W (A), then K
is a subspace of Cn . The compression A1 = P K A|K : K → K of A to K , where P K is the (orthogonal)
projection of Cn onto K , is such that 〈A1x, x〉 = 〈P K Ax, x〉 = 〈Ax, x〉 = 0 for all x in K . Hence we
deduce that A1 = 0k and, therefore, A is unitarily similar to

[ 0k ∗
∗ ∗

]
. The maximality of d implies that

k � d. Together with the already-proven d � k, this yields their equality. �
Next we reformulate [9, Theorem 3.1] in terms of our terminology. For a Hermitian matrix A, let

i+(A) (resp., i−(A) and i0(A)) denote the number of positive (resp., negative and zero) eigenvalues
of A (counting multiplicity), i�0(A) = i+(A) + i0(A), and i�0(A) = i−(A) + i0(A).

Theorem 2.2. For any n-by-n matrix A, we have d(A) = min{i�0(Re(e−iθ A)): θ ∈ R}.

Several corollaries follow, some of which are inspired by the results in [2] and [9].

Corollary 2.3. If A is an n-by-n Hermitian matrix, then d(A) = min{i�0(A), i�0(A)}. In particular, in this
case, i0(A) � d(A) � �(n + i0(A))/2�.

Proof. It is obvious that

i+
(
Re

(
e−iθ A

)) =

⎧⎪⎨⎪⎩
i+(A) if 0 � θ < π

2 or 3π
2 < θ < 2π,

0 if θ = π
2 or 3π

2 ,

i−(A) if π < θ < 3π ,
2 2
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and

i0
(
Re

(
e−iθ A

)) =
{

i0(A) if 0 � θ < 2π and θ �= π
2 , 3π

2 ,

n if θ = π
2 or 3π

2 .

Our assertions on d(A) then follow immediately from Theorem 2.2. �
The preceding bounds on d(A) will be extended to a normal matrix A in Theorem 4.1.

Corollary 2.4. For any n-by-n matrix A, we have d(A) = min{d(Re(e−iθ A)): θ ∈R}.

Corollary 2.5. If A is an n-by-n matrix such that dim ker(Re(e−iθ0 A)) � 1 for some real θ0 , then d(A) �
	n/2
.

Proof. Let k = i�0(Re(e−iθ0 A)). If k � 	n/2
, then Theorem 2.2 implies that d(A) � k � 	n/2
. On the
other hand, if k > 	n/2
, then, since i−(Re(e−iθ0 A)) < n − 	n/2
 and i0(Re(e−iθ0 A)) � 1, we have

d(A) � i�0
(
Re

(
e−i(θ0+π) A

)) = i�0
(
Re

(
e−iθ0 A

))
<

(
n −

⌈
1

2
n

⌉)
+ 1 �

⌈
1

2
n

⌉
+ 1

by Theorem 2.2. Hence, in this case, d(A) � 	n/2
 holds too. �
Note that the converse of Corollary 2.5 is false as witness the matrix A = diag(0,0,1) with d(A) =

2 and dim ker(Re(e−iθ A)) � 2 for all real θ . However, in one case, it is indeed true.

Corollary 2.6. If A is an n-by-n matrix which is unitarily similar to −A, then d(A) � 	n/2
. In this case,
d(A) = 	n/2
 if and only if dim ker Re(e−iθ0 A) � 1 for some real θ0 .

Proof. Our assumption implies that Re(e−iθ A) and −Re(e−iθ A) are unitarily similar and thus
d(Re(e−iθ A)) � 	n/2
 for all real θ . Using Corollary 2.4, we obtain d(A) � 	n/2
.

If d(A) = 	n/2
, then, by Corollary 2.4, there is some real θ0 such that d(Re(e−iθ0 A)) = 	n/2
. The
unitary similarity of Re(e−iθ0 A) and −Re(e−iθ0 A) yields that dim ker Re(e−iθ0 A) � 1. The converse
follows from Corollary 2.5 and what was proven in the preceding paragraph. �

The next corollary gives a class of matrices which satisfy the conditions in Corollary 2.6.

Corollary 2.7. If

A =

⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−1

0

⎤⎥⎥⎥⎦
is of size n (� 1) with w j �= 0 for all j, then d(A) = i�0(Re(e−iθ A)) = 	n/2
 for all real θ .

Proof. It is easily seen that A is unitarily similar to e−iθ A for all real θ and dim ker Re A � 1. Thus
i�0(Re(e−iθ A)) is independent of the value of θ and hence is equal to d(A) for all θ by Theorem 2.2.
Applying Corollary 2.6, we obtain d(A) = 	n/2
. �

The zero-dilation indices of general weighted permutation matrices will be determined in Sec-
tion 4.

We end this section with the following elementary observation on the zero-dilation index of a
direct sum.
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Corollary 2.8. Let A = ∑m
j=1 ⊕A j , where A j , 1 � j � m, is an n j -by-n j matrix. Then d(A) �

∑m
j=1 d(A j),

and d(A) = ∑m
j=1 d(A j) if and only if there is some real θ0 such that d(A j) = i�0(Re(e−iθ0 A j)) for all j. In

particular, d(
∑m

j=1 ⊕A1) = md(A1) and d(A1 ⊕ 0n) = d(A1) + n.

