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Abstract

We consider the spectrum of birth and death chains on an n-path. An iterative scheme is proposed to
compute any eigenvalue with exponential convergence rate independent of n. This allows one to determine
the whole spectrum in order n? elementary operations. Using the same idea, we also provide a lower bound
on the spectral gap, which is of the correct order on some classes of examples.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V, E) be the undirected finite path with vertex set V = {1,2, ..., n} and edge set
E={{i,i+1}:i=1,2,...,n—1}. Given two positive measures 7, von V, E with (V) =1,
the Dirichlet form and variance associated with v and 7 are defined by

n—1
Ev(f, g) = Z[f(i) — [+ DIgl) — gl + DIv(G,i +1)

i=1

and
V: — 2y 2
ary (f) = (f*) — ()",
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where f, g are functions on V. When convenient, we set v(0, 1) = v(n, n + 1) = 0. The spectral
gap of G with respect to 7, v is defined as

A% = min {M
i Vary (f)

Let M;?,u be a matrix given by Mgv(i,j) =0for|i — j| > 1 and

‘ fis non-constant} .

v(i, j)
(@)’
Obviously, )‘7?,1) is the smallest non-zero eigenvalue of Mg e
Undirected paths equipped with measures 7, v are closely related to birth and death chains. A

birth and death chain on {0, 1, 2, ..., n} with birth rate p;, death rate g; and holding rate r; is a
Markov chain with transition matrix K given by

v(i —1,i)+vG,i+1)

G /: - _
M;-[,u(li ]) - JT(I)

Vi — j| =1, ME G, i) =

K@, i+1)=pi, K@, i—-1)=gq, K@, i)=r, Y0=<i=<n, (1.1)

where p; + ¢gi +ri = 1 and p, = go = 0. Under the assumption of irreducibility, that
is, pigi+1 > 0 for 0 < i < n, K has a unique stationary distribution 7w given by 7 (i) =
c(po---pi—1)/(q1 - qi), where c is the positive constant such that Z?:o 7 (i) = 1. The smallest
non-zero eigenvalue of I —K is exactly the spectral gap of the path on {0, 1, ..., n} with measures
w,v,where v(i,i +1) =n(i)pi = (i + 1)gi+1 for0 <i < n.

Note that if 1 is the constant function of value 1 and v is a minimizer for )Lgv, then ¥ —m (¥)1
G

is an eigenvector of MﬂG’ y- This implies that any minimizer ¥ for A, satisfying 7(y) = 0

satisfies the Euler-Lagrange equation,

g @Y @) = @) — G — DIl — 1) + [ @) — ¥ + DIvG, i + 1), (1.2)

forall 1 < i < n. Assuming the connectedness of G (i.e., the superdiagonal and subdiagonal
entries of Mg , are positive), the rank of Mg , — Al is at least n — 1. This implies that all
eigenvalues of Mg , are simple. See Lemma A.3 for an illustration. Observe that, by (1.2), any
non-trivial eigenvector of Mg , has mean O under 7. This implies that all minimizers for the
spectral gap are of the form ays + b1, where a, b are constants and  is a nontrivial solution of

(1.2). In 2009, Miclo obtained implicitly the following result.

Theorem 1.1 (/15, Proposition 1]). If ¥ is a minimizer for 1S , then y must be monotonic, that

T,

is, either (i) < Y@@+ D foralll <i <nory(i)>y@@+1)foralll <i <n.

One aim of this paper is to provide a scheme to compute the spectrum of Mg »» in particular,

the spectral gap. Based on Miclo’s observation, it is natural to consider the following algorithm.

Choose two positive reals Ag, a in advance and set, fork =0, 1, ...,

L (1) = —a,

1) — P s N . N1+
2 i 1) = i) - WD =¥ = DG = L 1) = em (Y (D))

v@,i+1) ’ (A1)
for1 <i <n, wherett = max{z, 0},
E Wk, Vi)
31 = ———.
Var; (Vi)

The following theorems discuss the behavior of Ay.
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Theorem 1.2 (Convergence to the Exact Value). Referring to (Al), if n = 2, then Ay = Ag’v for
all k > 1. If n > 3, then the sequence (M, Vi) satisfies

(1) If o = AS ,, then dx = 1S, for all k > 0.

T,

2) If o # kg’v, then A > Mg > )»gyvfork > 1.
(3) Set (A*, ™) = limg— oo (A, Yi). Then, A* = E,(Y*, ¥v*)/Var, (v*) = Agv and 7w (y*)
=0.

Theorem 1.3 (Rate of Convergence). Referring to Theorem 1.2, there is a constant ¢ € (0, 1)
independent of the choice of (Ao, a) such that 0 < iy — Ag’v < ak_l)qfor allk > 1.

By Theorem 1.3, we know that the sequence A; generated in (A1) converges to the spectral
gap exponentially but the rate (—logo) is undetermined. The following alternative scheme is
based on using more information on the spectral gap and will provide convergence at a constant
rate.

Choose a > 0, Ly < )LJ(T;,V < Up in advance and set, fork =0, 1, ...,

1
L) = —a, A = E(Lk + Uk)
{[Yx () — v — DG — 1,0) — L (DY (D}

29 + 1) = Ye(i) + Y : a2

for 1 <i < n, where 7 = max{z, 0},
Liv1 = Lg, Upp1 = A if (i) > 0
3. Y Lit1 = M, U1 = Uy ifw(P) <0
Lit1 = Upt1 = M it w () = 0.

Theorem 1.4 (Dichotomy Method). Referring to (A2), it holds true that
0 < max{Uy — A% ,, A%, — L} < (Up — Lp)27%,  Vk = 0.

T,V
In Theorem 1.4, the convergence to the spectral gap is exponentially fast with explicit rate,
log2. See Remark 2.2 for a discussion on the choice of Ly and Uy. For higher order spectra,
Miclo has a detailed description of the shape of eigenvectors in [14] and this will motivate the
definition of similar algorithms for every eigenvalue in spectrum. See (D;) and Theorem 3.4 for
a generalization of (A2) and Theorem 3.14 for a localized version of Theorem 1.3.

The spectral gap is an important parameter in the quantitative analysis of Markov chains. The
cutoff phenomenon, a sharp phase transition phenomenon for Markov chains, was introduced by
Aldous and Diaconis in early 1980s. It is of interest in many applications. A heuristic conjecture
proposed by Peres in 2004 says that the cutoff exists if and only if the product of the spectral
gap and the mixing time tends to infinity. Assuming reversibility, this has been proved to hold
for LP-convergence with 1 < p < oo in [2]. For the L'-convergence, Ding et al. [10] prove
this conjecture for continuous time birth and death chains. In order to use Peres’ conjecture in
practice, the orders of the magnitudes of spectral gap and mixing time are required. The second
aspect of this paper is to derive a theoretical lower bound on the spectral gap using only the birth
and death rates. This lower bound is obtained using the same idea used to analyze the above
algorithm. For estimates on the mixing time of birth and death chains, we refer the readers to
the recent work [4] by Chen and Saloff-Coste. For illustration, we consider several examples of
specific interest and show that the lower bound provided here is in fact of the correct order in
these examples.
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This article is organized as follows. In Section 2, the algorithms in (A1)—(A2) are explored
and proofs for Theorems 1.2-1.4 are given. In Section 3, the spectrum of Mg , 1s discussed
further and, based on Miclo’s work [14], algorithm (A2) is generalized to any specified
eigenvalue of Mg ,- Our method is applicable for paths of infinite length (one-sided) and this
is described in Section 4. For illustration, we consider some Metropolis chains and display
numerical results of algorithm (A2) in Section 5. In Section 6, we focus on uniform measures
with bottlenecks and determine the correct order of the spectral gap using the theory in Sections 2
and 3. It is worthwhile to remark that the assumptions in Section 6 can be relaxed using the
comparison technique in [7,8]. As the work in this paper can also be regarded as a stochastic
counterpart of theory of finite Jacobi matrices, we would like to refer the readers to [18,19] for a
complementary perspective.

2. Convergence to the spectral gap

This section is devoted to proving Theorems 1.2—1.4. First, we prove Theorem 1.1 in the
following form.

Lemma 2.1. Let ). > 0 and ¥ be a non-constant function on V. Suppose (A, ) solves (1.2) and
Y is monotonic. Then,  is strictly monotonic, that is, either Y (i) < ¥ (i + 1) for 1 <i <nor
V@) >y +1Dforl <i<n.

Proof. Obviously, (1.2) implies that 7 () = 0. Without loss of generality, it suffices to consider

the case when ¥ (1) < 0 and ¥ (n) > 0. Since ¥ is non-constant and Ag’v > (, we have

Y1) < ¥ (@) and ¥y(n — 1) < ¥(n). Note that if there are | < i < j < n such that
vi—1D <v@,v() <¥(G+Dand yk) = ¢@) = () fori < k =< j, then (1.2)
yields

ALY @) =@ — i — DI — 1) +[¥ @) — ¥ + DIvG, i +1) > 0
and

ALY =) =¥ — DG =1L D+ () =G+ DIv(, j+1) <0,
a contradiction. Thus, ¥ is strictly increasing.  [J

We note the following corollary.

Corollary 2.2. Let (A, ) be a pair satisfying (1.2). Then, L = Ag’v if and only if ¥ is
monotonic.

Proof. One direction is obvious from Theorem 1.1. For the other direction, assume that i is
monotonic and let ¢ be a minimizer for /\,fj,v with w(¢) = 0. Since (A, ¥) and (xg{v, @) are
solutions to (1.2), one has

(W) = E W, ¢) = 28w ().

By Lemma 2.1, ¢ and ¢ are strictly monotonic and this implies &, (¥, ¢) # 0. As a consequence
of the above equations, we have A = )»g’v. g

The following proposition is the key to Theorem 1.2.
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Proposition 2.3. Suppose that (A, ) satisfies . > 0, ¥ (1) < Oand, for 1 <i <n,

{[y (@) =g — DG —1,i) = An (@)Y @)}
v(i,i+1) ’

where tT = max{t, 0}. Then, the following are equivalent.

(1) & (¥, ¥) = AVarg ().
2) 7(¥) =0.
(3) A=21¢,.

Furthermore, if n > 3, then any of the above is equivalent to

@) E,(W, ¥) = AZ  Var(y).

Yi+1D)=v3G + 2.1)

Remark 2.1. For n = 2, it is an easy exercise to show that Ag’v = v(1,2)/(@ (1) (2)). By
following the formula in (2.1), one has ¥(2) = (D[l — Ax(1)/v(l,2)], which leads to

Ev (i, ) /Varz () = 25,
Proof of Proposition 2.3. Set B = {1 <i < n|yYy () = Yv(n)} and B = {1, 2, ..., ip}. Since
¥(l) <0and X > 0,y (1) < ¥(2) and B¢ is nonempty. According to (2.1), ¥ is non-decreasing.
Note that if Y (i) = ¥ (i + 1), then ¥ (i) > Oand ¥ (i +2) = (i + 1). This implies y is strictly
increasing on {1, 2, ...,ip + 1} and, for I <i <,
Ar(@Y (@) =[Y@) -y @+ DIvGE i+ D+ Y@ —¢G@—DIvG —1,0).
Multiplying v (i) on both sides and summing over all i in B¢ yields
io io—1
2 W) = Y @) — i + D, i+ 1)
i=1 i=1
+ ¥ (o) [ (io) — ¥ (o + DIv(o, io + 1)
= &, ) + Yo + DIY (o) — ¥ (o + DIv(io, io + 1)

0
=&, ) + Ay (m) YY),
i=1

This is equivalent to

Ev(Y, ¥) = AVarg (V) + Ar(Y) [ (¥) — ¥ (n)], (2.2)
which proves (1)< (2).
If A = Agv, then i is an eigenvector for Mgv associated to )ngv. This proves (3)=(2).

