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Abstract

We propose an efficient framework for dynamic cloud rendering. Based on the proposed simplified lighting model,

the shadow relation table and metaball lighting texture database are constructed in the preprocessing, and features such

as self-shadowing and light scattering can be computed quickly using table lookup at the run time. Clouds are rendered

using textured billboards and alpha blending, which is further speeded up by incorporating the octree hierarchy and the

hierarchical texture caching.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic and photorealistic rendering of cloud is an

indispensable element to flight simulation, outdoor

scenes, and many other virtual environments. Due to

the high computational cost for simulation and render-

ing, lots of research efforts have been devoted to reduce

the computation time, which can be roughly divided into

three categories:
�
 simplifying physics of simulation and modeling [1–9];
�
 photorealistic or special effects rendering [3,10–15];
�
 efficient or real-time rendering [2,16–18].

Recently, the real-time rendering of dynamic cloud has

become a major issue, and an attempt of ours to such a

goal is presented here.
e front matter r 2004 Elsevier Ltd. All rights reserve
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The process of photorealistic dynamic cloud rendering

generally consists of three components: simulation,

modeling, and rendering. For simulation, cellular

automata proposed by Dobashi et al. [2] is employed

here due to its relatively lower computational cost. We

modify some of the original simulation rules in cellular

automata to be suited for run-time simulation. Note

that, due to the limitation of cellular automata, we deal

with only the animation of cumulus-like clouds. The

proposed framework is specially engineered in the

modeling and rendering stages with the following

features:
�

d.
A simplified lighting model is devised, establishing the

shadow relation table (SRT) and the metaball lighting

texture database (MLTDB) in preprocessing stage to

speed up the run-time rendering by reducing the run-

time illumination computation to a table look-up.
�
 An octree representation is constructed for the

simulation volume as the basis for supporting back-

to-front traversal, view frustum culling, hierarchical

www.elsevier.com/locate/cag
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texture caching, and other operations necessary for

real-time rendering.
�
 A hierarchical texture caching that aims to reduce the

texture selection cost and the number of billboards.

The proposed rendering system is implemented on a

dual-CPUs PC, taking into account the load balance

between each CPU and graphics hardware. The

experiment reveals that the proposed method renders

visually convincing results with encouraging FPS ran-

ging from 9 to 60 depending on the location of camera,

the resolution of simulation volume, and the threshold

values of hierarchical texture caching.
2. Related work

In this section, we briefly review the related works of

cloud rendering, regarding the simulation, modeling,

and rendering.

2.1. Simulation

Depending on the application, the approaches to

cloud simulation can either be physics-based [3–5,7-8,19]

or be heuristic [1-2,11–13].

Physics-based cloud simulation has to deal with fluid

dynamics by solving Navier–Stokes equations, which is

computationally expensive. Simplified versions, such as

stable fluid [7] and coupled map lattice (CML) [5], that

discard components of little visual effects have been

proposed for graphics applications. The former does not

deal with vapor–water transition and thus does not fit

for cloud simulation but for smoke, the latter is suitable

for clouds. However, both are time consuming.

Heuristic approaches, most of which being procedural

modeling, are somewhat inexpensive in computation,

but not so ‘‘user friendly’’ and have to be tuned by trial-

and-error. The cellular automata proposed by Dobashi

et al. [2] is perhaps an exception because it is easy to use

and efficient.

Harris et al. simulate the cloud dynamics using

programmable graphics hardware [20]. The cloud

simulation based on partial differential equations are

developed, and a staggered grid discritization is used to

perform the advection of simulation. All the computa-

tions are performed on the graphics hardware.
ble 1

stem overview

Simulation

eprocessing Initial setting (Octree)

n-time Clouds transition rules of

cellular automata
2.2. Modeling

Clouds cannot be modeled as geometric entities, but

as density distribution of some sorts. The treatments of

which can be classified as particle system [6,17], volume

with metaball [2,12,19], and image-based modeling [21].