Proof. That d(A) �
∑

j d(A j) follows immediately from the definition of the zero-dilation index. Next

we assume that d(A) = ∑
j d(A j). Let the real θ0 be such that d(A) = i�0(Re(e−iθ0 A)). This is the

same as
∑

j d(A j) = ∑
j i�0(Re(e−iθ0 A j)). Since d(A j) � i�0(Re(e−iθ0 A j)) for all j by Theorem 2.2,

we infer from above that d(A j) = i�0(Re(e−iθ0 A j)) for all j. For the converse, we need only show
that d(A) �

∑
j d(A j). For the given θ0, we have

d(A) � i�0
(
Re

(
e−iθ0 A

)) =
∑

j

i�0
(
Re

(
e−iθ0 A j

)) =
∑

j

d(A j)

as required.
The assertions for d(

∑m
j=1 ⊕A1) and d(A1 ⊕ 0n) follow easily from above. �

3. Zero eigenvalue

In this section, we consider the relations between large values of d(A) and the zero eigenvalue
of A. This we start with the following known fact from [2, Proposition 2.2].

Lemma 3.1. If A is an n-by-n matrix with d(A) > �n/2�, then 0 is an eigenvalue of A with (geometric) multi-
plicity at least 2d(A) − n. Moreover, in this case, the number “�n/2�” is sharp.

Proof. We only need to show the sharpness of �n/2�. This is seen by the n-by-n matrix

A =

⎡⎢⎢⎢⎣
0 1

0
. . .
. . . 1

1 0

⎤⎥⎥⎥⎦ .

Since A is unitarily similar to diag(1,ωn,ω2
n, . . . ,ωn−1

n ), where ωn = e2π i/n , we infer that, for odd n
(resp., even n) and for θ in [π/2,5π/2),

d
(
Re

(
e−iθ A

)) =
{ 	 1

2 n
 (resp., ( 1
2 n) + 1) if θ = π

2 + j 2π
n ,0 � j � n − 1,

� 1
2 n� (resp., 1

2 n) otherwise.

Hence d(A) = �n/2� by Corollary 2.4. �
The next theorem says that an even larger value of d(A) will guarantee that 0 be a reducing

eigenvalue of A, meaning that Ax = A∗x = 0 for some nonzero vector x.

Theorem 3.2. If A is an n-by-n matrix with d(A) > �2n/3�, then 0 is a reducing eigenvalue of A with (geo-
metric) multiplicity at least 3d(A)− 2n and A is unitarily similar to a matrix of the form B ⊕ 03d(A)−2n, where
B is of size 3(n − d(A)) with d(B) = 2(n − d(A)). In this case, the number “�2n/3�” is sharp.

Proof. Let d = d(A), A = [aij]n
i, j=1, where aij = 0 for 1 � i, j � d, and u j = [ad+ j,1 · · ·ad+ j,d]T and

v j = [a1,d+ j · · ·ad,d+ j]T for 1 � j � n − d. If W1 = ∨{u1, . . . , un−d} and W2 = ∨{v1, . . . , vn−d}, then
W1 and W2 are subspaces of Cd , whose orthogonal complements W ⊥

1 and W ⊥
2 in C

d satisfy

dim
(
W ⊥

1 ∩ W ⊥
2

) = dim W ⊥
1 + dim W ⊥

2 − dim
(
W ⊥

1 + W ⊥
2

)
�

(
d − (n − d)

) + (
d − (n − d)

) − d

= 3d − 2n.
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Let x1, . . . , x3d−2n be orthonormal vectors in W ⊥
1 ∩ W ⊥

2 and let

y j =

⎡⎢⎢⎣
x j
0
...

0

⎤⎥⎥⎦ ⎫⎬⎭n − d

for 1 � j � 3d − 2n. Then the y j ’s are orthonormal in C
n and Ay j = A∗ y j = 0 for all j. This yields

our assertion on 0 being a reducing eigenvalue of A. Hence A is unitarily similar to a matrix of the
form B ⊕ 03d(A)−2n . That d(B) = 2(n − d(A)) is a consequence of Corollary 2.8.

The sharpness of �2n/3� is seen by the n-by-n matrix A = [aij]n
i, j=1 with aij = 1 if (i, j) =

(n − k + 1,k + 1), (n − k + 2,k + 2), . . . , (k,3k − n), (k + 1,1), (k + 2,2), . . . , (n,n − k), and aij =
0 otherwise, where k = �2n/3�. Note that ker A (resp., ker A∗) consists of vectors of the form
[0 · · ·0︸ ︷︷ ︸

n−k

∗ · · · ∗︸ ︷︷ ︸
2k−n

0 · · · 0︸ ︷︷ ︸
2k−n

∗ · · · ∗︸ ︷︷ ︸
2n−3k

]T (resp., [∗ · · · ∗︸ ︷︷ ︸
n−k

0 . . . 0︸ ︷︷ ︸
k

]T ). Hence ker A ∩ ker A∗ = {0} and, therefore, 0 is

not a reducing eigenvalue of A. From what was proven in the first paragraph, we deduce that
d(A) � �2n/3� = k. On the other hand, we also have d(A) � k by our construction of A and the
definition of d(A). Thus d(A) = �2n/3� as required. �

Using the preceding theorem, we can now give a characterization of n-by-n matrices A with
d(A) = n − 1.