For (2)=(3), assume that w () = 0. In this case, ¥y must be strictly increasing. Otherwise,
Y (i) =¥ (n) > 0fori € B and, according to (2.1), this implies

n—1 n—1
AWVarg () > 1w @OY?E) = Y [ @) — v+ DIPvG, i+ 1) = EW, ¥),
i=1 i=1

which contradicts (1). As i is strictly increasing and 7w () = 0, (A, ) solves (1.2). By
Corollary 2.2, A = )\g’v.

To finish the proof, it remains to show (4)=(3) ((3)=(4) is obvious from the equivalence
among (1), (2) and (3)). Assume that &, (Y, ) = )»gvVarn(l/f). By Lemma 2.1, ¢ is strictly
monotonic and this implies, for 1 <i < n,

Ay (@) =@ - @+ Dv@, i+ D+ [Y3E) -G - DvG = 1,0).
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G

WL E) — @) =Y @) — Y + DI i+ D)+ [Y @) — ¥ — DIvi — 1,0).
If A # AC , the comparison of both systems yields

T,V
A T (¥)
,\gv .

As 1 is a minimizer for A one has, for1 <i <n,

V1<i<n.

Y@i) =
Asn >3,y (1) = ¢ (2), a contradiction! This forces A = kg’]}, as desired. [

The following is a simple corollary of Proposition 2.3, which plays an important role in
proving Theorem 1.4.

Corollary 2.4. Let n > 3. For A > 0, let ¢, be the vector generated by (2.1) with ¢(1) < O.
Then, (A — )\gv)n(q))\) > 0 for A > 0and A # )\g’v.

Proof. Without loss of generality, we fix ¢, (1) = —1 forall A > 0. Set T (L) = 7 (¢;). To prove
this corollary, it suffices to show that

<0 ifa <Al
T(x . G
>0 ifa>Aa7,.
For A > 0, define L(X) := &, (Px, ¢5)/Vary (¢;). By (2.2), one has

LG) — A= AT W) = d2W] 2.3)

Var (¢,.)
Since ¢, is non-constant, (¢, ) < ¢, (n). This implies 7'(A) < 0 for A € (0, kg,u).

For A > )\g’v, set I = ()»g,v, 00). By Proposition 2.3, T(A) = 0 if and only if A = Ag’v.
By the continuity of T, this implies either T(/) C (—00,0) or T(I) C (0, 0c0). In the case
T(I) C (—00,0), one has L(1) > A for A € I. As L(I) is bounded, L¥(}) is convergent with
limit 2 > ¢, and this yields

ATV (¢5) — ¢ (n)]
Vary (¢7)

a contradiction. Hence, T (1) > 0 for A > )Lg’v. O

> 0,

0= lim (L) — LFoo] =

Proof of Theorem 1.2. The proof for n = 2 is obvious from a direct computation and we deal
with the case n > 3, here. By the equivalence of Proposition 2.3(3)-(4), if Ao = A8 | then

v

M= Ag, forallk > 1.If &g # A, then Ax > AZ for k > 1. Note that (A, ¥%) solves the

T,V

system in (2.1). By (2.2), this implies

Mot — g = Mee () [ (Yrie) — Iﬂk(n)], vk > 0.

Varz (V)
The strict monotonicity of A¢ in (2) comes immediately from Corollary 2.4. In (3), the continuity
of (2.1) in A implies that (A*, ¢¥*) is a solution to (2.1) and &, (¢¥*, ¥*) = A*Var(y*). By
Proposition 2.3, A* = )\,ﬂ{v and w(¥*) =0, as desired. [J

Proof of Theorem 1.3. Recall the notation in the proof of Corollary 2.4: for A > 0, let ¢, be
the function defined by (2.1) and L(X) = &,(¢;., ¢5)/Vary (¢,). By (2.2) and Corollary 2.4,
L(x) e WS, 1) fora > )\7(1;,\;- As L is bounded, Theorem 1.3 follows from Lemma A.1. [

T,V
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Proof of Theorem 1.4. Immediate from Corollary 2.4. [

In the end of this section, we use the following proposition to find how the shape of the
function ¥ in (2.1) evolves with A. In Proposition 2.5, we set ¢, = ¥ when 1 is given by (2.1).
It is easy to see from (2.1) that ¢, is strictly increasing before some constant, say ip = ig(A),
and then stays constant equal to ¢, (ig) after ig. The proposition shows how the constant ig(A)
evolves.

Proposition 2.5. For A > 0, let ¢ be the function generated by (2.1) with ¢, (1) = —1 and, for
1<i<nsetT;()) = th:l ¢ (D (Q). For 1 <i < n, let

ai(M) =1+nG+1D/m@) —Ain@+ D/vi, i+ 1),

a1 0 0 . 0
7 (3) .
E 612()\,) 1 0
0 ﬂ az(L) :
A = 7(3) , (2.4)
0 0 RS . 0
ai—1(A) 1
0 Do
7 (i)

and let .9 be the smallest root of det A; () = 0. Then,

(1) )Lgu = (=D - y\=2) .. D)

) 3.() < i +1) =i +2) for x € [AD A" Dyand 1 <i <n —2, where M) := .
(3) ¢a(n— 1) < ¢(n) for € (0, A=),

In particular, T4 (A) = —mw(1)det A;(A) for & € (0, AY"D) and (A — AT, (1) > 0 for
re (0,2 NURD co)ywithl <i <n-—1.

Proof. By Lemma A2, AV > 1@ > ... > A=D > 0and, for 1 <i <n —1,

>0 Vi e (—o0,A®)
det A;(3) {<0 Vi e (0, 20Dy, 2.5
where A9 = co. Note that if T;(A) <Oforsome 1l <i <n — 1, then
N DG — 1. ) — A . o
G+ 1) =)+ (P2 (j) — & (j )]'(J. J) (J)¢A(J)’ Vi<j<i
v(j,j+1
This implies
A 4
L+ 1) = ) — ——— j ), Vl<t<i. 2.6
G+ D) =60 — oy ;numm <e<i (2.6)

Multiplying (¢ + 1) and adding up 7, (1) yields

7+ 1) .
Tor1 (W) =ae(W)Te (M) — Wﬂq(/\), Vi<t <i.
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From the above discussion, we conclude that if 7; (1) < 0, then

Tir1(X) = —m(1)det Ag(R), V1<t <i. 2.7)
When £ =i — 1, (2.5) implies det A; _;() > 0 for A < 1G=D_ By the continuity of 7; and
det A;_, if there is some A < A4~D such that T;(1) < 0, then T;(A) = —m (1) det A; 1 (1) for
A < A=V As a consequence of (2.7) with £ = i, this will imply Tj1(2) = —m (1) det A; (A)
for o < AU=D_ Hence, it remains to show that 7T;(1) < 0 for some A < ')»(’_1). To see
this, according to Corollary 2.4, one can choose a constant A < min{)»g,v, A(‘_l)} such that

Th—1 (X) < 0. Since ¢, (i) is non-decreasir_lg in i, we obtain Ti(X) < 0, as desired. This proves
Tix1(A) = —m(l)detA;(A) for A < AU~V In particular, T,(A) = —m(1)detA,_(}) for
A < 20172 By Corollary 2.4, we have A*~1 = ¢ . This proves Proposition 2.5(1).
Next, observe that, for A € ()»(i), A(i_l)),
i+1 i
S a(er() =Tis1 () >0, Y 7(Hn(j) =Ti(h) <O.
Jj=1 j=I1
By (2.6), it is easy to see that [¢; (i + 1) — ¢, ()]v(i,i + 1) = —AT;(A) > O and

(0.0 +2) =0 + D@ + 1,0 +2)
={lga(i + 1) — (DG, i + 1) — Aw(i + Dgp(i + D}F
= {-ATi i} =0.
This proves Proposition 2.5(2). To prove Proposition 2.5(3), we use (1) to derive
T,_1(0) = —w(1)det A,_o(A) <0, Vi e (0,272,

Using (2.6), this implies ¢, (n — 1) < ¢, (n). The last part of Proposition 2.5 follows easily from
(2.5) and the fact that

Ii(x)20=T11(0) >0 and T;(}) =<0=T;—1(2) <0. O

Remark 2.2. In Proposition 2.5, if A > A(D = v(1,2)[x(1)~! + 7 (2)7"], then ¢;.(i) = ¢,.(2)
fori =2,...,n.Note that, for A > 1D, ¢, (2) = —1 + A (1)/v(1, 2) and
B A (D)1 — 7 (1)) (1)1 —7w(1))
”(¢A)——1+T, Vary (¢,.) = v(1,2)2
By (2.3), this leads to L() = v(1,2)/[x(1)(1 — x(1))] for » > A(D_ In the case n = 2, it is
clear that v(1, 2)/[r (D1 — 7 ()] = v(1,2)[x(D) '+ 7)1 =2,

3. Convergence to other eigenvalues

In this section, we generalize the algorithms (A1) and (A2) so that they can be applied for the
computation to any specified eigenvalue.

3.1. Basic setup and fundamental results

Recall that G is a graph with vertex set V. = {1,2,...,n} and edge set E = {{i,i + 1}|i =
1,2,...,n — 1}. Given two positive measures 7, v on V, E with (V) = 1, let M:?,v be an
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n-by-n matrix defined in the introduction and given by

—v(i, /7 (i) ifli —jl=1
Mgv(i, HD=3v@ -1 +v@E i+ D]l/x@) ifj=i 3.1

0 if|i —j| > 1.
Since v is positive everywhere and Mg , 1s tridiagonal, all eigenvalues of Mg , have algebraic
multiplicity 1. Throughout this section, let {Ag < AIG < - < Afﬁl} denote the eigenvalues
of Mg , with associated Lz(n)-normalized eigenvectors o = 1, {2, ..., ¢—1. Clearly, Ag =0,

A? = )»g,u and, for 1 <k <n,

W eitym k) = [6i(k) — Gtk = DIvk = 1,k) + [6(k) — Gk + DIv(k, k+ 1), (3.2)

Let1 <i <n— 1. As {; is non-constant, it is clear that §; (1) # ¢;(2) and ¢;(n — 1) # ¢ (n).
Moreover, if (k) = ¢j(k + 1) for some 1 < k < n, then ¢;(k) # ¢i(k — 1) and ¢ (k + 1) #
i (k + 2). Gantmacher and Krein [13] showed that there are exactly i sign changes for ¢; with
1 <i < n.Miclo [14] gives a detailed description on the shape of ¢; as follows.

Theorem 3.1. For 1 <i <n—1, let {; be an eigenvector associated to the ith smallest non-zero
eigenvalue of the matrix in (3.1) with &; (1) < 0. Then, there are | = a; < by < ay < by <
- Za <b=nwithajy —bj € {0, 1} such that {; is strictly increasing on [a;, b;] for odd
J and is strictly decreasing on [a;, b;] for even j, and §i(aj+1) = §i(bj) for 1 < j <i.

In the following, we make some analysis related to the Euler—Lagrange equations in (3.2).