Particle system may capture the dynamics of gaseous

effects well, but would become cumbersome when highly

detailed rendering results are required. Metaball is a

mathematical model for describing the density field, and

has been widely used for representing volume density of

cloud. The density of a point in the simulation space is

just the sum of all density values of the point computed

from all metaballs covering the point. Image-based

modeling renders clouds on imagery basis.

2.3. Rendering

The mostly concerned issue of cloud rendering is the

photorealistic quality, for which the scattering and

absorbing effects within clouds must be taken care of

[10]. Ray tracing [15] and its extension—photon map

[14], and procedural texturing [11–13,22] are common

techniques for such purposes, but all time consuming.

Some approaches trade image quality for rendering

efficiency [2,17], in which the rendering is in general split

into two passes. The first pass calculates shadow or

illumination and the second pass renders the final image.

Dobashi et al. render dynamic clouds by creating

shadow texture for each metaball from sun in the first

pass and projecting voxels using alpha blending and

texture mapping in the second pass [2]. Harris and

Lastra develop real-time static clouds rendering with

precomputing illumination in first pass and updating

impostor using Schaufler’s method [23] in second

pass [17].
3. System overview

The proposed rendering system for dynamic clouds

consists of the preprocessing and the run-time stage.

Table 1 shows the tasks of simulation, modeling and

rendering involved in preprocessing and run-time phase.

The simulation volume is constructed by the octree

hierarchy. The preprocessing stage initiates the settings
Modeling Rendering

Volume partition MLTDB and SRT construction

Smooth density Two-pass rendering and

hierarchical texture caching
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of cellular automata, and constructs MLTDB and SRT,

which will be used for speeding up the two-pass

rendering at the run-time stage.

The run-time stage starts the running of cellular

automata, which is used to determine the density

distribution over time for each voxel within the

simulation volume. Then the density information is

smoothed into each voxel by a horizontal filter. A two-

pass rendering method is used for cloud rendering. First,

the illumination of the voxels are computed using SRT.

And then the voxels are rendered using textured

billboards in a back-to-front order. To further speed

up the rendering, a hierarchical texture caching mechan-

ism is used to reduce the number of billboards rendered.
4. Preprocessing

4.1. Clouds simulation initialization

Before running the cellular automata, the initial

distribution of the cloud and vapor should be deter-

mined. The phase transition from vapor to water, as well

as the probability associated with the parameters need

also to be initialized. These probability distributions are

controlled by metaball [24] and affect the macrostruc-

ture of clouds. In a metaball, vapor and phase transition

probabilities are set higher in central portions than in

the boundary regions and cloud extinction probability is

set higher in the boundary regions than in the central

portions so that the clouds would appear thinner in the

surroundings and thicker in the middle.

Instead of using ellipsoids for controlling cloud

motion as was done by Dobashi et al. [2], metaball

function is employed in our system via the effects

resulting from the use of horizontal filter at run-time for

smoothing the density distribution.

4.2. MLTDB and SRT

4.2.1. Lighting model

The lighting model involves the computation of

shadow and scattering illumination for each voxel. For

a voxel, let Iin be the input illumination of the voxel and

Iout be the output illumination through the voxel. The

value of Iout is derived from

Iout ¼ I inð1:0 � DvoxelsatÞ; (1)

where Dvoxel is the voxel density, sa is the illumination

attenuation ratio (IAR) to control the attenuation of

illumination, and t is the thickness of cloud. The

computation of Eq. (1) is inexpensive but critically

depends on Iin, of which the evaluation will be detailed

in Section 4.2.2.

The scattering illumination into eye is considered to

be the composite effects of the scattering and the cloud
transparency. It is described as follows:

B ¼

I inf
1
2
a½1 þ M cosðaL;EÞ	 þ SgDcld ; aL;Epp

2
;

I inf
1
2
a½1 þ M cosðaL;EÞ	 þ SgDcld aL;E4p

2
;

þM cosðp� aL;EÞIoutDcld ;

8><
>: (2)

where B is the illumination scattered into eye, aL;E is the

angle between the light ray and the eye ray, Dcld is the

cloud density, a is the albedo, M is the material, and S is

a constant value to approximate the multi-scattering

effects. Note that the cloud density Dcld in a voxel is the

result of multiplying the voxel density Dvoxel by the

projected metaball function, which is the projection of

the metaball function described in [24] into a 2D plane.