Theorem 3.3. Let A be an n-by-n (n � 3) matrix. Then d(A) = n − 1 if and only if A is unitarily similar to a
matrix of the form B ⊕ 0n−3 , where B is of size 3 whose numerical range W (B) is an elliptic disc (or a line
segment) and whose eigenvalues are 0 and the two foci (or the two endpoints) of ∂W (B).

The next lemma is a special case of Theorem 3.3 for n = 3.

Lemma 3.4. Let A be a 3-by-3 matrix. Then d(A) = 2 if and only if W (A) is an elliptic disc (or a line segment)
and the eigenvalues of A are 0 and the two foci (or the two endpoints) of ∂W (A).

For its proof, we need the Kippenhahn polynomial of a matrix. If A is an n-by-n matrix, then its
Kippenhahn polynomial is p A(x, y, z) = det(x Re A + y Im A + zIn) for x, y and z in C. Note that p A

codifies the information of the spectrum and numerical range of A: the roots of p A(1, i,−z) = 0 in z
are the eigenvalues of A while the convex hull of the real points of the dual curve of p A(x, y, z) = 0
is the numerical range of A (cf. [8, Theorem 10]).

Proof of Lemma 3.4. Assume first that d(A) = 2. Then A is unitarily similar to a matrix of the form[ 02 ∗
∗ ∗

]
, and thus the same is true for Re A and Im A. Hence p A(x, y, z) = zq(x, y, z) for some real

homogeneous polynomial q of degree 2. Therefore, W (A) is the convex hull of the point 0 and the
real points of the dual curve of q(x, y, z) = 0. We denote the convex hull of the latter set by �. Then
� is either an elliptic disc or a line segment depending on whether q is irreducible or otherwise.
We claim that 0 must be in �. Indeed, if otherwise, then let θ in [0,2π) be such that e−iθ� is
in the open right half-plane. We infer that i�0(Re(e−iθ A)) = 1 and thus d(A) � d(Re(e−iθ A)) � 1 by
Corollaries 2.3 and 2.4, which contradicts our assumption of d(A) = 2. Hence we have W (A) = �.
Since the characteristic polynomial of A is p A(−1,−i, z) = zq(−1,−i, z), the eigenvalues of A are 0
and the two foci (or the two endpoints) of ∂W (A).

Conversely, if A satisfies the asserted properties, then p A(x, y, z) = zq(x, y, z), where q is a real
homogeneous polynomial of degree 2 (cf. [7, Theorem 2.2]). If x = cos θ and y = sin θ for real θ ,
then z is a divisor of p A(cos θ, sin θ, z) = det(Re(e−iθ A) + zI3). This shows that 0 is an eigenvalue of
Re(e−iθ A) for all real θ . Since 0, being an eigenvalue of A, is in the elliptic disc W (A), we infer that
i�0(Re(e−iθ A)) = 2 for all θ . Thus d(A) = 2 by Theorem 2.2. �
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We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. In view of Lemma 3.4, we need only consider for n � 4. If d(A) = n − 1, then
d(A) > �2n/3�. Theorem 3.2 then yields that A is unitarily similar to a matrix of the form B ⊕ 0n−3,
where B is of size 3 with d(B) = 2. Lemma 3.4 then furnishes the proof of the asserted necessary
condition on B . The converse also follows easily from Lemma 3.4 and Corollary 2.8. �
Corollary 3.5. Let A be an n-by-n (n � 3) nilpotent matrix. Then d(A) = n − 1 if and only if A is unitarily

similar to a matrix of the form

[
0 a

0 b
0

]
⊕ 0n−3 with a and b not both 0.

Proof. This is an easy consequence of Theorem 3.3, Lemma 3.4 and the fact that a 3-by-3 nilpotent
matrix A has its numerical range W (A) equal to a circular disc (centered at the origin) if and only if

it is unitarily similar to a nonzero matrix of the form

[
0 a

0 b
0

]
(cf. [7, Theorem 4.1]). �

The first assertion of the following corollary is due to Linden [10, Proposition 1] (cf. also [1, Theo-
rem 2]).

Corollary 3.6. If A is an n-by-n (n � 3) matrix with d(A) = n − 1, then W (A) is an elliptic disc (or a line
segment). In this case, the number “n − 1” is sharp.

Proof. The sharpness of n − 1 is seen by the matrix A = B ⊕ 0n−3, where

B =
[0 1 1

0 1
0

]
.

