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Abstract

We consider the spectrum of birth and death chains on an n-path. An iterative scheme is proposed to
compute any eigenvalue with exponential convergence rate independent of n. This allows one to determine
the whole spectrum in order n2 elementary operations. Using the same idea, we also provide a lower bound
on the spectral gap, which is of the correct order on some classes of examples.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V, E) be the undirected finite path with vertex set V = {1, 2, . . . , n} and edge set
E = {{i, i +1} : i = 1, 2, . . . , n −1}. Given two positive measures π, ν on V, E with π(V ) = 1,
the Dirichlet form and variance associated with ν and π are defined by

Eν( f, g) :=

n−1
i=1

[ f (i)− f (i + 1)][g(i)− g(i + 1)]ν(i, i + 1)

and

Varπ ( f ) := π( f 2)− π( f )2,
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where f, g are functions on V . When convenient, we set ν(0, 1) = ν(n, n + 1) = 0. The spectral
gap of G with respect to π, ν is defined as

λG
π,ν := min


Eν( f, f )

Varπ ( f )

 f is non-constant

.

Let MG
π,ν be a matrix given by MG

π,ν(i, j) = 0 for |i − j | > 1 and

MG
π,ν(i, j) = −

ν(i, j)

π(i)
, ∀|i − j | = 1, MG

π,ν(i, i) =
ν(i − 1, i)+ ν(i, i + 1)

π(i)
.

Obviously, λG
π,ν is the smallest non-zero eigenvalue of MG

π,ν .
Undirected paths equipped with measures π, ν are closely related to birth and death chains. A

birth and death chain on {0, 1, 2, . . . , n} with birth rate pi , death rate qi and holding rate ri is a
Markov chain with transition matrix K given by

K (i, i + 1) = pi , K (i, i − 1) = qi , K (i, i) = ri , ∀0 ≤ i ≤ n, (1.1)

where pi + qi + ri = 1 and pn = q0 = 0. Under the assumption of irreducibility, that
is, pi qi+1 > 0 for 0 ≤ i < n, K has a unique stationary distribution π given by π(i) =

c(p0 · · · pi−1)/(q1 · · · qi ), where c is the positive constant such that
n

i=0 π(i) = 1. The smallest
non-zero eigenvalue of I−K is exactly the spectral gap of the path on {0, 1, . . . , n} with measures
π, ν, where ν(i, i + 1) = π(i)pi = π(i + 1)qi+1 for 0 ≤ i < n.

Note that if 1 is the constant function of value 1 andψ is a minimizer for λG
π,ν , thenψ−π(ψ)1

is an eigenvector of MG
π,ν . This implies that any minimizer ψ for λG

π,ν satisfying π(ψ) = 0
satisfies the Euler–Lagrange equation,

λG
π,νπ(i)ψ(i) = [ψ(i)− ψ(i − 1)]ν(i − 1, i)+ [ψ(i)− ψ(i + 1)]ν(i, i + 1), (1.2)

for all 1 ≤ i ≤ n. Assuming the connectedness of G (i.e., the superdiagonal and subdiagonal
entries of MG

π,ν are positive), the rank of MG
π,ν − λI is at least n − 1. This implies that all

eigenvalues of MG
π,ν are simple. See Lemma A.3 for an illustration. Observe that, by (1.2), any

non-trivial eigenvector of MG
π,ν has mean 0 under π . This implies that all minimizers for the

spectral gap are of the form aψ + b1, where a, b are constants and ψ is a nontrivial solution of
(1.2). In 2009, Miclo obtained implicitly the following result.

Theorem 1.1 ([15, Proposition 1]). If ψ is a minimizer for λG
π,ν , then ψ must be monotonic, that

is, either ψ(i) ≤ ψ(i + 1) for all 1 ≤ i < n or ψ(i) ≥ ψ(i + 1) for all 1 ≤ i < n.

One aim of this paper is to provide a scheme to compute the spectrum of MG
π,ν , in particular,

the spectral gap. Based on Miclo’s observation, it is natural to consider the following algorithm.