In Eq. (2), 1
2
að1 þ M cosðaL;EÞÞ is the phase function

suggested by Blinn [10]. For aL;E less or equal to 901, the

scattering illumination consists of only the scattering,

but for aL;E greater than 901, the light transmits through

the cloud should also be considered.

With the assumption that the distribution of the

multi-scattering is similar to the single scattering, the S

in Eq. (2) is replaced by a constant ss1; and another

constant ss2 is multiplied to Eq. (2) to increase the

brightness of clouds. The two constant values ss2 and ss2

are called pseudo-scattering coefficients (PSC). Eq. (2)

can then be rewritten as:

B ¼

I inf
1
2
a½1 þ M cosðaL;EÞ	 þ ss1gss2Dcld ; aL;Epp

2
;

I inf
1
2
a½1 þ M cosðaL;EÞ	 þ ss1gss2Dcld

þM cosðp� aL;EÞIoutss2Dcld ; aL;E4p
2
:

8><
>:

(3)

4.2.2. Shadow relation table

With the assumption that the sun remains still during

simulation, we can link voxels using a table of 2D grid-

structure, called SRT. SRT is placed between the sun

and the simulation volume and has each of its entries

associated with a linked list linking voxels intersected by

the ray of sun beam in ascending order of distance from

the sun. SRT is established as follows:
(1)
 determine the orientation of incident ray of the sun

beam;
(2)
 place SRT between the sun and the simulation

volume;
(3)
 shoot enough rays from SRT grids to the simulation

volumes in the orientation determined in step 1 until

all voxels are covered;
(4)
 cascade voxles on the same ray in ascending order by

distance from the sun.
Fig. 1 shows the concept of SRT. Voxels A, B, C, D,

and E are linked by rayi in order.

It is possible that a voxel is intersected by more

than one ray, as shown in Fig. 2, which will yield the

incorrect illumination of the voxel. For such a voxel, it is
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reassigned to the ray with the largest value of PCv

��!
� L;

where cv is the voxel’s center.

With the aid of SRT, the input illumination Iin for

every voxel can be determined very quickly, which is the

output illumination Iout of the previous voxel in the

linked list.

4.2.3. Metaball lighting texture database

With Iout substituted by Eq. (1), the scattering

illumination in Eq. (3) can be rewritten as

B ¼

I inf
1
2
a½1 þ M cosðaL;EÞ	 þ ss1gss2Dcld ; aL;Epp

2
;

I inf
1
2a½1 þ M cosðaL;EÞ	 þ ss1

þM cosðp� aL;EÞð1:0 � DvoxelsatÞg aL;E4p
2
:

ss2Dcld ;

8>>>><
>>>>:

(4)

In Eq. (4), B is to be determined using parameters

including Iin, Dcld, Dvoxel, and aL;E derived at run-time.

Since Iin can be calculated quickly using SRT and Eq.

(1), rendering speed-up would be possible if the major

illumination calculations can be replaced by a table

look-up. This is achieved by the proposed MLTDB,

which is a database of 32
 32 metaball textures varying

in 64 voxel densities and viewed from 37 aspects. Each
metaball texture stores the scattering illumination of the

cloud in a voxel into eye computed using Eq. (4) without

multiplying by Iin.

Using Dvoxel and aL;E as indices to the MLTDB, we

can get a metaball texture, which is then multiplied by Iin

to compute the scattering illumination B. The resultant

scattering illumination is later used as the texture that

associated with the billboard of the voxel for rendering.