In this case, we obviously have d(B) � 1 and hence d(A) � n − 2. If d(A) = n − 1, then Theorem 3.3
implies that W (A) is an elliptic disc. On the other hand, it is known that W (B) has a line segment
on its boundary and contains 0 in its interior (cf. [7, Theorem 4.1(2)]). Thus the same is true for A,
which contradicts what we have shown above. We conclude that d(A) = n − 2. �
4. Normal matrix and weighted permutation matrix

In this section, we determine the zero-dilation indices for matrices in two special classes: the
normal ones and the weighted permutation ones (with zero diagonals). We start with the former
class.

Theorem 4.1. If A is an n-by-n normal matrix with k = dim ker A, then k � d(A) � �(n + k)/2�. Moreover,
let λ1, . . . , λn−k be the nonzero eigenvalues of A (counting multiplicity) arranged such that argλ1 � · · · �
arg λn−k. Then (a) d(A) = k if and only if 0 is not in the convex hull of {λ1, . . . , λn−k}, and (b) d(A) = �(n +
k)/2� if and only if, for even n −k (resp., odd n −k), the condition arg λ j+((n−k)/2) − argλ j = π holds for all j,
1 � j � (n − k)/2 (resp., arg λ j+((n−k−1)/2) − arg λ j � π for 1 � j � (n − k + 1)/2 and argλ j−((n−k+1)/2) −
arg λ j � −π for (n − k + 3)/2 � j � n − k).

Proof. Since 0k is a direct summand of the diagonal form of A, we have d(A) � k. To prove d(A) �
�(n +k)/2�, let θ0 in [0,2π) be such that the line y = x tan θ0 is not perpendicular to any of the n −k
lines connecting the origin and some λ j . Then i0(Re(e−iθ0 A)) = k. Hence, by Corollary 2.4,

d(A) � d
(
Re

(
e−iθ0 A

))
�

⌊
1

2
(n − k)

⌋
+ k =

⌊
1

2
(n + k)

⌋
.
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To prove (a), note that d(A) = k is equivalent to the existence of a real θ0 such that Re(e−iθ0λ j) < 0
for all j, 1 � j � n − k. The latter is easily seen to be the same as {λ1, . . . , λn−k}∧ , the convex hull of
{λ1, . . . , λn−k}, not containing 0.

For the proof of (b), let m = n − k and consider A as B ⊕ 0k , where B = diag(λ1, . . . , λm). In view
of Corollary 2.8 and the identity �(n − k)/2� + k = �(n + k)/2�, we need only prove for B . Note that,
by [9, Corollary 2.4], we have

Λ	(B) =
⋂

1� j1<···< jm−	+1�m

{λ j1 , . . . , λ jm−	+1}∧ (1)

for any 	, 1 � 	 � m. First assume that m is even. If d(B) = m/2 and if there is some pair λ j and
λ j+(m/2) , 1 � j � m/2, with argλ j+(m/2) − argλ j < π , then 0 is not in {λ j, . . . , λ j+(m/2)}∧ and hence
not in Λm/2(B) by (1), which contradicts our assumption of d(B) = m/2. Similarly, if arg λ j+(m/2) −
arg λ j > π , then 0 is not in {λ j+(m/2), . . . , λm, λ1, . . . , λ j}∧ , which also leads to a contradiction. Hence
we have argλ j+(m/2) − argλ j = π for all j, 1 � j � m/2, as required. For the converse, note that any
set � consisting of (m/2) + 1 many λ j ’s must contain some pair λ j0 and λ j0+(m/2) (1 � j0 � m/2).
Hence the assumption of argλ j0+(m/2) − argλ j0 = π guarantees that 0 is in �̂. Thus 0 is in Λm/2(B)

by (1), and therefore d(B) � m/2. Together with the already-proven d(B) � m/2, this yields d(B) =
m/2.

Next consider for odd m. If d(B) = �m/2� = (m − 1)/2, then 0 is in Λ(m−1)/2(B) and hence in
{λ j+((m−1)/2), . . . , λm, λ1, . . . , λ j}∧ (resp., {λ j−((m+1)/2), . . . , λ j}∧) for all j, 1 � j � (m + 1)/2 (resp.,
(m + 3)/2 � j � m), by (1). We infer that the asserted argument conditions are satisfied. Conversely,
assume that these conditions hold. Let � be any set consisting of (m + 3)/2 many λ j ’s. Then � must
contain some pair λ j0−((m+1)/2) and λ j0 ((m + 3)/2 � j0 � m). Hence we have arg λ j0−((m+1)/2) −
arg λ j0 � −π . On the other hand, � also contains some λ j1 , j0 − ((m + 1)/2) < j1 < j0. From our
assumptions, we obtain argλ j0 − arg λ j1 � π and argλ j1 − arg λ j0−((m+1)/2) � π . These, together with
arg λ j0 − arg λ j0−((m+1)/2) � π , yield that 0 is in {λ j0−((m+1)/2), λ j1 , λ j0 }∧ and hence in �̂. Thus (1)
implies that 0 is in Λ(m−1)/2(B). Hence d(B) � (m − 1)/2. Together with the already-proven d(B) �
(m − 1)/2, this yields d(B) = (m − 1)/2 = �m/2�. �

Finally, we consider the zero-dilation indices of weighted permutation matrices. Recall that a
weighted permutation matrix is one with at most one nonzero entry on each of its rows and columns.
It is easily seen that every such matrix is permutationally similar to a unique direct sum of matrices
of the forms⎡⎢⎢⎣

u1
u2

. . .

u	

⎤⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0 v1

0
. . .
. . . vm−1

0

⎤⎥⎥⎥⎦ and

⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−1

wn 0

⎤⎥⎥⎥⎦ ,

where the v j ’s and w j ’s are all nonzero. The zero-dilation index of a matrix A of the second type was
already given in Corollary 2.7: d(A) = 	m/2
. The next three lemmas prepare us for the calculation of
d(A) when A is of the third type.