Definition 3.1. Fixn > 1 and let f be a functionon {1,2,...,n}.For1 <i <n—1, fiscalled
“Typei”if thereare | =a; < by <a; < by <--- <a; < b; <nsatisfyinga;j1 —b; € {0, 1}
such that

(1) f is strictly monotonic on [a;, b;] for 1 < j <.
(@) [f(aj) — flaj +DIf(@aj+1) — flajy1+ D] <O0forl < j <.
() f(ajs1) = f(bj),for1 < j <i,and f(k) = f(b;),forb; <k <n.

The points a;, b; will be called “peak-valley points” in this paper.

Remark 3.1. Note that the difference between Definition 3.1 and Theorem 3.1 is the requirement
b; < n, instead of b; = n. By Theorem 3.1, any eigenvector associated to the ith smallest non-
zero eigenvalue of the matrix in (3.1) must be of type i with b; = n.

Definition 3.2. Let 7, v be positive measures on V, E with (V) = 1. For A € R, let &, be a
function on {1, 2, ..., n} defined by &, (1) = —1 and, for 1 <k < n,

(&3 (k) — &.(k — D]v(k — 1, k) — A (k)& (k)
vik,k+1) '

Sk +1) =&k +

Remark 3.2. Note that &, = —1 and, for A < 0, &, is strictly decreasing and of type 1. For
A>0,if & (k—1) < &(k) = &.(k+ 1), then &, (k) > 0 and this implies &, (k +2) < &, (k + 1).
Similarly, if &, (k — 1) > &.(k) = &.(k + 1), then &, (k) < 0 and &, (k +2) > &, (k + 1). Thus,
&, must be of type i forsome 1 <i <n — 1.
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Lemma 3.2. For A > 0, let &), be the function in Definition 3.2. Suppose that &, is of type i with

l<i<n-—1

(1) If &.(n — 1) # &y (n), then there is € > 0 such that &) is of type i for —e < § < €.

2) If &,.(n — 1) = &,(n), then there is € > 0 such that &, 45 is of type i + 1 and &, _; is of type i
for0 <6 <e.

Proof. Let aj, b; be the peak-valley points of &;. By the continuity of &) in A and Remark 3.2,
one can choose € > 0 such that, for § € (—¢, €), &5 remains strictly monotonic on [a}, b;] for
j=1,...,iand

[Enis(Bj — 1) =& 15 )IE1s(ajr1 + 1) — &ngs(ajr)] > 0,

for1 < j <i.In(l),b; =n.Fix$ € (—¢,e) andseta; =a; =1,b, =b; =n.Forl < j <1,
set

by =d’ | =b, if [E450bj — 1) = &Es(b)Er+s(bj) — Ents(aj+1)] <0
by =d =ajn if [Eays(bj — 1) — &5 )Enas5(B)) —Erps(@jr1)] >0
by =bj, aiy =ajp1 if[E4sbj — 1) = EpsO)Er+5 (b)) — Eiqs(ajr)] = 0.

Clearly, &) 45 is of type i with peak-valley points a}, b}. This proves Lemma 3.2(1).

For part (2), we consider i < n — 2 and b; = n — 1. By similar argument as before,
one can choose € > 0 such that the restriction of &5 to {1,2,...,n — 1} is of type i for
8 € (—¢,¢). To finish the proof, it remains to compare &) 4s(n — 1) and &, 45(n). Recall that
T,(0) = Z,’Czl &, (k) (k) as in the proof for Proposition 2.5. Using a similar reasoning as for
(2.7), one shows that T;11(A) = —m(l)detA;(A) for 1 < i < n, where A;()) is the matrix
in (2.4). This implies that the non-zero eigenvalues of Mg s SaY AG, e, Af_l, are the roots of
det A,—1(A) = 0. As a consequence of Lemma A.2, det A,_»(A) = 0 has exactly n — 2 distinct
roots, say o] < ap < --- < a,—1, and they satisfy the interlacing property A? <aj < k?H for
1 < j <n—2.Note that det A,_»(A) and det A,_;(}) tend to infinity as —A tends to infinity.
This leads to the fact that if det A,_>(A) = 0 and det A,,—1(A) < O, then det A,,_> () is strictly
decreasing in a neighborhood of A. If det A;,_»>(A) =0 and det A,,—1(}) > O, then det A,_»(-) is
strictly increasing in a neighborhood of A.

Back to the proof of (2). Suppose that &, (n — 2) < &, (n — 1). By Remark 3.2, it is easy to
check that 7,1 (X)) = 0 and 7,,(A) > O or, equivalently, det A,,_>(1) = O and det A,,_1(A) < O.
According to the conclusion in the previous paragraph, we can find € > 0 such that det A,,_>(-)
is strictly decreasing on (A — €, A + €), which yields

A+HT, 1 (A+0) [<Eis(n—1) if0<b <e
vin —1,n) >E4sn—1) if —e <6 <0.

Errs(n) =Enps(n — 1) —

This gives the desired property in Lemma 3.2(2). The other case, &, (n — 2) > &, (n — 1), can be
proved in the same way and we omit the details. [

The following proposition characterizes the shape of &, for A > 0.

Proposition 3.3. For A > 0, let &, be the function in Definition 3.2. Let AIG < e < )‘r?—l be
non-zero eigenvalues of Mgv in 3.1) and a1y < --+ < op_p be zeros of det A,_2(L), where
An_2(+) is the matrix in (2.4). Then,

(D) AJG<aj <k?+l,f0r1§j§n—2.
(2) &xisof type j for A € (aj—1,aj]land 1 < j <n — 1, where ap := 0 and a1 = o0.
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Proof. (1) is immediate from Lemma A.2. For (2), note that ¢; is an eigenvalue of the submatrix
of Mg , obtained by removing the nth row and column. This implies &y, (n — 1) = &, (n) for
i=1,...,.n—=2and & —1) #& m) fork > 0and A & {oy, ..., a,—2}. By Lemma 3.2, &,
isoftypei fora;_; <A <ea;. O

Given A > 0, the above proposition provides a simple criterion to determine which of the
intervals (o, aj41]A belongs to, that is, the type of &;. However, knowing the type of &) is not
sufficient to determine whether X is bigger or smaller than AiG. We need the following remark.

Remark 3.3. Using the same argument as the proof of Proposition 2.5, one can show that
w(&) = —a(l)detA,_1(A), where A,_1(A) is the matrix in (2.4). Clearly, 7w (£)) has zeros
A?, R )Lfil and tends to minus infinity as A tends to minus infinity. This implies that 7 (§)) <

0, for A < A?, and
() >0 Yie (WS A5, &) <0 Vae 0S5, ),
fori > 1, where A,? = 00.

As a consequence of Proposition 3.3 and Remark 3.3, we obtain the following dichotomy
algorithm, which is a generalization of (A2).Let1 <i <n — 1.

Choose positive reals Ly < kiG < Ugpandset,for{ =0,1, ...,
1. &, be the function generated by Ay = (L¢ + U¢)/2 in Definition 3.2,
2. According to Definition 3.1, set
Loy1 =L¢, Upyr = A¢  if &, is of type j with j > i,
orif &, is of type i and (—1)' "7 (&,) > 0
Upy1 =Up, Log1 = Ap 1§, isof type j with j < i,
orif &, is of type i and (—1)' 7 (&) <0
Loy1 =Upr1 =g if &, is of type i and 7 (&;,) > 0.

i)

Theorem 3.4. Referring to (D;),
0 < max{Uy — A%, A% — Ly} < (Up — Lo)27%, Ve >0.

Proof. Immediate from Proposition 3.3 and Remark 3.3. [

Proposition 3.3(2) bounds the eigenvalues using the shape of &, generated from one end point.
We now introduce some other criteria to bound eigenvalues using the shape of &, from either
boundary point. Those results will be used to prove Theorem 6.1.

Proposition 3.5. For A > 0, let &, be the function in Definition 3.2 and E;L be a function given by

[, (k) — & (k + D]v(k, k 4 1) — A (k)& (k)
vk —1,k) ’

for k = n,n—1,...,2 with gx(n) = —1. Let Ag < e < kf_l be eigenvalues of Mgv
in (3.1) and let f|p be the restriction of f to a subset B of V. Suppose 1 < ko < n.

(1) If &1{1....ko) is of type i with (—1) &, (ko) > 0 and & |(x,.....n) is of type j with (—1)7 &, (ko) >

G G
0, then Aibjoa <A <Ay

Gk —1) =& k) +
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G G
0, then)»iﬂ._1 <A <Ai+j+1.

() If &l{1....ko) is of type i with (—1)/ &, (ko) > 0 and & |(x,....n) is of type j with (—1)7 &, (ko) <

G G
0, then Ai+j_2 <A< Ai+j.

Proof. By Proposition 3.3, &, (n) is a polynomial of degree n — 1 satisfying

(DM em) >0 YoO<i<n, (~)*eg () >0 Vi<i<n-—1.

This implies that there are w; € (8;, )‘iG+1)’ 0 <i < n—2,such that (—l)i+1ék(n) > 0 for
Ae (wi—,wj)and0 <i <n—1withw_; = —oc0 and w,_| = oo.
The proofs for (1)—(3) in Proposition 3.5 are similar and we deal with (1) only. By the

Euler—Lagrange equations in (3.2), it is easy to see that, for 1 < [ < n, SA]G and éAZG
are eigenvectors of Mg , in (3.1) associated with AIG, which implies é)\la = —SAIG (n)’ék;;.

First, assume that A < AiG+j_2. By Proposition 3.3, S)‘g»j—zhl ,,,,, ko) 18 of type at least i and
&6 2|{k0 n) is of type at least j. This implies that the patching of &,¢ 2|{1,-~-J<o} and
i+j— i+j—

_E)tiG+j—2(n)€)‘iG+j—2|{ko n}, which equals s*ﬁj_z’ is of type at least i + j — 1. This is a

contradiction.
Next, assume that 1 > A¢ By Proposition 3.3, we may choose a; < A (resp. ax < A)

itj-
such that & |(1,... k,) (esp. & lik,...,n}) changes the type at a;j (resp. az). If Al.GJrJ._l < min{ay, az},

then a similar reasoning as before implies that &,c is of type at most i + j — 2, a
i+j-1
G J
i+j—
G ko....ny does not change its type. This implies that the gluing point kg cannot be a loca
) {ko,...,n} d t change its type. Th plies that the gluing point k t be a local
i1

,,,,,

.....

contradiction. If min{a;, a} < A | < max{ay, a2}, then exactly one of &, ¢ 1|{1
i+j—

.....

extremum and, thus, the patching function is of type at most i 4+ j — 2, another contradiction!
According to the discussion in the first paragraph of this proof, if )‘i(i -1 = max{ay, az},

then none of &,¢ 1|{1,...,k0} and E\G 1I{ko,__,,,,} changes type nor, of course, the sign at k.
i+j— R A B
Consequently, we obtain (—1)'*/& 5.6 l(kO)SkG 1 (ko) > 0, which contradicts the fact &, ¢ =
i+j— i+j— i

~ i+j—1
_E)‘iGJrjfl (n)élicﬂ'ﬂ - U
Proposition 3.6. For . > Oand 1 < k < n — 1, let sg (L) be the kth sign change of &) defined
by so := 0 and sg+1(X) = inf{l > s (M) |E(DEA — 1) < 0or &, () =0}, whereinf) :=n + 1.
Then, for 0 < A1 < Mg, sg(A1) = sp(Xo) foralll <k <n — 1.