Fig. 3 depicts metaball textures selected from MLTDB,

in which 64 textures are listed from the left to right and

from bottom to the top for increasing aL;E :
5. Run-time process

Fig. 4 illustrates the detail flowchart of the run-time

processing. Cellular automata is used for cloud simula-

tion. The rendering is handled by a two-pass method

based on a hierarchical octree structure. In the first pass,

shadows are calculated using SRT. The second pass

renders the final image using textured billboards in a

back-to-front order.
5.1. Simulation using cellular automata

Cellular automata for clouds simulation was proposed

by Dobashi et al. [2]. It extends Nagel and Raschka’s

approach [25] in several aspects by considering the

extinction of clouds, wind effects, faster simulation using

bit-field manipulation and cloud motion control by

using ellipsoids. We modify the cellular automata for

run-time simulation by adding the following features:
�
 We consider the extinction ability of clouds in [1], and

add the cloud-to-vapor probability to transform the

clouds to vapor rather than just disappear.
�
 We make the constraint that the cloud growing and

disappearing occur only in boundary regions.
�
 We reduce the growing ability of clouds to have the

balance between it and the extinction ability.
�
 We add upper and lower bound for the number of

cloud voxels and vapor voxels

to avoid the cloud growing or disappearing too much

in a timestamp.

Based on the rules proposed by Dobashi et al. [2] and

our modifications, the cld can be written as

cldði; j; k; tiþ1Þ ¼ :extði; j; k; tiÞ

^ ðcldði; j; k; tiÞ _ actði; j; k; tiÞÞ; ð5Þ

where ext is a new rule for cloud extinction, defined later

in Eq. (12).

There are three types of vapor as follows:

humði; j; k; tiþ1Þ ¼ ISðrndoPcld2humÞ; (6)
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humði; j; k; tiþ1Þ ¼ humði; j; k; tiÞ ^ :actði; j; kÞ; (7)

humði; j; k; tiþ1Þ ¼ ðhumði; j; k; tiÞ ^ :actði; j; k; tiÞÞ

_ ðISðrndoPhumði; j; k; tiÞÞ

^ f humði; j; kÞÞ; ð8Þ

where

f humði; j; kÞ ¼ cldði � 1; j; kÞ _ cldði þ 1; j; kÞ

_ cldði; j � l; kÞ _ cldði; j þ 1; kÞ

_ cldði; j; k � 1Þ _ cldði; j; k þ 1Þ: ð9Þ

Eq. (6) is used when the clouds disappear, which have

the possibility to transform to vapor depending on the

cloud-to-vapor probability Pcld2hum. Eq. (7) is the same

as the original rule in [2], which is used when the number

of cloud voxels and vapor voxels reach the upper bound.

Eq. (8) is a modified rule, which is used when the

number of cloud voxels and vapor voxels does not reach

the upper bound. Eq. (9) restricts the growth of vapor to

be only in the boundary region of clouds.
The ability of transiting vapor to cloud can be

rewritten as

actði; j; k; tiþ1Þ ¼ :actði; j; k; tiÞ ^ humði; j; k; tiÞ

^ ðfactði; j; kÞ_

ISðrndoPactði; j; k; tiÞÞÞ; ð10Þ

where

factði; j; kÞ ¼ actði � 1; j; kÞ _ actði þ 1; j; kÞ

_ actði; j � 1; kÞ _ actði; j þ 1; kÞ

_ actði; j; k � 1Þ _ actði; j; k þ 1Þ: ð11Þ

Eq. (10) is the same as the original rule in [2]. Based

on Eq. (11), the affected region of act is smaller than

that of the original rule in [2], and in consequence,

balancing the abilities between the growth and extinc-

tion of clouds.

The extinction of clouds will work only when the

number of cloud voxels greater than the lower bound,

which is written as
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extði; j; k; tiþ1Þ ¼ ð:extði; j; k; tiÞÞ ^ cldði; j; k; tiÞ

^ ISðrndoPextði; j; k; tiÞÞ

^ f extði; j; kÞ; ð12Þ

where

f extði; j; kÞ ¼ ð:cldði � 1; j; kÞ ^ :humði � 1; j; kÞÞ

_ ð:cldði þ 1; j; kÞ ^ :humði þ 1; j; kÞÞ

_ ð:cldði; j � 1; kÞ ^ :humði; j � 1; kÞÞ

_ ð:cldði; j þ 1; kÞ ^ :humði; j þ 1; kÞÞ

_ ð:cldði; j; k � 1Þ ^ :humði; j; k � 1ÞÞ

_ ð:cldði; j; k þ 1Þ ^ :humði; j; k þ 1ÞÞ: ð13Þ

Eq. (13) reveals that the clouds disappear only in the

boundary region.