Lemma 4.2. Let

A =

⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−1

wn 0

⎤⎥⎥⎥⎦
be of size n (� 2) with w j �= 0 for all j, α = ∑n

j=1 arg w j, and λ1(θ) � · · · � λn(θ) be the eigenvalues of

Re(e−iθ A) for each real θ .
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(a) If n is even, then i�0(Re(e−iθ A)) = (n/2) + 1 or n/2 for any real θ . In this case, i�0(Re(e−iθ A)) =
(n/2) + 1 if and only if |w1 w3 · · · wn−1| = |w2 w4 · · · wn| and θ = (α + mπ)/n, where m = 0,±2,±4, . . .

(resp., m = ±1,±3, . . .) if n/2 is even (resp., n/2 is odd).
(b) If n is odd, then i�0(Re(e−iθ A)) = (n +1)/2 or (n −1)/2 for any real θ . In this case, i�0(Re(e−iθ A)) =

(n + 1)/2 if and only if (α − (π/2)+ 2mπ)/n � θ � (α + (π/2)+ 2mπ)/n (resp., (α + (π/2)+ 2mπ)/n �
θ � (α + (3π/2) + 2mπ)/n) for some m = 0,±1,±2, . . . if (n − 1)/2 is even (resp., (n − 1)/2 is odd).

For the proof, we need another lemma.

Lemma 4.3. If

A =

⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−1

0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝resp., A =

⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−1

wn 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

with w j �= 0 for all j, then all the eigenvalues of Re A have multiplicity 1 (resp., at most 2).

Proof. Let λ be an eigenvalue of Re A and let x = [x1 · · · xn]T be such that (Re A)x = λx. This yields

1

2
(w1x2 + wnxn) = λx1,

and

1

2
(w j−1x j−1 + w jx j+1) = λx j, 2 � j � n − 1.

Hence

x2 = 2λ

w1
x1 − wn

w1
xn ≡ α2x1 + β2xn,

and

x j+1 = 2λ

w j
x j − w j−1

w j
x j−1, 2 � j � n − 1.

The latter yields, by iteration, an expression for x j+1, 2 � j � n − 1, as x j+1 = α j+1x1 + β j+1xn , where
α j+1 and β j+1 are scalars which depend only on λ and the w j ’s. Let u = [1α2 · · ·αn]T and v =
[0β2 · · ·βn]T . Then x is a linear combination of u and v: x = x1u+xn v . This shows that the multiplicity
of λ is at most 2. Moreover, if wn = 0, then β2 = · · · = βn = 0 and hence x is a multiple of u. This
gives the multiplicity of λ as 1. �
Proof of Lemma 4.2. (a) Assume that n is even. If U is the n-by-n unitary matrix diag(1,−1, . . . ,

1,−1), then U∗ AU = −A. It follows that Re(e−iθ A) is unitarily similar to −Re(e−iθ A) for any real θ .
Thus λ j(θ) = −λn− j+1(θ) for 1 � j � n. Since the eigenvalues of Re(e−iθ A) have multiplicity at most
2 by Lemma 4.3, we deduce that λ j(θ) > 0 (resp., λ j(θ) < 0) for 1 � j � (n/2) − 1 (resp., (n/2) + 2 �
j � n). Therefore, i�0(Re(e−iθ A)) = (n/2) + 1 or n/2 depending on whether λn/2(θ) = λ(n/2)+1(θ) = 0
or otherwise.

To determine which value i�0(Re(e−iθ A)) assumes, we make use of the expression of the Kippen-
hahn polynomial p A(x, y, z) of A given in [4, Theorem 4.2] to obtain

det
(
Re

(
e−iθ A

)) = p A(cos θ, sin θ,0) = 1

2n

[
(−1)n/2(|w1 w3 · · · wn−1|2 + |w2 w4 · · · wn|2

)
− 2|w1 · · · wn| cos(nθ − α)

]
.
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Note that λn/2(θ) = λ(n/2)+1(θ) = 0 if and only if det(Re(e−iθ A)) = 0 and, from above, the latter is
equivalent to

cos(nθ − α) = (−1)n/2

2

( |w1 w3 · · · wn−1|
|w2 w4 · · · wn| + |w2 w4 · · · wn|

|w1 w3 · · · wn−1|
)

≡ (−1)n/2

2

(
w + 1

w

)
,

where w = |w1 w3 · · · wn−1|/|w2 w4 · · · wn|. If this equation is to be satisfied, then (w + (1/w))/2 � 1,
which is the case exactly when w = 1. Thus we conclude that i�0(Re(e−iθ A)) = (n/2)+1 if and only if
|w1 w3 · · · wn−1| = |w2 w4 · · · wn| and cos(nθ − α) = (−1)n/2. The latter condition holds exactly when
θ equals one of the asserted values.