Proof. Let 1 <k <n — 1. If s (A1) = n + 1, then it is clear that sg (A1) > sx(A2). Suppose that
sk(A1) = £ < n. Obviously, &, [(1,....¢} is of type k. Referring to (2.4), let Al )‘5—1 be the
roots of det Ay_1(A) = 0 and o/f, R affz be roots of det Ay_2(X) = 0. According to the first
paragraph of the proof for Proposition 3.5, there are wf € (af_ 1> Af) with 1 <i < £—1 such that
(=D& > Ofor i € (wf, wi, )and 1 <i < €—1, whereaf := 0. Since &, (O (0) = 0,
one has w,f <A < oe,f. As it is assumed that Ay > Ay, if Ay > a,f, then &, [{1,...,¢) is of type at

least k + 1 and, consequently, s (A2) < £ = sp(A). If Al < oe,f, then &, |(1,....¢; is type k and
&3, (€) < 0. This implies sg(A2) < £ = sx(A1), as desired. [

,,,,,
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3.2. Bounding eigenvalues from below

Motivated by Theorem 3.1, we introduce another scheme generalizing (2.1) to bound the other
eigenvalues of Mg , from below.

Definition 3.3. For 1 > 0, let &, be a function in Definition 3.2. If &, isof typei, | <i <n—1,
with peak-valley points 1 = a; < by <ay < by <--- <a; < b; <n,then define

Dy _ )52 fork < b; .
) (")‘{&(m:sx(b,-) fork > by, "1 =S <
andsetéij) =& fori<j<n-—1.

Remark 3.4. For A > 0, if &, is of type i, then E)Ej) is of type j for j < i. Moreover, for k < b,

, , Doy WDy B _ ()
Ex(j)(kJrl):SA(J)(k)_F[Sx (k) =& (k= Dlvk — 1,k) — A (k)§,” (k)

vk, k+ 1)
_ s MTOET M -+ 7 0g 0]
o vk, k+ 1) ’

and, forb; < k <n,

Fi(e (k) — 9 (k = vtk — 1, k) — A ()€ (k)
vik,k+1) ’

5 U+ =¢" 0+

where F;(t) = max({t, 0} if j is odd, and F; () = min{z, 0} if j is even. Note that é)fl) is exactly

¢, in Proposition 2.5.

Thereafter, let £ and £ be functions on (0, co) defined by

@) @)
M E(i)(k)zm, Vi<i<n-—l, (3.3)

L) = , :
M = Var &) Vary (£")

where &, and E)Ei) are functions in Definitions 3.2-3.3.

Remark 3.5. Note that £ = £”~D_ By a similar reasoning as in the proof for (2.2), one can
show that, for A > 0,

i) i) i)
Loy g TENTE —B 0] rEDIEE) g0 m]

Vary (£1) Var, (£

From Proposition 3.3, it follows immediately that £(1) = £ (1) for A € (0, o;].

To explore further £ and L9 we need more information of 7 (£;), n(g}fi) ), w(&) —&.(n) and

7€) — P m).

Lemma 3.7. Let &), be the function in Definition 3.2 and )\l.G, o; be constants in Proposition 3.3.
Then, w(&,)—&, (n) = 0 has n—1 distinct roots, say By < B1 < - - < PBn—2, which satisfy fo = 0
and o; < Bi < )Ll.(ilfor 1 <i <n — 2. Furthermore, 7w (&) — &.(n) > 0 for A € (B2i—1, P2i)
and 7 (&) — &.(n) < 0 for & € (B, Bai+1), with B_1 = —o0 and By = oo.
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Proof. Set u(X) := m (&) — &.(n). According to Definition 3.2, () is a polynomial of degree
n — 1 and satisfies #(0) = 0. Note that (&) = 0 for A € {A{,..., 1% }. If i is odd, then

§,6(n —1) < &6 (n). This implies &,6(n) > 0 and, hence, u(kl.(;) < 0. Similarly, if i is even,
then u(kf) > 0.

By Lemma 3.2 and Proposition 3.3, if A = o«; with odd i, then &, is of type i with
&y, (n — 1) = &, (n). This implies &, (n) > 0 and 7 (&y;) = m(n)é,, (n), which yields u(c;) < 0.
Similarly, one can show that u(¢;) > Oifi iseven. [

Remark 3.6. We consider the sign of 7 (£)) and 7(£")) — &”(n) in this remark. By
Proposition 3.3, &S) =§ forh <. If A > o withl <i <n — 2, then &, is of type j with
j>i.Fix1<i<n—2andsetky = ko) = min{k|§” (j) = & (n), Vk < j < n}. Clearly,
ko(A) < n—1for A > «;. Observe that, for A > «; withodd i, &, (ko — 1) < &.(ko) > &(ko+ 1),
which implies Z]]i‘):_ll (k)€ (k) < 0and Zf): | T(k)&;.(k) = 0. A similar reasoning for the case
of eveni gives Z];O:_ll (k)& (k) > 0and Z],Z():l 7 (k)& (k) < 0. Consequently, we obtain

D 2E ) >0, (DIEE?) -2 m1 >0, (3.4)

for A > a; and 1 < i < n — 2. Note that, by Proposition 3.3, E)Ei) = &, for A < «;. In addition
with Remark 3.3, Lemma 3.7 and the continuity of E)El), the first inequality of (3.4) holds for

A > )\ZG and the second inequalities of (3.4) hold for A > B;_1.

According to Lemma 3.7 and Remark 3.6, we derive a generalized version of Proposition 2.3
in the following.

Proposition3.8. Letn > 3 and 1 < i < n—1. For A > 0, let &, S;i) be the functions
in Definition 3.2 and B; be the constants in Lemma 3.7.

(1) For A > Bi_1, the following are equivalent.
(1-D) &, &) = AVarg (5).
(1) 7(&") =0,
(1-3) A = AS.

(2) For Bi—1 < A < B, the following are equivalent.
(2-1) & (&, 1) = AVarz (&)
(2-2) (§) = 0.
(2-3) A = AL,

Proof. The proof for Proposition 3.8(2) is similar to the proof for Proposition 3.8(1) and we deal
only with the latter. By Lemma 3.7 and Remark 3.6, one has

@ @)y _ @ <0 fori > Y
TEITED (] {>0 for i1 < A < )LiG.
This proves the equivalence of (1-1) and (1—2). Under the assumption of (1-2) and using
Remark 3.3, one has A < «;. This implies é)fl) = £ is an eigenvector for Mg , with associated
eigenvalue A. As A € (B;_1, «;], it must be the case A = )\Z.G. This gives (1-3), while (1-3)=-(1-2)
is obvious and omitted. [
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Remark 3.7. It is worthwhile to note that if (1-1) and (2-1) of Proposition 3.8 are removed, then
the equivalence in (1) holds for A > )uinl and the equivalence in (2) holds for A € (kﬁl, )»l.GH).

Once AiG_l is known, we can determine AI.G using the sign of 71(5;[)). See Theorem 3.9 for details.

Remark 3.8. Note that condition (4) of Proposition 2.3 is not included in Proposition 3.8. In
fact, the equivalence may fail, that is, there may exist some A € (B;—1, Bi) \ {Xf;} such that
Ev(&n, &)/ Varg (&) = AiG. See Example 3.2 for a counterexample.

As Proposition 3.8 focuses on the characterization of zeros of L£(A) — A, the following theorem
concerns the sign of L(A) — A.

Theorem 3.9. Let )»iG , a;, Bi be the constants in Proposition 3.3 and Lemma 3.7, and L be the
function in (3.3). Then, AG, e, Af_l, B, - .., Bu—n are fixed points of L and, for | <i <n-2,
(1) L) < Afor e AZ, Bp).

(2) L) > A for x € (Bi, AE. ).
(3) LOM) < A for k€ (AF, 00).

Proof. Immediate from Lemma 3.7 and Remarks 3.5-3.6. O

By Theorem 3.9, we obtain a lower bound on any specified eigenvalue of Mg -

Corollary 3.10. Let 1 <i <n — 1 and Ao > )»iG. Consider the sequence Ao = L9 (hg) with
£ > 0 and set

lim Ay if Ay converges

{— 00

supig  if A¢ diverges,
tel

where I = {£|h¢—1 > A¢ < hgy1}. Then, 1* < 25

It is not clear yet whether the sequence A, in Corollary 3.10 is convergent, even locally. This
subject will be discussed in the next subsection. Now, we establish some relations between the

roots of det A; (1) = 0 and the shape of Eii). This is a generalization of Proposition 2.5.

Proposition 3.11. For 1 <i <n — 1, let A; (%) be the matrix in 2.4), 0" < .- < 6 be zeros
of det A;(A) = 0 and set 01-(’71) := 00. Referring to the notation in Proposition 3.3, it holds true
that, for 1 <i <n—1,
WA =6"" < =6"7 <... <61

iy, iy, . i i i—1 ..
@D DA G+ D= =" forrel6,6/andi < j<n-2.
3 P 1) #E ) forr e 077,60 Py andi <n — 1.
Proof. The order in (1) is a simple application of Lemma A.3. For (2), fix 1 <i <n —1
and set y(1) = min{jl§; (k) = & (), Vj < k < n}and B = {1,2,....y(W)},
BT(\) =B U{y() + 1}). Clearly,i + 1 < y(A) < n. We use the notation &, |¢ to denote the
restriction of &, to a set C. Suppose that i is odd. By Remark 3.4, S)E’) =&, on B(A) and &, | )
is of type i with

HEy) —D <&y) =&y @) +1).
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By Lemma 3.2(1), if & (y(A) + 1) < &.(y (X)), then there is € > 0 such that, for |§| < e,
&.+5|B() is of type i and

Enrs(y M) = 1) < &5y (V) > Erps (v (M) + 1.

This implies y (A + §) = y () for 6 € (—e, €). By Lemma 3.2(2), if £, (y (M) + 1) = &.(y (L)),
then there is € > 0 such that, for § € (—¢, 0), 15| p+(y,) is of type i with

Exrs(y Q) — 1) < &nps(¥ (V) < Ergs(y () + 1),

and, for § € (0, €), §345]p+( is of type i + 1 with

Eips(yM) — 1) <& 150 ) > Enys(y(A) + D).

This yields y (A +8) = y(1) for§ € (0,€) and y(A 4+ §) = y (1) + 1 for § € (—¢, 0). The proof
for the case of even i is similar and we conclude from the above that y (1) is a non-increasing
and right-continuous function taking values on {i + 1,...,n}. Let ¢;jy1 > -+ > c,—1 be the
discontinuous points of y(A) such that y(c;) = jfori +1 < j < n — 1. As a consequence
of the above discussion, &:li,....j} is of type i with &,(j) = &;(j + 1) and this implies
Z/JC=1 n(k)écj(k) = 0. That means c; isarootof detA;_;(A) =0forj =i+1,...,n—1.
By Proposition 3.3 and the second equality in (1), y (L) = n for 9("72) <A< 9("72) and, thus,

(=1 _ p®

P> 9(" ? for j = i+1. As a consequence of the interlacing relationship 9(6) <0, i1

itmustbe c; = 91.(”1) fori +1 < j <n — 1. This finishes the proof. [

Remark 3.9. Forl <i <n-—1, 91(i), R Gi(i) are also non-zero eigenvalues of the (i+1) x (i+1)
principal submatrix of (3.1) indexed by 1, ...,7 + 1.

Remark 3.10. In fact, by Proposition 2.5, fk(l)(n —1) # gil)(n) for A € (0, 91("_2)), which is
better than Proposition 3.11(3).