The rules for clouds advect by wind is the same as the

rules in [2].

5.2. Rendering

A two-pass rendering method is used to render the

cloud images. Section 5.2.1 describes the first pass

rendering, which is used to calculate the illumination of

all voxels. Section 5.2.2 introduces the second pass

rendering, which traverses the volume in a back-to-front

order, and renders the cloud images using textured
billboards. In Section 5.2.3, a hierarchical texture

caching scheme is proposed to speed up the rendering

by reducing the number of billboards to be rendered.

5.2.1. First pass rendering

The first pass calculates the illumination of each voxel

in the simulation volume using SRT. For each ray in

SRT, we traverse the voxels associated with the ray in

order. The illumination for each leaf voxel of octree is

calculated using the following equation, which is

rewritten from Eq. (1):

I i ¼ I i�1ð1:0 � DisatÞ; (14)

where Ii is the illumination for the ith voxel, and Di is the

voxel density.

5.2.2. Second pass rendering

The second pass renders the clouds in a back-to-front

order by traversing the octree. The clouds are rendered

using textured billboards associated with each leaf voxel.

For each leaf node traversed, the texture for the voxel is

obtained by first selecting the metaball texture from

MLTDB using voxel density Dvoxel and aL;E as indices,

and then multiplying it by Ii before rendering to texture.

A back-to-front composition is performed as follows:

Cf ði þ 1Þ ¼ CbðiÞ þ ð1 � DÞCf ðiÞ; (15)

where Cf(i+1) is the new color value to be filled into the

frame-buffer, Cf (i) is the original color value in the

frame buffer, Cb is the voxel’s textured billboard to be

rendered, and D is the density. The view-frustum culling

is also performed during the octree traversal to reduce

the number of billboards to be rendered.

5.2.3. Speed-up scheme

Similar to the concept of level-of-detail modeling, a

hierarchical texture caching is proposed to render the

textured billboards in internal nodes, instead of leaf

nodes whenever possible, aiming to reduce the number

of billboards rendered. Instead of caching the rendered

images as in [23,26], we cache the metaball textures and

billboards. Four tests of error metric are required to

check if the cached information can be re-used. They are

distance test, angle test, voxel illumination test, and

voxel density test, described as follows:
�
 Distance test: Rl=do�d

d is the current distance between voxel and eye point.

Rl is the half-length of voxel at level l. �d is the

distance tolerance. This test is a variant of that in the

work of Dobashi et al. [27] and controls the texture

selection in different level depending on distance.
�
 Angle test: biþ1 � bioatex;db

bi is the cached aL;E value and biþ1 is the new aL;E

value. atex;db is the angle increment used for sampling

aL;E in MLTDB. The changes of aL;E implies that the
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angle changes between the camera and the billboard,

and affects the life cycle of both the cached texture

and the cached billboard.
�
 Voxel density test: ðDiþ1 � DiÞ=Nvoxelo�D

Di and Di+1 are the cached voxel density and the new

voxel density, respectively. Nvoxel is the number of leaf

nodes covered by the internal node. �D is the density

tolerance. This test checks if the density variation in

an internal node is under �D: If it is true, the same

texture can be re-used.
�
 Voxel illumination test: ðI iþ1 � I iÞ=Nvoxelo�I

Ii and Ii+1 are the cached illumination and the

new illumination, respectively. Nvoxel is the number

of leaf nodes covered by the internal node. �I is the

illumination tolerance. This test checks if the
ble 2

vironment and parameter setting

rameter Value

ind speed 1

ind Direction West-to-East

erage Pact 0.01

erage Pext 0.1

ld2hum 0.8

oud radius (macrostructure) 6.0–10.0

wer bound of clouds and vapor 0.05

e of octree leaf node 2.0

n angle 1201

0.2

2.0

mination attenuation ratio 0.07

ble 3

ttings for Experiments 1–4

p. no. Volume Avg. Phum

64
 16
 64 0.1

64
 16
 64 0.1

128
 16
 128 0.1

64
 16
 64 0.5

ble 4

rformance results of experiments 1–4

p. no. Single-thread

Simulation

time (ms)