Choose two positive reals λ0, a in advance and set, for k = 0, 1, . . . ,
1. ψk(1) = −a,

2. ψk(i + 1) = ψk(i)+
{[ψk(i)− ψk(i − 1)]ν(i − 1, i)− λkπ(i)ψk(i)}+

ν(i, i + 1)
,

for 1 ≤ i < n, where t+ = max{t, 0},

3. λk+1 =
Eν(ψk, ψk)

Varπ (ψk)
.

(A1)

The following theorems discuss the behavior of λk .
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Theorem 1.2 (Convergence to the Exact Value). Referring to (A1), if n = 2, then λk = λG
π,ν for

all k ≥ 1. If n ≥ 3, then the sequence (λk, ψk) satisfies

(1) If λ0 = λG
π,ν , then λk = λG

π,ν for all k ≥ 0.
(2) If λ0 ≠ λG

π,ν , then λk > λk+1 > λG
π,ν for k ≥ 1.

(3) Set (λ∗, ψ∗) = limk→∞(λk, ψk). Then, λ∗
= Eν(ψ∗, ψ∗)/Varπ (ψ∗) = λG

π,ν and π(ψ∗)

= 0.

Theorem 1.3 (Rate of Convergence). Referring to Theorem 1.2, there is a constant σ ∈ (0, 1)
independent of the choice of (λ0, a) such that 0 ≤ λk − λG

π,ν ≤ σ k−1λ1 for all k ≥ 1.

By Theorem 1.3, we know that the sequence λk generated in (A1) converges to the spectral
gap exponentially but the rate (− log σ) is undetermined. The following alternative scheme is
based on using more information on the spectral gap and will provide convergence at a constant
rate.

Choose a > 0, L0 < λG
π,ν < U0 in advance and set, for k = 0, 1, . . . ,

1. ψk(1) = −a, λk =
1
2
(Lk + Uk)

2. ψk(i + 1) = ψk(i)+
{[ψk(i)− ψk(i − 1)]ν(i − 1, i)− λkπ(i)ψk(i)}+

ν(i, i + 1)
,

for 1 ≤ i < n, where t+ = max{t, 0},

3.

Lk+1 = Lk, Uk+1 = λk if π(ψk) > 0
Lk+1 = λk, Uk+1 = Uk if π(ψk) < 0
Lk+1 = Uk+1 = λk if π(ψk) = 0.

(A2)

Theorem 1.4 (Dichotomy Method). Referring to (A2), it holds true that

0 ≤ max{Uk − λG
π,ν, λ

G
π,ν − Lk} ≤ (U0 − L0)2−k, ∀k ≥ 0.

In Theorem 1.4, the convergence to the spectral gap is exponentially fast with explicit rate,
log 2. See Remark 2.2 for a discussion on the choice of L0 and U0. For higher order spectra,
Miclo has a detailed description of the shape of eigenvectors in [14] and this will motivate the
definition of similar algorithms for every eigenvalue in spectrum. See (Di) and Theorem 3.4 for
a generalization of (A2) and Theorem 3.14 for a localized version of Theorem 1.3.

The spectral gap is an important parameter in the quantitative analysis of Markov chains. The
cutoff phenomenon, a sharp phase transition phenomenon for Markov chains, was introduced by
Aldous and Diaconis in early 1980s. It is of interest in many applications. A heuristic conjecture
proposed by Peres in 2004 says that the cutoff exists if and only if the product of the spectral
gap and the mixing time tends to infinity. Assuming reversibility, this has been proved to hold
for L p-convergence with 1 < p ≤ ∞ in [2]. For the L1-convergence, Ding et al. [10] prove
this conjecture for continuous time birth and death chains. In order to use Peres’ conjecture in
practice, the orders of the magnitudes of spectral gap and mixing time are required. The second
aspect of this paper is to derive a theoretical lower bound on the spectral gap using only the birth
and death rates. This lower bound is obtained using the same idea used to analyze the above
algorithm. For estimates on the mixing time of birth and death chains, we refer the readers to
the recent work [4] by Chen and Saloff-Coste. For illustration, we consider several examples of
specific interest and show that the lower bound provided here is in fact of the correct order in
these examples.
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This article is organized as follows. In Section 2, the algorithms in (A1)–(A2) are explored
and proofs for Theorems 1.2–1.4 are given. In Section 3, the spectrum of MG