3.3. Local convergence of L

This subsection is dedicated to the local convergence of £ in (3.3). Let «;, 8;, Af; be the
constants in Proposition 3.3 and Lemma 3.7. As before, let o = 1, ..., {,— denote the L2 (n)-
normalized eigenvectors of Mf’ , associated with Ag e Af_l. Clearly, §,¢ = —¢;/¢i(1) and

& = Z:.':_OI 0i (A)¢i, where p; (A) = m(&,¢;) for 0 <i < n — 1. Note that p; () is a polynomial
of degree n — 1 and satisfies p; (A;) = —6;(j)/¢ (1) fori, j € {0, 1, ..., n — 1}. This implies

'i_[l 29— 1
J

. ki) == : (3.5)
G 12 G G G

A gl(l),\l i i M =

Po(A) = —

forall 1 <i <n — 1. Moreover, by multiplying (3.2) with &, (k) and summing up k, we obtain
EELG) = Af;pi (A). In the same spirit, one can show that £,(&;, &) = A[pi (A) — & (n)po(A)]
using Definition 3.2. Putting both equations together yields

pi(A) = “Aé po(h), VYO<i<n-—1I. (3.6)
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As a consequence of Remark 3.5, this gives

n—1 n—1
pOREL0N Yo =nTlm
LR = ’=nl_1— =it , (3.7)
> P > =072 m)
i=1 i=1
for» & (AS, ..., Af_l}. The next proposition follows immediately from the second equation in
(3.5) and (3.6).
Proposition 3.12. Let )LG, R )‘;(1;—1 be the non-zero eigenvalues of Mgv in (3.1)and ¢y, ...,
{n—1 be the corresponding L*(r)-normalized eigenvectors. Then,
n—1 )LG
aam=— [] w45 visisa-L
J=Lj# vy

Set u()) = Z?;%(A? - )»)’]gf(n). By Theorem 3.9, 81, ..., By—2 are zeros of u()) H?;%
(AJG — A), which is a polynomial of degree n — 2. This implies

n—1 1 n—2
u<k>=C(H G )(]_[(ﬂj—k)>,
PG =)\l

J J J

where C = % 7;% {f (n) /AJG. Putting this back to £ yields
1 u’(k) n—1 1 n—2 1
= = - , (3.8)
LA)—Ar  u) ZAJG—A Zﬁj—x

Jj=1 Jj=1

fora & (A5, ..., A0 |, Bi. ..., Bua).

Proposition 3.13. Let L be the function in (3.3), )»l.G be the eigenvalue of Mg , and B; be the
. 2 _ —1 1. .
constant mLen.1ma 3.7.Let D; = Z'}:l(ﬂj—kic) 1‘2?:1,,’;&1‘ (AJG—AiG) Vwithl <i <n-—1.

Then, for2 <i <n —2,

(1) If D; < O, then thereist € (AI.G, Bi) such that L is strictly increasing on (B;_1, AiG) U(z, Bi)
and strictly decreasing on (AiG, 7).

2) If D; > O, then there is n € (Bi—1, AiG) such that L is strictly increasing on (8i—1,n) U
()»iG, Bi) and strictly increasing on (1, Aic).

(3) If D; = 0, then L is strictly increasing on (8;i—1, Bi)-

Proof. Using (3.7) and (3.8), one can show that £’ (AI.G) =0and

L// )“G B n—1 Cl_2(n) _, n—2 1 n—1 1 D 20
Jj i

=1 i =g

To prove (1) and (2), it suffices to show that if £'(z) = 0 for some t € (Al.(;, Bi), then 7 is a
local minimum of £, and if £'(n) = 0 for some n € (Bi_1, AiG), then 7 is a local maximum
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of £. We discuss the first case, whereas the second case is similar and is omitted. Recall that
u(d) = Z’;;} (k? - )»)’lgl.z(n). As 7 is a critical point for £, one has 2(u/(1))* = u(t)u’ (7).
This implies '

u(®)Bw" (0))* = 2 ()" (1)]
2(u/(1))?

where the last inequality uses the fact that u(1) < 0, for A € (AiG, Bi), and

8 —296me;m 1
(A =205 = 2?2

L'(7) = >0,

3000 — 2 ") = —12 3

1<i<j<n-—1
This proves (1) and (2).
To see (3), we assume that D; = 0. Computations show that

LA) = AP N L =
T T — AS -
coy—n ! 1)[ 2 L) ;ﬂj—/\

j=Lj#i

n—1 1 n-l 1
= —10)? - %
( i) [ Z G =008 —a0) B =M —K?)] -

Jj=1,j#i Jj=1
for A € (Bi—1, Af) @) (AZ.G, Bi), where the last inequality uses the fact that ()»57 — A)(AJG — AiG) >
(Bj — M (Bj — 1) for j < i and (AJG - x)(/\f —29) > (Bj—1 = M(Bj—1 — 1Y) for j > i. By

Theorem 3.9, this implies L(A) > )Ll.G for A € (Af, Bi)and L(A) < Aic for A € (Bi—1, Al.G). The
desired property comes immediate from the discussion in the previous paragraph. [

Remark 3.11. Note that D1 > 0 and D,—1 < 0. Using the same proof as above, this implies that
L(X) is strictly increasing on (AG, B1) U (Bn-2, )L,?_ 1)- Moreover, by (3.7), one may compute

07 —29)? ¢
<0, Vae @02 9Hun’

W' W)’ L'0) = —2Z(AG PGS w1

i<j

00).

This implies £(1) is strictly decreasing on (0, AG) U (A 00) and

n—1°

Z (n)/)”zc n—1

Jim £(2) = j—, Jim £0) = (% - 1> Y oalgim.
i=l1

Z 2(n)/(19)?

The following local convergence is a simple corollary of Theorem 3.9 and Proposition 3.13.

Theorem 3.14 (Local Convergence). Let Ao > 0 and set g1 = L(X¢) for £ > 0. Then, there is
€ > 0 such that the sequence (7¢)72 | is monotonic and converges to Al.(;for Ao € (AiG —e€, )»iG +¢€)
and1 <i<n-—1.

We use the following examples to illustrate the different cases in Proposition 3.13.

Example 3.1 (Simple Random Walks). Let n > 1. A simple random walk on {1, 2, ..., n} with
reflecting probability 1/2 at the boundary is a birth and death chain with transition matrix given
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by K@, j) = K(1,1) = K(n,n) = 1/2 for |i — j| = 1. It is easy to see that the uniform
probability is the stationary distribution of K. In the setting of graph, we have v(i, i+1) = 1/(2n)
and 7 (i) = 1/n. One may apply the method in [11] to obtain the following spectral information.

ik j(k—1
nu—sinu>, Vi<j<n.

1 < )
— | S1
G n n
VA

See, e.g., [3, Section 7]. By (3.9), we get

G jm
26 =1—cosZ—, (k) =
Jj Cos é‘]()

n—1

Z 1+ cos(jm/n)

5, cosim/n) — cos(jm/n)’

_1 —! sin (jn/n) .
bi=3 12 (,\G 29)

Clearly, D; > 0 and D, 1 < 0. If n is even, then D, > < 0.

Example 3.2 (Ehrenfest Chains). An Ehrenfest chain on V = {0, 1, ..., n} is a Markov chain
with transition matrix K given by K(i,i +1) = 1 —i/nand K(i@ + 1,i) = (i + 1)/n for
i = 0,...,n — 1. The associated stationary distribution is the unbiased binomial distribution
on V, that is, m(i) = (’Z) 27" for i € V. To the Ehrenfest chain, the measure v is defined by

v(i,i+1) = (”l_l> 27" fori = 0,...,n — 1. Using the group representation for the binary
group {0, 1}, one may compute

2j -2 d k —k
b2 om=() "B ()G e
=0

Plugging this back into (3.9) yields

Lo (") ~0 fori <n/2
D; = - E ; =0 fori =n/2
4 L~ j—i .

j=1,j#i <0 fori > I’l/2

This example points out the possibility of different signs in {D;|i = 1, ..., n — 1} including 0.
3.4. A remark on the separation for birth and death chains

In this subsection, we give a new proof of a result, Theorem 3.15, which deals with
convergence in separation distance for birth and death chains. Let (X m);'nozo be a birth and death
chain with transition matrix K given by (1.1). In the continuous time setting, we consider the
process Y; = Xy,, where N; is a Poisson process with parameter 1 independent of X,,. Given
the initial distribution p, which is the distribution of X, the distributions of X,, and Y, are
respectively 1K™ and pe 'K where e = Y12, Al/1!. Briefly, we write H; = ¢~'(/=K).
It is well-known that if K is irreducible, then u H; converges to  as t — oo. If K is irreducible
and r; > 0 for some i, then « K™ converges to m as m — oo. Concerning the convergence, we
consider the separations of X,,, Y; with respect to 7, which are defined by

do ) = max |1 — HEZX) dS. (ju,1) = max {1 —
Sepi 0<x<n (x) ’ sepi 0=<

The following theorem is from [9].

MHt(X)}

(x)
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Theorem 3.15. Let K be an irreducible birth and death chain on {0, 1, ..., n} with eigenvalues
M=0< A < <Ay
(1) For the discrete time chain, if p; + qi+1 < 1 forall0 <i < n, then
n n I
dsep (0, m) = dsep(n, m) =3 ( IT —») (1= 2"
j=1 \i=1,i#j J
(2) For the continuous time chain, it holds true that

i i n n )\ L
dsep<0,r>=dsep<n,r>=2( [l + A)
i T A

J=1 \i=Lizj

Diaconis and Fill [5,12] introduce the concept of dual chain to express the separations in
Theorem 3.15 as the probability of the first passage time. Brown and Shao [1] characterize the
first passage time using the eigenvalues of K for a special class of continuous time Markov chains
including birth and death chains. The idea in [1] is also applicable for discrete time chains and
this leads to the formula above. See [9] for further discussions. Here, we use Proposition 3.12
and Lemma 3.16 to prove this result directly.

Lemma 3.16. Let K be the transition matrix in (1.1) with stationary distribution . Suppose that
W is a probability distribution satisfying u(@)/m(@) < u(i + 1)/m(i + 1) forall0 <i <n—1.

(1) For the discrete time chain, if pi + gi+1 < 1 forall 0 < i < n, then uK"(i)/7 (i) <
uK™(i+1)/m(i+ 1) forall0 <i <nandm > 0.
(2) For the continuous time chain, wH,;(i)/w (i) < uH;(i + 1)/w(i + 1) forall 0 <i < n and

t>0.