First-pass

time (ms)

Second-pass

time (ms)

13.685 11.176 27.412

13.640 11.169 9.763

53.737 45.901 101.241

14.959 11.722 43.588
illumination variation in an internal node is under �I .

The cached metaball texture can be re-used if the test

passes.

The distance and angle tests are used to decide if the

cached billboard can be re-used after the viewing

conditions change. The angle, voxel illumination, and

voxel density tests are used to check if the cached

metaball texture can be re-used after cloud density

changes.

The hierarchical texture caching is embedded in

the octree traversal. In the first pass rendering,

after the illumination values of the leaf nodes are

computed, the illumination Iin and the voxel density

Dvoxel of internal nodes are computed by a bottom-up

process. The voxel density of an internal node is the

maximum densities of its eight children, while the voxel

illumination of an internal nodes is computed by

averaging the illumination values of its eight children.

For each node in the octree traversal during the

second pass rendering, if its cached information exists,

the four tests for the node are examined. If all four tests

succeed, the cached texture is re-used. Otherwise, the

cached information is removed and each of its eight

children is recursively traversed until reaching a node for

which all tests succeed or until reaching the leaf node. A

bottom-up process is then performed to update the

cached information in internal nodes. The scattering

illumination of the clouds in an internal node can be

obtained by its metaball texture, selected from MLTDB

using the voxel density and the current aL;E value,

multiplied by its voxel illumination.
Upper bound Eye position

0.2 (128.0, 34.0, 128.0)

0.2 (64.0, 34.0, 64.0)

0.2 (256.0, 34.0, 256.0)

1.0 (128.0, 34.0, 128.0)

Multi-thread Avg. number of

billboards

Avg. FPS Avg. FPS

15.017 30.606 12,959

20.826 59.971 3438

4.6785 9.013 51,109

12.028 22.365 22,721
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6. Experimental results

The programs are implemented in C/C++ and

OpenGL and run on a dual AMD Opteron 2.2GHz

CPUs machine with NVidia Quadro FX 4000 graphics

card. Two threads are used, one for cloud simulation

and the first pass rendering, the other for the second
Fig. 6. Screenshot o
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Fig. 5. Performance statistic of Experiment 1.
pass rendering and the hierarchical texture caching

mechanism.

We first describe the parameter settings that are

common for our performance testing. In Table 2, Phum is

the probability of vapor, Pact is the vapor-to-cloud

probability, Pext is the probability of cloud extinction,

and Pcld2hum is the probability of cloud-to-vapor. Table 3

lists the other parameter settings for experiments 1–4.

The parameters include volume size, average Pnum,

upper bound on the number of cloud and vapor voxels,

and eye position. Experiments 1–3 have the same

average Phum and upper bound, but different voxel sizes

and eye positions. The experiment 4 tests the perfor-

mance of cloudy weather generated with larger average

Phum and upper bound. In all experiments, camera looks

at the direction of north-west, and the clouds move from

upper-left to lower right, which is from west to east.

Table 4 shows the results of the average timing

performance and the average number of billboards
f cloud image.
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Table 7

FPS performance and image quality for Experiments 1, 3, and 4

using hierarchical texture caching

Exp. no. FPS (multi-thread) RMS SNR

Without HTC With HTC

1 30.606 35.322 6.965 21.0783

3 9.013 18.021 8.509 20.623

4 22.365 31.574 10.003 22.990
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Fig. 7. Quality statistic of Experiment 1 with hierarchical

texture caching.
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rendered. The time required for simulation and the first-

pass rendering are almost constant, and the time used

for the second-pass rendering varies depending on the

number of billboards used. Also, in our experiment, the

time required for second-pass rendering is generally

much more than the time for simulation and the first-

pass rendering. Fig. 5 is the performance statistic of

Experiment 1 in 1000 frames, and some of its cloud

images are listed in Fig. 6.