π,ν is discussed
further and, based on Miclo’s work [14], algorithm (A2) is generalized to any specified
eigenvalue of MG

π,ν . Our method is applicable for paths of infinite length (one-sided) and this
is described in Section 4. For illustration, we consider some Metropolis chains and display
numerical results of algorithm (A2) in Section 5. In Section 6, we focus on uniform measures
with bottlenecks and determine the correct order of the spectral gap using the theory in Sections 2
and 3. It is worthwhile to remark that the assumptions in Section 6 can be relaxed using the
comparison technique in [7,8]. As the work in this paper can also be regarded as a stochastic
counterpart of theory of finite Jacobi matrices, we would like to refer the readers to [18,19] for a
complementary perspective.

2. Convergence to the spectral gap

This section is devoted to proving Theorems 1.2–1.4. First, we prove Theorem 1.1 in the
following form.

Lemma 2.1. Let λ > 0 and ψ be a non-constant function on V . Suppose (λ, ψ) solves (1.2) and
ψ is monotonic. Then, ψ is strictly monotonic, that is, either ψ(i) < ψ(i + 1) for 1 ≤ i < n or
ψ(i) > ψ(i + 1) for 1 ≤ i < n.

Proof. Obviously, (1.2) implies that π(ψ) = 0. Without loss of generality, it suffices to consider
the case when ψ(1) < 0 and ψ(n) > 0. Since ψ is non-constant and λG

π,ν > 0, we have
ψ(1) < ψ(2) and ψ(n − 1) < ψ(n). Note that if there are 1 < i < j < n such that
ψ(i − 1) < ψ(i), ψ( j) < ψ( j + 1) and ψ(k) = ψ(i) = ψ( j) for i ≤ k ≤ j , then (1.2)
yields

λG
π,νπ(i)ψ(i) = [ψ(i)− ψ(i − 1)]ν(i − 1, i)+ [ψ(i)− ψ(i + 1)]ν(i, i + 1) > 0

and

λG
π,νπ( j)ψ( j) = [ψ( j)− ψ( j − 1)]ν( j − 1, j)+ [ψ( j)− ψ( j + 1)]ν( j, j + 1) < 0,

a contradiction. Thus, ψ is strictly increasing. �

We note the following corollary.

Corollary 2.2. Let (λ, ψ) be a pair satisfying (1.2). Then, λ = λG
π,ν if and only if ψ is

monotonic.

Proof. One direction is obvious from Theorem 1.1. For the other direction, assume that ψ is
monotonic and let φ be a minimizer for λG

π,ν with π(φ) = 0. Since (λ, ψ) and (λG
π,ν, φ) are

solutions to (1.2), one has

λπ(ψφ) = Eν(ψ, φ) = λG
π,νπ(φψ).

By Lemma 2.1, ψ and φ are strictly monotonic and this implies Eν(ψ, φ) ≠ 0. As a consequence
of the above equations, we have λ = λG

π,ν . �

The following proposition is the key to Theorem 1.2.
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Proposition 2.3. Suppose that (λ, ψ) satisfies λ > 0, ψ(1) < 0 and, for 1 ≤ i < n,

ψ(i + 1) = ψ(i)+
{[ψ(i)− ψ(i − 1)]ν(i − 1, i)− λπ(i)ψ(i)}+

ν(i, i + 1)
, (2.1)

where t+ = max{t, 0}. Then, the following are equivalent.

(1) Eν(ψ,ψ) = λVarπ (ψ).
(2) π(ψ) = 0.
(3) λ = λG

π,ν .

Furthermore, if n ≥ 3, then any of the above is equivalent to

(4) Eν(ψ,ψ) = λG
π,νVar(ψ).

Remark 2.1. For n = 2, it is an easy exercise to show that λG
π,ν = ν(1, 2)/(π(1)π(2)). By

following the formula in (2.1), one has ψ(2) = ψ(1)[1 − λπ(1)/ν(1, 2)], which leads to
Eν(ψ,ψ)/Varπ (ψ) = λG

π,ν .