Proof. Note that (2) follows from (1) if we write H, = exp{—2t(I — #)}. For the proof of
(1), observe that

pK"™HG)  pK"G—1) o pK"G) o pK"G+ 1)

- i i is Vi.
70 -0 7o T T rarn P
By induction, if u K™ (i)/7 (i) < uK™(@{ 4+ 1)/7w(i 4+ 1) for 0 < i < n, then
pK™G+ 1) uK™() ‘ uK’"(i+1)r_ K" (i +2)
G + 1) = 7G) qi+1 TG+ 1) i+1 —ﬂ(i+2) Pi+1
wK™ (i) uK™@ +1)
> i 1 —gi
20) gi+1 + D (I —-gi+1)
WK™ (i) WK™ + 1) wK"™ (@)
> ——U—-p; i > O
S 2 N 70

Remark 3.12. Lemma 3.16 is also developed in [10] in which it is shown that, for any non-
negative function f, K™ f is non-decreasing if f is non-decreasing for all m > 0. Consider the
adjoint chain K* of K in L?(r). As birth and death chains are reversible, one has K* = K.
Using the identity uK/m = K*(u/m), it is easy to see that the above proof is consistent with
the proof in [10].
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Proof of Theorem 3.15. Assume that K is irreducible and let Ao = 0 < A} < --- < A, be the

eigenvalues of I/ — K with L2 (7r)-normalized eigenvector {o =1, ..., {,. By Lemma 3.16, if
satisfies w(i)/m (i) > u(@ + 1)/w (@ + 1) for 0 <i < n, then
wH;(n)

(i, 1) =1 —

z(n) ;M(;/)C/(n)e i

where 1 (£;) = Y7 ¢j (). If K satisfies p; +qi+1 < 1forall0 <i < n, then

nK™(n)

dsep(,U«, m)=1-— ()

n
=Y NG — 1)

=1
By Proposition 3.12, setting u to be one of the Dirac measure &, 6, leads to the desired
identities. I

4. Paths of infinite length

In this section, the graph G = (V, E) under consideration is infinite with V = {1,2,...}
and £ = {{i,i + 1}]i = 1,2,...}. As before, let 7, v be positive measures on V, E satisfying
(V) = 1. The Dirichlet form and the variance are defined in a similar way as in the introduction
and the spectral gap of G with respect to m, v is given by

N inf{mf, f)

Vary (f)

Forn > 2,let G, = (V,, E,) be the subgraph of G with V,, = {1, 2, ...,n}, E, = {{i,i+1}|1 <

i < n} and let 7,, v, be normalized restrictions of 7, v to V,,, E,,. That is, 7,(i) = ¢,7 (i),

va(i,i +1)=cyv(,i + 1) withe, = 1/[n(1) 4 --- + w(n)]. As before, let M;?,u be an infinite
matrix indexed by V and defined by

‘f is non-constant and JT(fz) < oo} .

G i - v(i, j) . G ;oo Vi—1LD+vii+1)
M7, j)=— 0 V0i—jl=1, M7, 0) = 0 . (4.1)
Clearly, Mg’ﬁvn is the principal submatrix of Mg , indexed by V,, x V.
Lemma 4.1. Referring to the above setting, Agl":l',un b < ,\,?n",,,n for n > 1 and Ag’v =
G}‘l

lim;,, o0 At vy

Proof. Briefly, we write A for )\g’v and A, for )\%’,Vn. Note that A, is the smallest non-zero

eigenvalue of the principal submatrix of M]g , indexed by V,, x V,. As a consequence of
Proposition 3.11(1) and Remark 3.9, A,4+; < A,. Forn > 1, let ¢, be a minimizer for A,
and define v, (i) = 1y, (i)¢,(i) for i > 1. Clearly, one has &,, (¢n, ¢n) = cn& (¥, ¥n)
and Vary, (¢,) = c,Vary(¥,). This implies A < i, for n > 2. Let A* = limy_ o0 Ay.
Note that it remains to show A* = A. For ¢ > 0, choose a function f on V such that
E(f, ) < (M + €/2)Varg (f) with n(fz) < oo. For § > 0, we choose N > 0 such that
Varg, (g) > (1 — 8)Vary (f) and &, (g, 8) < (1 +8)E,(f, f), where g = fy,, the restriction
of f to V. This implies

W<y < Evy (8, 8) < 1 +8)&v(f, f
Vary, (g) — (1 = 8)Varg (f)
Letting § — 0 and then ¢ — 0 yield A* < A, as desired. [
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Remark 4.1. Silver [17] contains a discussion of the (weak*) convergence of the spectral
measure for G, to the spectral measure for G in a very general setting. Lemma 4.1 can also
be proved using Theorem 4.3.4 in [17].

Proposition 4.2. For A > 0, let ¢; (1) = —1 and

{[$2()) = ¢a(i — DIv(i — 1,i) = am (D) (D)}
v(i,i+1) ’

G0+ 1) =¢,0) + Vi > 1.
Set Ay = oo and A, = )»%”,Un forn > 2.

(1) Fori >2and ) € [Aj, Ai—1), ¢o(i — 1) < ¢a (i) = ¢.(0 + 1).
(2) For . € (0,28 1, ¢5.() < ¢u(i + 1) forall i > 1.

Proof. Immediate from Proposition 3.11 and Remarks 3.9-3.10. [

Remark 4.2. By Proposition 4.2, one may generate a dichotomy algorithm for )»gv using the
shape of ¢,. See (D;).

The following theorem extends Theorem 1.1 to infinite paths.

Theorem 4.3. If A6 > 0 and E,(¥, ¥)/Varg (Y) = )»g,u for some function  on V with

T,V
w(Y) = 0, then \ is strictly monotonic and satisfies

AW ) =[WaE) — ¥l + DG i+ D)+ [Y@) — i — DIv( — 1i) Vix1

Theorem 4.4. For 1 > 0, let ¢, be the function in Proposition 4.2 and set L(A) = E; (¢, $5.)/
Var (¢;,.). Then,

(M) AS <L) <Aforre W8, 00).

T,V T,

2) L"(A) — Ag}v asn — oo for . € (A\S , 00).

T,V

Proof. Let A > )»g,v. By Lemma 4.1, A; < A < XA;_ for some i > 2. By Proposition 4.2(1), one
has ¢, (i — 1) < ¢, (i) = ¢p(i +1). Asin (2.2), we obtain

(@) (h2) — ¢2.(0)] i .
LA =A+A s > 0.
) + Var, Gy) j§:1¢x(])ﬂ(1) >

This leads to w(¢,) > 0 and m(¢)) < ¢,(i), which implies L(A) < A. That means L has no
fixed point on (Ag’v, o0). The lower bound of (1) follows immediately from Theorem 4.3. For

(2), set A* = lim,_, oo L"(A) > Ag’v. As a consequence of (1), L is continuous on G, 00). If

T,V
A > kgu, then A* is a fixed point of L, a contradiction! Hence, 1* = )\g’v. O

5. A numerical experiment

In this section, we illustrate the algorithm (A2) on a specific Metropolis chain. The Metropolis
algorithm introduced by Metropolis et al. in 1953 is a widely used construction that produces a
Markov chain with a given stationary distribution 7. Let w be a positive probability measure
on V and K be an irreducible Markov transition matrix on V. For simplicity, we assume that
K(x,y) = K(y,x) for all x,y € V. The Metropolis chain evolves in the following way.
Given the initial state x, select a state, say y, according to K(x,-) and compute the ratio
A(x,y) = n(y)/m(x). If A(x,y) > 1, then move to y. If A(x,y) < 1, then flip a coin with
probability A(x, y) on heads and move to y if the head appears. If the coin lands on tails, stay
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at x. Accordingly, if M is the transition matrix of the Metropolis chain, then

K(x,y) ifAx,y) =1, x#y
M. y) = K(x, y)A(x,y) ifA(x,y) <1
Y= K(x,x)+ Z K(x,z2)(1 — A(x,z)) ifx=y.
7:A(x,z)<1

It is easy to check t(x)M(x,y) = w(y)M(y,x). As K is irreducible, M is irreducible.
Moreover, if 7 is not uniform, then M(x,x) > 0 for some x € V. This implies that M is
aperiodic and, consequently, M’ (x, y) — m(y) and e 'Y=M) (x,y) — 7(y) as t — oo. For
further information on Metropolis chains, see [6] and the references therein.

Forn > 1,let G, = (V,, E,) be a graph with V,, = {0, =1, ..., *n}and E, = {{i,i + 1} :
i = —n,...,n — 1}. Suppose that K,, is the transition matrix of the simple random walk on
Vy, that is, K,,(—n, —n) = K,(n,n) = 1/2 and K,,(i,i + 1) = K,(i + 1,i) = 1/2 for all
—n <i <n.Fora > 0, let 7, 4, T, 4 be probabilities on V,, = {0, =1, ..., £n} given by

ﬁ’n,a(i) = 5n,a(|i| + l)a’ ﬁn,a(i) = én,a(n - |l| + l)a,

where ¢, 4, and ¢, , are normalizing constants. It is easy to compute that

Cn,a/2 =< 1/én,a < 1/En,a =< ch,aa 5.1
where
(n+ 1)*!
= 1 a,
Cna P +(mn+1)

The Metropolis chains, IE,W and Ien,a, for 77, 4, and 7, , based on the simple random walk K,
have transition matrices given by

kn,a(iv ]) = kn,a(_i7 _j), Ien,a(iv ]) = Ien,a(_L _])

and
1 e .
3 ifj=i+1,i € [0,n—1]
ia
—_— if j=i—1,i€ell,
) N ifj=i i €[l,n]
Kn,a(ivj) = H 1)¢ — j¢@
G = o g (0n)
2(i + 1)
na
T PR
ST ifi=j=n
and
1 e .
3 ifj=i—1,i€[l,n]
(n—10)4 e .
- fj= 1, 0,n—1
A 2 —i+ 1) itj=i+1ielln—1]
Kn,a(i7j)= _q 1)4 — _j)a
e U} R
2 —i 4+ 1)°
na
1—— ifi =j=0.
(n+ 1
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Saloff- Coste [16] discussed the above chains and obtamed the correct order of the spectral
gaps. Let k,1 a» Mn.q denote the spectral gaps of Kn a Kn a- Referring to the recent work in [4],
one has

1/(4C) <r <1/C,
where (A, C) is any of ()VL,W, én(a)) and ():n,a, én(a)), and

i—1 n
Cala) =2 max (;Ou + 1)‘“) (/X_;(j + 1)“) ,
and

i—1 n—1
Cala) =2 max (;0(1 + 1)“) ( YU+ 1>‘“) :

j=i—1

Theorem 5.1. Let )v\,,’a, ):,,,a be spectral gaps for kn,a, 1%,1,,1. Then,

1 v 2
S )"n,a S ’
8n_a(1,m)n,(2,n + 1) n—a(1,m)n,(2,n +1)

and
1 A 1
< Ana <
64n4(1, [n/21)n-a([n/21, n) 2nq(1, [n/21)n-qa([n/21, n)
where ng(k, 1) = Z i i
Proof of Theorem 5.1. The bound for )v»n,a follows immediately from the fact

N—a(l,Mna(2,n+1)
2

For )A»,,,a, note that

i—1 n—1
Cula) =2 max (Z(H 1)“) ( d G+ 1)—“).
n/2<i<n =0

j=i—1

< Cu(@) < 2n—o(1,m)na(2,n +1).

Taking i = [n/2] yields the upper bound. For the lower bound, we write

i—1 .\ a n—i . a
N J J
Cp(a) =2 1—= = — .
o=z, (S0-1)) (B0-4))

Fori > n/2,itis clear that

2ty =50 -

j=0

Observe that, fora > 0,

Cl n—i a
@ 3 ( - ) =@ (52)
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where
. a—1 _ 1
iL ifa#1
Cl @) =1+ l-a
’ n
ilog n ifa =1.
It is clear that, fori > n/2, C’ L@ < ZCFn/ﬂ (@) and this leads to
n—i . a n—[n/2] . a
Z(l— J > <4 Y (1—;,) .
=ANES pr (/21 + ]

Summarizing all above gives the desired lower bound. [

Remark 5.1. Comparing with [16, Theorem 9.5], the bounds for Xn,a given in Theorem 5.1 have
a similar lower bound and an improved upper bound by a multiple of about 1/4. For )A\n,a , observe

that
" i—1 .\ a
Ciz(a) < (1 _ %) < C;/(a)’
j=0
where
//(a) — l + i_a
1+a

Recall the constant C;’n (a) in the proof of Theorem 5.1. Note that

n+a ) < 2(n+a)
2 ta) - o/ (@) = (1+a)’

and, fora > 0,a # landn > 3,

1 2= — a1 3
Cfnmn(“)ilﬁLL sup ( a+a = (n—i—a)’
’ 2(1 4+ @) 4>0.a#1 l—a l+a
where the last inequality is obtained by considering the subcases @ < 2 and a > 2. The above
computation also applies fora = 1 and n € {1,2}. In the same spirit, one can show that
C]/'n/Z] L@ = 6(1+a) This yields
2 2
A 12
M_C SM, Vi > 1. (5.3)
6(1 +a)? (1+a)?