(b) Now assume that n is odd. Let B be the (n − 1)-by-(n − 1) matrix⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−2

0

⎤⎥⎥⎥⎦ .

Since n − 1 is even, B is unitarily similar to −B as in (a). Thus the same is true for Re(e−iθ B)

and −Re(e−iθ B) for all real θ . Together with Lemma 4.3, this implies that λ j(Re(e−iθ B)) > 0 (resp.,
λ j(Re(e−iθ B)) < 0) for 1 � j � (n−1)/2 (resp., (n+1)/2 � j � n−1). Using the interlacing property [5,
Theorem 4.3.8] of the eigenvalues of the n-by-n Hermitian matrix Re(e−iθ A) and its (n − 1)-by-(n − 1)
principal submatrix Re(e−iθ B), we obtain λ j(θ) > 0 (resp., λ j(θ) < 0) for 1 � j � (n − 1)/2 (resp.,
(n + 3)/2 � j � n). Thus, for any real θ , we have i�0(Re(e−iθ A)) = (n + 1)/2 or (n − 1)/2 depending
on whether λ(n+1)/2(θ) is nonnegative or otherwise.

Note that λ(n+1)/2(θ) � 0 if and only if (−1)(n−1)/2 cos(nθ − α) � 0. Indeed, as in (a), using the
expression of p A(x, y, z) from [4, Theorem 4.2], we have(

(n−1)/2∏
j=1

λ j(θ)

)
λ(n+1)/2(θ)

(
n∏

j=(n+3)/2

(−λ j(θ)
))

= (−1)(n−1)/2 det
(
Re

(
e−iθ A

)) = (−1)(n−1)/2 p A(cos θ, sin θ,0)

= (−1)(n−1)/2 1

2n−1
|w1 · · · wn| cos(nθ − α).

Since the first and third products in the first term of the above expression are both (strictly) positive,
our assertion follows. We conclude that i�0(Re(e−iθ A)) = (n + 1)/2 if and only if (−1)(n−1)/2 cos(nθ −
α) � 0, which is the same as the asserted condition for θ . �

An easy consequence of Lemma 4.2 and Theorem 2.2 is the following.

Lemma 4.4. If

A =

⎡⎢⎢⎢⎣
0 w1

0
. . .
. . . wn−1

wn 0

⎤⎥⎥⎥⎦
is of size n (� 2) with w j �= 0 for all j, then d(A) = �n/2�. Moreover, if n is even (resp., n is odd), then
d(A) = i�0(Re(e−iθ A)) for all but finitely many values of θ in any finite interval of R (resp., for all θ in the
union of open intervals

∞⋃
m=−∞

(
1

n

((
n∑

j=1

arg w j

)
+ π

2
+ 2mπ

)
,

1

n

((
n∑

j=1

arg w j

)
+ 3π

2
+ 2mπ

))
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or

∞⋃
m=−∞

(
1

n

((
n∑

j=1

arg w j

)
− π

2
+ 2mπ

)
,

1

n

((
n∑

j=1

arg w j

)
+ π

2
+ 2mπ

))

depending on whether (n − 1)/2 is even or odd).

We are now ready to compute the zero-dilation index of any weighted permutation matrix whose
diagonals are zeros.

Theorem 4.5. Let A be a weighted permutation matrix permutationally similar to a matrix of the form 0	 ⊕
(
∑p+q

j=1 ⊕A j) ⊕ (
∑r

k=1 Bk), where 	, p,q, r � 0,

A j =

⎡⎢⎢⎢⎢⎣
0 a( j)

1

0
. . .
. . . a( j)

n j−1

a( j)
n j

0

⎤⎥⎥⎥⎥⎦ is of size n j (� 2), 1 � j � p + q,

and

Bk =

⎡⎢⎢⎢⎣
0 b(k)

1

0
. . .
. . . b(k)

mk−1
0

⎤⎥⎥⎥⎦ is of size mk (� 2), 1 � k � r,

with the weights a( j)
s and b(k)

t all nonzero and the sizes n1, . . . ,np odd (resp., np+1, . . . ,np+q even). If α j =∑n j

s=1 arg a( j)
s for 1 � j � p + q, then

d(A) = 	 +
p+q∑
j=1

⌊
1

2
n j

⌋
+

r∑
k=1

⌈
1

2
mk

⌉
+ min

θ∈R #
{

j: 1 � j � p, (−1)(n j−1)/2 cos(n jθ − α j) > 0
}
. (2)

Proof. Note that, for each k, 1 � k � r, Bk is unitarily similar to e−iθ Bk for all real θ . Hence the
number i�0(Re(e−iθ Bk)) is constant for all the θ ’s, and, therefore, for each k, d(Bk) = i�0(Re(e−iθ Bk))

for all θ . To prove our assertion, we may assume, in view of Corollary 2.8, that A = ∑p+q
j=1 ⊕A j .