Proof of Proposition 2.3. Set B = {1 ≤ i ≤ n|ψ(i) = ψ(n)} and Bc
= {1, 2, . . . , i0}. Since

ψ(1) < 0 and λ > 0,ψ(1) < ψ(2) and Bc is nonempty. According to (2.1),ψ is non-decreasing.
Note that if ψ(i) = ψ(i + 1), then ψ(i) ≥ 0 and ψ(i + 2) = ψ(i + 1). This implies ψ is strictly
increasing on {1, 2, . . . , i0 + 1} and, for 1 ≤ i ≤ i0,

λπ(i)ψ(i) = [ψ(i)− ψ(i + 1)]ν(i, i + 1)+ [ψ(i)− ψ(i − 1)]ν(i − 1, i).

Multiplying ψ(i) on both sides and summing over all i in Bc yields

λ

i0
i=1

ψ(i)2π(i) =

i0−1
i=1

[ψ(i)− ψ(i + 1)]2ν(i, i + 1)

+ψ(i0)[ψ(i0)− ψ(i0 + 1)]ν(i0, i0 + 1)

= Eν(ψ,ψ)+ ψ(i0 + 1)[ψ(i0)− ψ(i0 + 1)]ν(i0, i0 + 1)

= Eν(ψ,ψ)+ λψ(n)
i0

i=1

ψ(i)π(i).

This is equivalent to

Eν(ψ,ψ) = λVarπ (ψ)+ λπ(ψ)[π(ψ)− ψ(n)], (2.2)

which proves (1)⇔(2).
If λ = λG

π,ν , then ψ is an eigenvector for MG
π,ν associated to λG

π,ν . This proves (3)⇒(2).
For (2)⇒(3), assume that π(ψ) = 0. In this case, ψ must be strictly increasing. Otherwise,
ψ(i) = ψ(n) > 0 for i ∈ B and, according to (2.1), this implies

λVarπ (ψ) > λ

n−1
i=1

π(i)ψ2(i) ≥

n−1
i=1

[ψ(i)− ψ(i + 1)]2ν(i, i + 1) = E(ψ,ψ),

which contradicts (1). As ψ is strictly increasing and π(ψ) = 0, (λ, ψ) solves (1.2). By
Corollary 2.2, λ = λG

π,ν .
To finish the proof, it remains to show (4)⇒(3) ((3)⇒(4) is obvious from the equivalence

among (1), (2) and (3)). Assume that Eν(ψ,ψ) = λG
π,νVarπ (ψ). By Lemma 2.1, ψ is strictly

monotonic and this implies, for 1 ≤ i < n,

λπ(i)ψ(i) = [ψ(i)− ψ(i + 1)]ν(i, i + 1)+ [ψ(i)− ψ(i − 1)]ν(i − 1, i).
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As ψ is a minimizer for λG
π,ν , one has, for 1 ≤ i ≤ n,

λG
π,νπ(i)[ψ(i)− π(ψ)] = [ψ(i)− ψ(i + 1)]ν(i, i + 1)+ [ψ(i)− ψ(i − 1)]ν(i − 1, i).

If λ ≠ λG
π,ν , the comparison of both systems yields

ψ(i) =
λG
π,νπ(ψ)

λG
π,ν − λ

, ∀1 ≤ i < n.

As n ≥ 3, ψ(1) = ψ(2), a contradiction! This forces λ = λG
π,ν , as desired. �

The following is a simple corollary of Proposition 2.3, which plays an important role in
proving Theorem 1.4.

Corollary 2.4. Let n ≥ 3. For λ > 0, let φλ be the vector generated by (2.1) with φ(1) < 0.
Then, (λ− λG

π,ν)π(φλ) > 0 for λ > 0 and λ ≠ λG
π,ν .

Proof. Without loss of generality, we fix φλ(1) = −1 for all λ > 0. Set T (λ) = π(φλ). To prove
this corollary, it suffices to show that

T (λ)


<0 if λ < λG

π,ν

>0 if λ > λG
π,ν .