Hence, we have )\,,’a = (14+a)?/(n+a)? Asa consequence of (5.1) and (5.2), we obtain that,
uniformly for a > 0,

o 1\
1/Ap.q < n® ((1 + —) + r) (1+v(n,a)) asn— oo,
n

where v(n, 1) =logn and v(n, a) = (nl=a — 1)/(1 —a) fora # 1.
Remark 5.2. Note that the lower bound in Theorem 6.1 provides the correct order of the spectral

gap for the chain K n.a unlformly in a but not for K. n.a- For instance, if a grows with n, say a = n,
then Theorem 6.1 implies 1/)\,,,n = O(n), while (5.3) gives 1/)»,,,,, = 1.
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Fig. 1. These curves display the mapping m +— }vnloo,n,ar],a(l, 100m)nq (2, 100m + 1) in Theorem 5.1 in order from
the topa = 0.8,0.9, 1.0, 1.1 and 1.2. The right most point corresponds to a path of length n = 5000.

Remark 5.3. Consider the chain in Theorem 5.1. A numerical experiment of algorithm (A2)
is implemented and the data is collected in Fig. 1 and Table 1. One may conjecture that

v

AnaN—a(l,n)nqa(2,n 4+ 1) — c(a) as n — oo, where c(a) is a constant depending on a.

6. Spectral gaps for uniform measures with bottlenecks

In this section, we discuss some examples of special interests and show how the theory
developed in the previous sections can be used to bound the spectral gap. In the first subsection,
we develop a lower bound on the spectral gap in a very general setting using the theory in
Section 3. In the second subsection, we focus on the case of one bottleneck, where a precise
estimation on the spectral gap is presented. Those computations are based on the theoretical
work in Section 2. In the third subsection, we consider the case of multiple bottlenecks in which
the exact order of the spectral gap is determined for some special classes of chains.

In what follows, we will use the notation 77 (A) to represent the summation ) ,_, 7 (i) for
any measure 7 on V and any set A C V. Given two sequences of positive reals a,, b,, we
write a, = O(by) if a, /by, is bounded. If a, = O(b,) and b, = O (ay,), we write a, < b,. If
an /b, — 1, we write a, ~ b,.

6.1. A lower bound on the spectral gap
In this subsection, we give a lower bound on the spectral gap in the general case.

Theorem 6.1. Let G = (V, E) be a graph with vertex set V = {0,1,...,n} and edge set
E={{i,i+1}|i =0,...,n—1}. Let m, v be positive measures on V, E with w (V) = 1. Then,

i1 7\ - / B
\G 0. 7D EACIUVE I
S (i (; vGj+n) " ,;H A

where a A b ;= min{a, b}.
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Table 1
These numbers denote }:n,u N—a(1,n)nq(2,n + 1) in Theorem 5.1.

n 10000 20000 30000 40000 50000

a=0.38 0.5983 0.5960 0.5948 0.5941 0.5935
a=0.9 0.5652 0.5625 0.5610 0.5601 0.5594
a=1.0 0.5405 0.5377 0.5362 0.5353 0.5345
a=1.1 0.5235 0.5210 0.5197 0.5189 0.5183
a=12 0.5128 0.5109 0.5099 0.5093 0.5088

Remark 6.1. Let C be the lower of the spectral gap in Theorem 6.1. Note that, for any positive
reals, (a +b)/2 < max{a, b} < a+b. Using this fact, it is easy to see that C' < C < 2C’, where

, 0D s weaD \
=g (S5 3T

In particular, if ig is the median of m, that is, 7 ([0, ip]) > 1/2 and 7 ([ip, n]) > 1/2, then

=l 210, j]) ") \
C' = I SACALC Vi I
(Z Gnt 2

= e (=1 ))

Remark 6.2. Let (X,,);"_, be an irreducible birth and death chain on {0, 1, ..., n} with birth
rate p;, death rate g; and holding rate r; asin (1.1). For 0 <i < n, set t; = min{m > 0|X,, =i}
as the first passage time to state i. By the strong Markov property, the expected hitting time to i
started at O can be expressed as

=L (0, j1) " (L), nl)
E i = N H':‘:n i = VN
o ; pj(j) - j;H q;m(j)

where 7 is the stationary distribution of (X,,),>_. Let A be the spectral gap for (X,;);_,. Then,
A= Ag’v, where G is the path with vertex set {0, ..., n}and v(i,i+1) = piw (i) = git17(@+1)
for 0 < i < n. The conclusion of Theorem 6.1 can be written as 1/A < ming<;<,{Eo7; V E,7;}.

Remark 6.3. The lower bound in Theorem 6.1 is not necessarily the right order of the spectral
gap. See Remark 5.2.

Proof of Theorem 6.1. For 1 > 0, let &, be the function in Definition 3.2. That is, &, (0) = —1
and, fori > 0,

G+ D —&OWE i+ D) =[60) — &0 —DIvE —1,i) — Az (@)5.0).
Inductively, one can show that if 1/A > Zf;(l)[n([o, iD/v(j, j + 1], then
0<&GE+1D —860) < MT([Q iD/v@, i+ 1),

—1<&GE+ 1D < —142) [7 (0, jD/v(, j+ DI <0,
j=I1
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for 0 < i < £ — 1. One may do a similar computation from the other end point and, by
Proposition 3.5, this implies

fi 7 ([0, j1) i‘ w(n—j+1,n))

j:()v(jij+l)’j:1v(n_j’n_j+l) '

I/AG” < max

TTnsVn —

Taking the minimum over 1 < ¢ < n gives the desired inequality. [
6.2. One bottleneck

Forn > 1, let G, = (V,, E;,) be the path on {0, 1,...,n} and set 7, = 1/(n + 1) and
v, = 1/(n 4+ 1) with C > 0. Using Feller’s method in [11, Chapter XVI1.3], one can show that
the eigenvalues of Mg,”,vn are 2(1 — cos %) for0 <i <n.

Theorem 6.2. Forn > 1,lete, > 0,1 <x, < [n/2] and set 7, =1/(n + 1),

€n
n+1’
Then, the spectral gap is bounded by

l G . T €n
— <)Y o <mini2(1—-cos——M |, =}
n2/4 + x,/€n Tn>Vn n—x,+1 Xn

In particular, Ag” o =< min{1/n?, €,/x,}.
nsvn

1
(i —1,i) = ——, Vi #x,. (6.1)
n

V,),C”(xn—l,xn): T

Proof of Theorem 6.2. The lower bound is immediate from Theorem 6.1 by choosing i = [n/2]

in the computation of the maximum. For the upper bound, we set A,, = 1 — cos n”? and let f;

be the function on V,,_,, defined by f,(0) = —1 and, for0 <i <n —x, — 1,

[fnG) — ful — 1)]Vn—x,, @-1,i)— 2)\n—x,177n—xn (@) fu(@)
Unfx,,(i’i“‘ 1) .

By Proposition 2.3, EV,H” (fn, fn) = 2hn—x, Varg, (fn) and m,—y, () = 0. Let g, be the

function on V,, defined by g,(n — i) = f,(i) for0 <i <n — x, and g,(i) = f,(n — x,) for

0 <i < x,. A direct computation shows that

(n+ 1)51;,2‘" (gn, 8n) = —x, + ])gv,,_x,l (fn, fn)

aG+ 1D = fuli) +

and
Xp(n —x, + 1)

2
n+1 fn(n_xn)'

(n+ I)Varn',, (8n»8n) = —xy + I)Varn,,_xn (fu) +

This implies Ag” g = 2y —x,. On the other hand, using the test function, #,() = n — x, + 1
for 0 < i < x, and h,(i) = —x, for x, < i < n, one has Sv;fn (hy, hy)/Varg, (h,) =
en(n+ 1)/[x,(n — x, + 1)] < €,/x,. This finishes the proof. O

The next theorem has a detailed description on the coefficient of the spectral gap. The proof is
based on Section 3, particularly Proposition 3.11 and Remark 3.10, and is given in the Appendix.

Theorem 6.3. For n > 1, let x,, €5, 7, V" be as in Theorem 6.2. Suppose xn/(ennz) —a €
[0, oo] and x,,/n — b € [0, 1/2].



876 G.-Y. Chen, L. Saloff-Coste / Stochastic Processes and their Applications 124 (2014) 848-882

(1) If a <ocoand b =0, then )\g" ™ min{m2, a=2}n"2.

2) If a <ocoand b € (0, 1/2], then Xg” g Cn~2, where C is the unique positive solution of
the following equation.
n?  n%aC i (1 —b)i2 —bC

2 —O)(1—b2i2—b2C] 0.

i=1

3) If a = o0, then )»f: ™ €n/Xn.

6.3. Multiple bottlenecks

In this subsection, we consider paths with multiple bottlenecks. As before, G,, = (V,, E,)
with vV, = {0,1,...,n}and E, = {{i,i + 1}|i = 0,...,n — 1}. Let k be a positive integer

and x, = (Xp.1, - .., Xn k) be a k-vector satistying x, ; € V, and x,,.1 > 1 and x,,; < xp ;41 for
1 <i <k Lete, = (€s1,...,€nk) be avector with positive entries and V" be the measure on
E, given by

1/(n+1) ifi & {xp1,..., X0k}

enj/n+1) ifi=x,;,1<j<k. (6.2)

VG —1,0) ={

Theorem 6.4. Let G, = (V,,, E,) be the path on {0, ...,n}. For 0 < k < n, let w, be the
uniform probability on V,, and v;" be the measure on E, given by (6.2). Then,

n

: 2 Gy . e
m1n{1/(4n ), Cn‘l/Z} < )"n’n,UX" < min {2 <1 — COS m) s Cn,Z} y

where

2 k B
Cp1= (Z 4 ;:1 min{x, ;, n — x,,; + 1} (én,i 1))

and

n+1) % 1/€n.i

i=m

Cho = min
’ 0<mi<mor<n Z xn,i(l’l —Xn,j + 1)/(6,“'6”’]‘)
my<i<j<my

2 -2
n—k+1

Remark 6.4. Observe that, in Theorem 6.4, 1 — cos

. €n,j
Cy2 < min -
I<j<k | min{x, j,n —x, ; + 1}

. . €n,j . €n,j
= min min , mm -—————- .