From Lemma 4.2, we have, for each real θ ,

i�0
(
Re

(
e−iθ A

)) =
[( p∑

j=1

⌊
1

2
n j

⌋)
+ #

{
j: 1 � j � p, (−1)(n j−1)/2 cos(n jθ − α j) � 0

}]

+
[ p+q∑

j=p+1

((
1

2
n j

)
− 1

)
+ #

{
j: p + 1 � j � p + q,det

(
Re

(
e−iθ A j

)) �= 0
}

+ 2#
{

j : p + 1 � j � p + q,det
(
Re

(
e−iθ A j

)) = 0
}]

.

Letting
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f j(θ) =
⎧⎨⎩

(−1)(n j−1)/2 cos(n jθ − α j) if 1 � j � p,

det(Re(e−iθ A j)) if p + 1 � j � p + q,

−det(Re(e−iθ A j−q)) if p + q + 1 � j � p + 2q,

and m(θ) = #{ j: 1 � j � p + 2q, f j(θ) � 0} for real θ , we can express d(A) as

d(A) = min
θ∈R i�0

(
Re

(
e−iθ A

)) =
(p+q∑

j=1

⌊
1

2
n j

⌋)
− q + min

θ∈R m(θ). (3)

If θ0 ∈ R is such that m(θ0) = minθ∈R m(θ), we claim that f j(θ0) �= 0 for all j, 1 � j � p + 2q. In-
deed, assume that f j(θ0) > 0 for 1 � j � p1, f j(θ0) = 0 and f j is strictly increasing (resp., strictly
decreasing) on a neighborhood of θ0 for p1 + 1 � j � p1 + p2 (resp., p1 + p2 + 1 � j � p1 + p2 + p3),
f j(θ0) < 0 for p1 + p2 + p3 + 1 � j � p, f j(θ0) > 0 for p + 1 � j � p + q1, f j(θ0) = 0 for p + q1 + 1 �
j � p + q1 + q2, and f j(θ0) < 0 for p + q1 + q2 + 1 � j � p + q, where p1, p2, p3,q1,q2 � 0 with
p1 + p2 + p3 � p and q1 + q2 � q. Then

m(θ0) = (p1 + p2 + p3) + (q1 + q2) + (
q2 + (q − q1 − q2)

) = p1 + p2 + p3 + q + q2.

Since the f j ’s are continuous in θ , there is an ε1 > 0 such that f j(θ0 + ε1) > 0 for 1 � j � p1 + p2
and p + 1 � j � p + q1, f j(θ0 + ε1) < 0 for p1 + p2 + 1 � j � p and p + q1 + q2 + 1 � j � p + q, and
f j(θ0 +ε1) �= 0 for p +q1 +1 � j � p +q1 +q2. Then m(θ0 +ε1) = p1 + p2 +q. Since m(θ0) � m(θ0 +ε1)

or p1 + p2 + p3 + q + q2 � p1 + p2 + q, we obtain p3 = q2 = 0. Similarly, there is an ε2 > 0 such that
f j(θ0 −ε2) > 0 for 1 � j � p1 and p +1 � j � p +q1, and f j(θ0 −ε2) < 0 for the remaining j’s among
1,2, . . . , p + q. Hence m(θ0 − ε2) = p1 + q. We infer from m(θ0) � m(θ0 − ε2) that p2 = 0. This proves
our claim. We conclude from above that

m(θ0) = p1 + q = q + min
θ∈R #

{
j: 1 � j � p, (−1)(n j−1)/2 cos(n jθ − α j) > 0

}
and hence (3) becomes

d(A) =
(p+q∑

j=1

⌊
1

2
n j

⌋)
+ min

θ∈R #
{

j: 1 � j � p, (−1)(n j−1)/2 cos(n jθ − α j) > 0
}

as asserted. �
Corollary 4.6. If A and B are n-by-n weighted permutation matrices with zero diagonals such that the argu-
ments of their corresponding nonzero entries are all equal to each other, then d(A) = d(B).

Proof. This is because the expression of d(A) in (2) is independent of the moduli of the entries
of A. �
Corollary 4.7. Let A be a weighted permutation matrix represented as in Theorem 4.5, and let d = 	 +∑p+q

j=1 �n j/2� + ∑r
k=1	mk/2
. Then d � d(A) � d + �p/2�. Moreover, d(A) = d if and only if

⋂p
j=1 S j �= ∅,

where

S j =
{⋃∞

m=−∞( 1
n j

(α j + π
2 + 2mπ), 1

n j
(α j + 3π

2 + 2mπ)) if 1
2 (n j − 1) is even,⋃∞

m=−∞( 1
n j

(α j − π
2 + 2mπ), 1

n j
(α j + π

2 + 2mπ)) if 1
2 (n j − 1) is odd.

(4)

Proof. Assume that d(A) > d + �p/2�. Then (2) implies that, for any real θ , there are more than
�p/2� many j’s among 1, . . . , p such that (−1)(n j−1)/2 cos(n jθ − α j) > 0. Since there are also more
than �p/2� many j’s for which

(−1)(n j−1)/2 cos(n jθ − α j) = −(−1)(n j−1)/2 cos
(
n j

(
θ + (π/n j)

)− α j
)
< 0.