For λ > 0, define L(λ) := Eν(φλ, φλ)/Varπ (φλ). By (2.2), one has

L(λ)− λ =
λT (λ)[π(φλ)− φλ(n)]

Varπ (φλ)
. (2.3)

Since φλ is non-constant, π(φλ) < φλ(n). This implies T (λ) < 0 for λ ∈ (0, λG
π,ν).

For λ > λG
π,ν , set I = (λG

π,ν,∞). By Proposition 2.3, T (λ) = 0 if and only if λ = λG
π,ν .

By the continuity of T , this implies either T (I ) ⊂ (−∞, 0) or T (I ) ⊂ (0,∞). In the case
T (I ) ⊂ (−∞, 0), one has L(λ) > λ for λ ∈ I . As L(I ) is bounded, Lk(λ) is convergent with
limitλ > λG

π,ν and this yields

0 = lim
k→∞

[Lk+1(λ)− Lk(λ)] =

λT (λ)[π(φλ)− φλ(n)]
Varπ (φλ) > 0,

a contradiction. Hence, T (λ) > 0 for λ > λG
π,ν . �

Proof of Theorem 1.2. The proof for n = 2 is obvious from a direct computation and we deal
with the case n ≥ 3, here. By the equivalence of Proposition 2.3(3)–(4), if λ0 = λG

π,ν , then
λk = λG

π,ν for all k ≥ 1. If λ0 ≠ λG
π,ν , then λk > λG

π,ν for k ≥ 1. Note that (λk, ψk) solves the
system in (2.1). By (2.2), this implies

λk+1 − λk =
λkπ(ψk)[π(ψk)− ψk(n)]

Varπ (ψk)
, ∀k ≥ 0.

The strict monotonicity of λk in (2) comes immediately from Corollary 2.4. In (3), the continuity
of (2.1) in λ implies that (λ∗, ψ∗) is a solution to (2.1) and Eν(ψ∗, ψ∗) = λ∗Var(ψ∗). By
Proposition 2.3, λ∗

= λG
π,ν and π(ψ∗) = 0, as desired. �

Proof of Theorem 1.3. Recall the notation in the proof of Corollary 2.4: for λ > 0, let φλ be
the function defined by (2.1) and L(λ) = Eν(φλ, φλ)/Varπ (φλ). By (2.2) and Corollary 2.4,
L(λ) ∈ (λG

π,ν, λ) for λ > λG
π,ν . As L is bounded, Theorem 1.3 follows from Lemma A.1. �
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Proof of Theorem 1.4. Immediate from Corollary 2.4. �

In the end of this section, we use the following proposition to find how the shape of the
function ψ in (2.1) evolves with λ. In Proposition 2.5, we set φλ = ψ when ψ is given by (2.1).
It is easy to see from (2.1) that φλ is strictly increasing before some constant, say i0 = i0(λ),
and then stays constant equal to φλ(i0) after i0. The proposition shows how the constant i0(λ)

evolves.

Proposition 2.5. For λ > 0, let φλ be the function generated by (2.1) with φλ(1) = −1 and, for
1 ≤ i ≤ n, set Ti (λ) =

i
j=1 φλ(i)π(i). For 1 ≤ i < n, let

ai (λ) = 1 + π(i + 1)/π(i)− λπ(i + 1)/ν(i, i + 1),

Ai (λ) =



a1(λ) 1 0 0 · · · 0
π(3)
π(2)

a2(λ) 1 0
...

0
π(4)
π(3)

a3(λ)
. . .

. . .
...

0 0
. . .

. . .
. . . 0

...
. . .

. . . ai−1(λ) 1

0 · · · · · · 0
π(i + 1)
π(i)

ai (λ)


, (2.4)

and let λ(i) be the smallest root of det Ai (λ) = 0. Then,

(1) λG
π,ν = λ(n−1) < λ(n−2) < · · · < λ(1).

(2) φλ(i) < φλ(i + 1) = φλ(i + 2) for λ ∈ [λ(i), λ(i−1)) and 1 ≤ i ≤ n − 2, where λ(0) := ∞.
(3) φλ(n − 1) < φλ(n) for λ ∈ (0, λ(n−2)).