JixXn j<% Xnj juxaj>% N —Xpj+ 1

Proof of Theorem 6.4. We first prove the upper bound. Let f; be a function on {0, 1, ..., n}
satisfying f(xn,; —1) = f(x,,j) for 1 <i <k and f; be a function on {0, ..., n — k} obtained
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Most weak edges

/ \

*--—0--9 - - G--@--0—@--® + + + + G—@--0—0@--@ - - &—O-—-0—@

~— aJ, — ~ aJ, —

~— JyJa ——— Infa

Fig. 2. The dashed lines denote the weak edges of v in Theorem 6.5.

by identifying points x, ; — 1 and x,, ; for 1 <i < k. By setting f> as a minimizer for xf::,f, Vot

with 7, (f1) = 0, we obtain
2<1 ~ cos 2 ) _ Ev, 1 (f25 f2) > Svn,k(f2»2fZ)
n—k+1 Varg, (f2) Tn—k([f3)
- &, (f1, f1) _ Ev, (f15 f1)
7Tn(f12) Var?Tn (f1) '
To see the other upper bound, let f; be the function on V), satisfying g;(i) = —(n — x,,; + 1)
forO <i < x,; —1land g;(@i) = x,,; for x, ; <i < n. Computations show that 7, (g;) = 0,

. . k
Tn(8i8)j) = Xn,i(n — Xnj + 1) fori < j,and £,,(gj, 8j) = € j(n+1).Setg =3 a;8;.
As a consequence of the above discussion, we obtain

k
n+1)Y a’ey;
£,(8.8 o

Vary, (8)

- .

23 aiajxni(n—xnj+ 1)+ > alxni(n—xu; + 1)

i<j i=1

Taking a; = 1/€,,; form| <i < my and a; = 0 otherwise gives the bound C, ».
The lower bound is immediate from Theorem 6.1 and Remark 6.1. [

Finally, we discuss some special cases illustrating Theorem 6.4.
Theorem 6.5. Forn > 1, let w1, = 1/(n + 1) and v, be the measure in (6.2) with k,, bottlenecks

satisfying n — k, < n. Suppose there are I,, C {1, ...,kp}, a € (0, 1) and J, > O such that |I,,|
is bounded and, fori & I,, aJ, < min{x, ;,n — x,; + 1} < J,/a. Then,

ko -
Z 1/€n,i
N . | €n.i i=1.i¢l,

2y, X Min | —, min — ,
’ n* iel, min{x, ;, n —x,; + 1} Jn

Proof. Itis easy to get the lower bound from Theorem 6.4, while the upper bound is the minimum
of Cy 2 over all connected components of {1, ..., €}\ lpand {{ +1,... ky}\ I,. O

See Fig. 2 for a reference on the bottlenecks. The following are immediate corollaries of
Theorems 6.4-6.5.

Corollary 6.6 (Finitely Many Bottlenecks). Referring to Theorem 6.5, if k,, is bounded, then

. 1 . €n,i
kg"v < miny—, min - . — 1.
o n* 1<i<k, min{x, ;, n — Xp; + i}
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Corollary 6.7 (Bottlenecks far Away the Boundary). Referring to Theorem 6.5, if n — k, < n
and there are a € (0,1) and J, > 0 such that aJ, < min{x,;,n — x,; + 1} < Jy/a for

1 <i <k then
kn -
Z 1/€n,i
G” = min J— JZI—

TnsVn n2 J)’l

Corollary 6.8 (Uniformly Distributed Bottlenecks). Referring to Theorem 6.5, if min; €,; =<

max; €, ; and x, ; = |in/k,| withk, < n/2, then
|1 enn
Ag”v = min | —, LS
nen n* nky,

Remark 6.5. Note that the assumption of the uniformity of 7 and v, except at the bottlenecks,
can be relaxed by using a comparison argument.
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Appendix. Techniques and proofs
We start with an elementary lemma.

Lemma A.l. Leta > O and f : [a,00) — R be a continuous function satisfying f(a) = a
and f(x) € la,x) for x > a. For b > a, set Cp = sup,.,<p{(f(x) —a)/(x — a)}. Then,
Cp<landa < f"(b) <a+ Cp(b—a)forn>0. Moreover, if f is bounded on [a, 00), then
a=< f'(x) <a+C"(x—a)forn>0and x > awithC = sup,<; o {(f(t) —a)/(t —a)} < L.

Lemma A.2. Let (a;, b;, Ci)?il be sequences of reals with b; > 0 and ¢; > 0. Forn > 1 and

t eR, let
ap — cit 1 0 0 0

by a —ct 1 0
0 b

M, (1) = 2
0 0 0
: dp—1 — Cp—11t 1
O O bn—l an—Cnt

Then, there are n distinct real roots for det M, (t) = 0, say tl(n) << t,(l"), and

(n+1) (n) (n+1) .
tj <tj <tj+1, Vi<j<n,n>1.

Furthermore, if a; > 1 and aj+1 > 1+ b;, then tl(n) > 0 foralln > 1.
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To prove Lemma A.2, we need the following statement.

Lemma A.3. Fixn > 0Qand, fori < 1 < n, let a;, b;, d; be reals with b; > 0 and d; # 0.
Consider the following matrix

a a0 0 0
di'by @ & 0 :
0 d2_1b2 as

M = (A.1)
0 0 S - 0
: R an—1 dn—1
0 .0 dn_,llbn—l an
Then, the eigenvalues of M are distinct reals and independent of d, ..., d,—1. Furthermore, if

a; > land aj11 = 1+ b;, then all eigenvalues of M are positive.

Proof of Lemma A.3. Let X, Y be diagonal matrices with X11 = Y11 = 1, X;; = didy---di—1
and Y;; = (b1by---bi_1)""/*(dyd> - - -d;_1) fori > 1. One can show that

a; 1 0 O - 0
by a3 1 0 :
xmux-t= |0 b2 @

0O 0 . e T 0

. . an—1 1

0 -+« - 0 by ap
Since XMX ™! is independent of the choice of di,...,d,—1, the eigenvalues of M are
independent of dy, ..., d,—1. Note that Y M Y~ is Hermitian. This implies that the eigenvalues

of M are all real. As M is tridiagonal with non-zero entries in the superdiagonal, the rank of
M — Al is either n — 1 or n. This implies that the eigenvalues of M are all distinct.

Next, assume that a; > 1 and a;+1 > 1 + b;. Let (YMY"),- be the leading i x i principal
matrices of YMY L. By induction, one can prove that det(YMY~1; = ]_[’j=1 £, where {1 = a;
and£j11 =ajy1 —b;/L;j for 1 < j < n. By the assumption at the beginning of this paragraph,
£; > 1foralll < j < n and det(YMY_l),- > O forall 1 < i < n. As the leading
principal matrices have positive determinants, (Y MY ~!) is positive definite. This proves that
all eigenvalues of M are positive. [

Proof of Lemma A.2. We prove this lemma by induction. For n = 1, it is clear that tl(l) =aj/c

is the root for det M (¢). For n = 2, note that det M;(¢) is a quadratic function that tends to in-

finity as |¢| — oo. Since det M» (tfl)) = —b; < 0, the polynomial, det M> (), has two real roots,
2 (2 2 6)) 2

say 1,7 < t, ", satisfying £, < 1,7 < t,”". Now, we assume that, for some n > 1, det M,, ()
and det M, 1 (¢) have reals roots (tl.("));’=1 and (tl.(”H));’:ll satisfying ti("+1) < tl.(") < tl.(ffl) for

1 <i < n.Clearly, det M,,(t) — oo as t — —oo. This implies

det My (137 7))) < 0 < det M, (135 1)), Vk > 0.
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Observe that det M, 12(t) = (ay4+2 — cptot) det My 1(t) — by det M, (¢). Replacing ¢ with
(n+1)
yields

det My 4o (t5y5) > 0> det Myga (15 1)), Yk = 0.

This proves that det M, (¢) has (n + 2) distinct real roots with the desired interlacing property.

For the second part, assume that a; > 1 and a;41 > 1 4 b; foralli > 1. Forn = 1, it is ob-
vious that t(l) > 0. Suppose t(") > 0. According to the first part, we have t("H) > tl(") > 0. By
Lemma A.3, det M,,11(0) > 0, which implies t1"+1) # 0. As it is known that det M, () < O

(n+1) "H)) it must be the case t("H)
(n+1)

fort € (1 > 0. Otherwise, there will be another root for

det M,,41(¢) between 4 and 0, which is a contradiction. [

Proof of Theorem 6.3. For convenience, we set A" = 1 — cos ”f for1 <m <nandlet A; (1)
be the i-by-i trldlagonal matrix with entries (A; (A)); = 1 for [k—1| = 1 and (A; (M) = 2—A.

For 1 <j<i,let B (1) be the matrix equal to A; except the (j, j)-entry, which is defined by
(B (A €))jj =2 — A/e. By Remark 3.9, )»G” - is the smallest root of det B;" (A, €,) = 0 and
(An m)m | are roots of det A, (1) = 0. Note that forl <j <n,

det B) (1, €)
detA; (A detA,_;(h)

= AJ(h, ) =2—1/e — Rj_1(0) — Ru_j (M),

where det Ag(A) := 1,det A_{(A) := 0 and

R — JetA 10 ,E[]mj Y

i = detA;(x) —  J '
[T@r; =)
i=1

To prove this theorem, one has to determine the sign of A,{ (A, €).
Let ¢, = (S,L/n2 with §, — 0. Asn — o0,
20, — €,

n
1 — = ———(1 1)),
RV e o)

where o(1) is uniform for 1 < i < n. Note that ]_[{:1(2)\3) =detA;(0) = j + 1. This implies
n LI T et 1 Sn(1+ 0(1))

1 T Z Ain? a Z i _1\2 2
+ =1 A S (=D

o (%)
+0—).
+1 n

By a similar reasoning, one can prove that log R (£,) = log Tt 0O (8, /n) for bounded j. This

lOg Ry (gn) = 10g n

= log
n

shows that, for j, € {1,...,n}and £, = o(j, 2,

R, (€n) =1 — + O(july), asn— oo. (A.2)

Jn+1
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Next, we compute R, (2C")‘}'n) with C, — C € (0,1) and j, — oo. Note that, for n large
enough,

Jn—1 )\’ }\‘i_ 1 Jn—1 i — }\‘i_ 2
n—l n n_l n
log R]n (zcn)\'}n) - Z ’ )\,l ’ o E Z ’ )\,l ’

i=1 Jn i=1 Jn
ju—1 )L]‘ AL _)hi')
-1 Jn L2
+C I T T Jogd+ O . A3
g § j R U (A3)

jil
Calculus shows that

j,,*l )\’l .
=1~ My  sin’
. - 0
Z( v ) [ e+ 06, )

i=1 Jn
8log2 — m2/3 o
= """ 400D
Jn
and
= )\}n()\'l _)\'l]n) _ 2 . 1 =2
Z )\'l C}\.l )\’l' __Z 2_C+0(‘]n )
ot (W, —CA A T
Observe that, as n — 00,
. Jn— 1)\‘ )\’i.
Jn Jn—1
log — =logR;, (0) = ——= —logd+ O

Putting this back into (A.3) implies

2 1

1
Rjn(zc,,,\}n)=1+< 1—410g2+?+c,,z — >—+0(Jn ). (A4)
n

- Cy
We consider the following two cases.
Case 1: x,, = O(e,n?). In this case, Theorem 6.2 implies that kg" g =< n—2. We assume further
that xn/(ennz) — a and x,/n — b witha € [0,00) and b € [0, 1/2]. Let C,, — C € (0, 1).
Replacing j, with x, — 1 in (A.2) and with n — x,, in (A.4) yields that, for b = 0,

(1 —72aC)(1 + o(1))

Xn

Axn(zcn n—xn? n)=

and, for b € (0, 1/2],

7% n2aC (I+o0(1))
Al (ZCM:,_x,l» €,) = (1 +4log2 — — — 1—p bCKb(C)) A — b’

_nit— .
where k;(c) = Y2, % This proves (1) and (2).

Case 2: en* = o(xy). This is exactly (3) and the result is immediate from Theorem 6.2. [
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