This is certainly impossible. Thus we must have d(A) � d + �p/2�.
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Finally, the equivalence condition for d(A) = d follows from Corollaries 2.7 and 2.8 and Lemma 4.4.
It is also a consequence of (2) as minθ∈R #{ j: 1 � j � p, (−1)(n j−1)/2 cos(n jθ − α j) > 0} = 0 means
that the minimum 0 is attained at some real θ0 for which (−1)(n j−1)/2 cos(n jθ0 − α j) < 0 for all j,
1 � j � p (cf. proof of Theorem 4.5), which is in turn equivalent to

⋂p
j=1 S j �= ∅. �

Admittedly, for a specific weighted permutation matrix A with zero diagonals, its d(A) is difficult
to compute from the expression (2) in Theorem 4.5. However, at least in two cases, we do have a
more precise description of d(A). The first one is for A to have only positive weights.

Proposition 4.8. Let A be a weighted permutation matrix represented as in Theorem 4.5. If all the weights a( j)
s

and b(k)
t are (strictly) positive, then

d(A) = 	 +
p+q∑
j=1

d(A j) +
r∑

k=1

d(Bk) = 	 +
p+q∑
j=1

⌊
1

2
n j

⌋
+

r∑
k=1

⌈
1

2
mk

⌉
.

Proof. From our assumption, we have α j ≡ ∑n j

s=1 arg a( j)
s = 0 for all j, 1 � j � p +q. For 1 � j � p, let

m = (n j − 1)/4 (resp., m = (n j + 1)/4) if (n j − 1)/2 is even (resp., (n j − 1)/2 is odd). Then ((π/2) +
2mπ)/n j = π/2 (resp., ((−π/2)+2mπ)/n j = π/2). It follows from (4) that the interval (π/2, (π/2)+
(π/n j)) is contained in S j for all j. If N = max1� j�p n j , then (π/2, (π/2)+ (π/N)) ⊆ S j for all j and
thus

⋂p
j=1 S j �= ∅. We conclude from Corollary 4.7 that d(A) = 	 + ∑p+q

j=1 d(A j) + ∑r
k=1 d(Bk). The

expression for d(A) in terms of the n j ’s and mk ’s follows from Lemma 4.4 and Corollary 2.7. �
The final case we consider is for A in Theorem 4.5 to have only two direct summands.

Proposition 4.9. Let A = B ⊕ C , where

B =

⎡⎢⎢⎢⎣
0 b1

0
. . .
. . . bm−1

bm 0

⎤⎥⎥⎥⎦ and C =

⎡⎢⎢⎢⎣
0 c1

0
. . .
. . . cn−1

cn 0

⎤⎥⎥⎥⎦
with nonzero b j ’s and c j ’s. Then d(A) = d(B) + d(C) + 1 if and only if m = n is odd and

∑n
j=1(arg b j −

arg c j) = (2	 + 1)π for some 	, 0 � 	 < n. For the remaining case, we have d(A) = d(B) + d(C).

Proof. Since

d(B) + d(C) � d(A) � d(B) + d(C) +
⌊

1

2
p

⌋
by Corollary 4.7, where p (= 0,1 or 2) is the number of odd-sized matrices among B and C , we
obviously have d(A) = d(B) + d(C) if either m or n is even. For the remaining part of the proof, we
assume that both m and n are odd, and prove that (a) if m �= n, then d(A) = d(B) + d(C), and (b) if
m = n, then d(A) = d(B) + d(C) + 1 if and only if |β − γ | = (2	 + 1)π for some 	, 0 � 	 < n, where
β = ∑n

j=1 arg b j and γ = ∑n
j=1 arg c j . As in (4), let

S =
{⋃∞

	=−∞( 1
m (β + π

2 + 2	π), 1
m (β + 3π

2 + 2	π)) if 1
2 (m − 1) is even,⋃∞

	=−∞( 1
m (β − π

2 + 2	π), 1
m (β + π

2 + 2	π)) if 1
2 (m − 1) is odd,

and let T be defined analogously with m and β replaced by n and γ , respectively.
To prove (a), note that S ′ ≡ S ∩ [0,2π) and T ′ ≡ T ∩ [0,2π) are such that |S ′| = |T ′| = π , and

|S ′ ∪ T ′| < 2π if m �= n. Thus
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∣∣S ′ ∩ T ′∣∣ = ∣∣S ′∣∣+ ∣∣T ′∣∣− ∣∣S ′ ∪ T ′∣∣ > π + π − 2π = 0

and, therefore, S ∩ T �= ∅. Our assertion in (a) then follows from Corollary 4.7.
For the proof of (b), assume that m = n. In this case, it is easily seen that S ∩ T = ∅ if and only

if |S ∩ T | = 0, and the latter occurs exactly when |β − γ | = (2	 + 1)π for some 	, 0 � 	 < n. Our
assertion in (b) again follows from Corollary 4.7. �
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