In particular, Ti+1(λ) = −π(1) det Ai (λ) for λ ∈ (0, λ(i−1)) and (λ − λ(i))Ti+1(λ) > 0 for
λ ∈ (0, λ(i)) ∪ (λ(i),∞) with 1 ≤ i ≤ n − 1.

Proof. By Lemma A.2, λ(1) > λ(2) > · · · > λ(n−1) > 0 and, for 1 ≤ i ≤ n − 1,

det Ai (λ)


>0 ∀λ ∈ (−∞, λ(i))

<0 ∀λ ∈ (λ(i), λ(i−1)),
(2.5)

where λ(0) = ∞. Note that if Ti (λ) < 0 for some 1 ≤ i ≤ n − 1, then

φλ( j + 1) = φλ( j)+
[φλ( j)− φλ( j − 1)]ν( j − 1, j)− λπ( j)φλ( j)

ν( j, j + 1)
, ∀1 ≤ j ≤ i.

This implies

φλ(ℓ+ 1) = φλ(ℓ)−
λ

ν(ℓ, ℓ+ 1)

ℓ
j=1

π( j)φλ( j), ∀1 ≤ ℓ ≤ i. (2.6)

Multiplying π(ℓ+ 1) and adding up Tℓ(λ) yields

Tℓ+1(λ) = aℓ(λ)Tℓ(λ)−
π(ℓ+ 1)
π(ℓ)

Tℓ−1(λ), ∀1 ≤ ℓ ≤ i.
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From the above discussion, we conclude that if Ti (λ) < 0, then

Tℓ+1(λ) = −π(1) det Aℓ(λ), ∀1 ≤ ℓ ≤ i. (2.7)

When ℓ = i − 1, (2.5) implies det Ai−1(λ) > 0 for λ < λ(i−1). By the continuity of Ti and
det Ai−1, if there is some λ < λ(i−1) such that Ti (λ) < 0, then Ti (λ) = −π(1) det Ai−1(λ) for
λ < λ(i−1). As a consequence of (2.7) with ℓ = i , this will imply Ti+1(λ) = −π(1) det Ai (λ)

for λ < λ(i−1). Hence, it remains to show that Ti (λ) < 0 for some λ < λ(i−1). To see
this, according to Corollary 2.4, one can choose a constant λ < min{λG

π,ν, λ
(i−1)

} such that
Tn−1(λ) < 0. Since φλ(i) is non-decreasing in i , we obtain Ti (λ) < 0, as desired. This proves
Ti+1(λ) = −π(1) det Ai (λ) for λ < λ(i−1). In particular, Tn(λ) = −π(1) det An−1(λ) for
λ < λ(n−2). By Corollary 2.4, we have λ(n−1)

= λG
π,ν . This proves Proposition 2.5(1).

Next, observe that, for λ ∈ (λ(i), λ(i−1)),

i+1
j=1

π( j)φλ( j) = Ti+1(λ) > 0,
i

j=1

π( j)φλ( j) = Ti (λ) < 0.

By (2.6), it is easy to see that [φλ(i + 1)− φλ(i)]ν(i, i + 1) = −λTi (λ) > 0 and

[φλ(i + 2)− φλ(i + 1)]ν(i + 1, i + 2)

= {[φλ(i + 1)− φλ(i)]ν(i, i + 1)− λπ(i + 1)φλ(i + 1)}+

= {−λTi+1(λ)}
+

= 0.

This proves Proposition 2.5(2). To prove Proposition 2.5(3), we use (1) to derive

Tn−1(λ) = −π(1) det An−2(λ) < 0, ∀λ ∈ (0, λ(n−2)).

Using (2.6), this implies φλ(n − 1) < φλ(n). The last part of Proposition 2.5 follows easily from
(2.5) and the fact that

Ti (λ) ≥ 0 ⇒ Ti+1(λ) > 0 and Ti (λ) ≤ 0 ⇒ Ti−1(λ) < 0. �

Remark 2.2. In Proposition 2.5, if λ > λ(1) = ν(1, 2)[π(1)−1
+ π(2)−1

], then φλ(i) = φλ(2)
for i = 2, . . . , n. Note that, for λ ≥ λ(1), φλ(2) = −1 + λπ(1)/ν(1, 2) and

π(φλ) = −1 +
λπ(1)(1 − π(1))

ν(1, 2)
, Varπ (φλ) =

λ2π(1)3(1 − π(1))

ν(1, 2)2
.