Table 5 lists the average performances on a standard

PC with a single Intel Pentium-4.3.0 GHz CPU and a

NVidia Geforce 6800 graphics card. The simulation and

first-pass rendering are performed at an interval of 0.5 s

and 1.0 s, and the second-pass rendering also blends the

results of two consecutive simulation steps to get the

inbetween density and illumination values for rendering.

The higher interval yields to slower advection in

simulation, but better FPS performance.

Table 6 shows the parameter setting for hierarchical

texture caching incorporated in Experiments 1, 3, and 4.

Table 7 depicts the results on FPS performance and

image quality. Two image quality measurement methods

are used. The root-mean-square is computed using

erms ¼
1

MN

XM�1

x¼0

XN�1

y¼0

½f̂ ðx; yÞ � f ðx; yÞ	2
" #1=2

and the signal-to-noise ratio is computed as

SNR ¼ 10 
 log

PM�1
x¼0 f̂ ðx; yÞ2PM�1

x¼0

PM�1
y¼0 ½f̂ ðx; yÞ � f ðx; yÞ	2

" #
:

Fig. 7 illustrates the image quality statistic of

experiment 1 over 500 frames, and Fig. 8 shows some
Table 5

Performance results of Experiments 1–4 using a standard PC

with a single CPU

Exp. no. FPS in 0.5 s interval FPS in 1.0 s interval

1 20.936 22.732

2 58.734 59.812

3 7.009 7.571

4 15.56 16.99

Table 6

Parameter setting for the hierarchical texture caching

Exp. no �d �D �I

1 0.027 0.12 1.0

3 0.016 0.12 1.0

4 0.029 0.12 1.0
of cloud images rendered with and without hierarchical

texture caching.

Images in Fig. 9 are rendered using different

illumination attenuation ratios (IAR). The higher IAR

value, the faster the illumination attenuates, which

results in more clear shadows. Fig. 10 are rendered in

different pseudo-scattering coefficients (ss2). Higher ss2

value makes the clouds look more bright.

By controlling the simulation parameters and illumi-

nation parameters, we can simulate different weather

conditions. Fig. 11 demonstrates some images of the

different weathers.
7. Conclusion

We have proposed an efficient rendering framework

for dynamic clouds with features includes:
�
 A simplified lighting model which splits the lighting

calculation into preprocess ing and run-time stage in

such a way that expensive computing steps are done

in preprocessing.
�
 The SRT that records the spatial relationship of

voxels along lighting direction. Based on SRT,

illumination for each voxel can be determined very

quickly.
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Fig. 9. Images rendered in different illumination attenuation ratios.

Fig. 8. Cloud images rendered with and without hierarchical texture caching.
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�
 The MLTDB that stores the metaball texture for each

density and viewing angle. Based on MLTDB,

computing scattering illumination of a voxel involves

a table look-up and a multiplication.
�
 The octree structure for efficient back-to-front

traversal and view frustum culling.
�
 A hierarchical texture caching that aims to reduce the

texture selection cost and the number of billboards.

The experiments have shown that, using the proposed

techniques, nearly realistic cloud animation can be
rendered in nearly real time on a standard PC, or in

real time on a dual-CPUs PC.

Our current implementation does not take into

account the advantages of modern graphics hardware.

The programmability of the modern graphics hardware

should be explored to share the computation load of

CPU and to speed up the simulation and rendering. The

cellular automata we use for cloud simulation does not

support many other kinds of clouds, such as stratus or

cirrus. Other simulation methods, such as CML, may be

applied to solve this problem.
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Fig. 10. Images rendered in different pseudo scattering coefficient (sS2).

Fig. 11. Different weather conditions.
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