By (2.3), this leads to L(λ) = ν(1, 2)/[π(1)(1 − π(1))] for λ ≥ λ(1). In the case n = 2, it is
clear that ν(1, 2)/[π(1)(1 − π(1))] = ν(1, 2)[π(1)−1

+ π(2)−1
] = λG

π,ν .

3. Convergence to other eigenvalues

In this section, we generalize the algorithms (A1) and (A2) so that they can be applied for the
computation to any specified eigenvalue.

3.1. Basic setup and fundamental results

Recall that G is a graph with vertex set V = {1, 2, . . . , n} and edge set E = {{i, i + 1}|i =

1, 2, . . . , n − 1}. Given two positive measures π, ν on V, E with π(V ) = 1, let MG
π,ν be an
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n-by-n matrix defined in the introduction and given by

MG
π,ν(i, j) =

−ν(i, j)/π(i) if |i − j | = 1
[ν(i − 1, i)+ ν(i, i + 1)]/π(i) if j = i
0 if |i − j | > 1.

(3.1)

Since ν is positive everywhere and MG
π,ν is tridiagonal, all eigenvalues of MG

π,ν have algebraic
multiplicity 1. Throughout this section, let {λG

0 < λG
1 < · · · < λG

n−1} denote the eigenvalues
of MG

π,ν with associated L2(π)-normalized eigenvectors ζ0 = 1, ζ2, . . . , ζn−1. Clearly, λG
0 = 0,

λG
1 = λG

π,ν and, for 1 ≤ k ≤ n,

λG
i ζi (k)π(k) = [ζi (k)− ζi (k − 1)]ν(k − 1, k)+ [ζi (k)− ζi (k + 1)]ν(k, k + 1). (3.2)

Let 1 ≤ i ≤ n − 1. As ζi is non-constant, it is clear that ζi (1) ≠ ζi (2) and ζi (n − 1) ≠ ζi (n).
Moreover, if ζi (k) = ζi (k + 1) for some 1 < k < n, then ζi (k) ≠ ζi (k − 1) and ζi (k + 1) ≠

ζi (k + 2). Gantmacher and Krein [13] showed that there are exactly i sign changes for ζi with
1 ≤ i ≤ n. Miclo [14] gives a detailed description on the shape of ζi as follows.

Theorem 3.1. For 1 ≤ i ≤ n −1, let ζi be an eigenvector associated to the i th smallest non-zero
eigenvalue of the matrix in (3.1) with ζi (1) < 0. Then, there are 1 = a1 < b1 ≤ a2 < b2 ≤

· · · ≤ ai < bi = n with a j+1 − b j ∈ {0, 1} such that ζi is strictly increasing on [a j , b j ] for odd
j and is strictly decreasing on [a j , b j ] for even j , and ζi (a j+1) = ζi (b j ) for 1 ≤ j < i .

In the following, we make some analysis related to the Euler–Lagrange equations in (3.2).

Definition 3.1. Fix n ≥ 1 and let f be a function on {1, 2, . . . , n}. For 1 ≤ i ≤ n −1, f is called
“Type i” if there are 1 = a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ai < bi ≤ n satisfying a j+1 − b j ∈ {0, 1}

such that

(1) f is strictly monotonic on [a j , b j ] for 1 ≤ j ≤ i .
(2) [ f (a j )− f (a j + 1)][ f (a j+1)− f (a j+1 + 1)] < 0 for 1 ≤ j < i .
(3) f (a j+1) = f (b j ), for 1 ≤ j < i , and f (k) = f (bi ), for bi ≤ k ≤ n.

The points a j , b j will be called “peak-valley points” in this paper.

Remark 3.1. Note that the difference between Definition 3.1 and Theorem 3.1 is the requirement
bi ≤ n, instead of bi = n. By Theorem 3.1, any eigenvector associated to the i th smallest non-
zero eigenvalue of the matrix in (3.1) must be of type i with bi = n.

Definition 3.2. Let π, ν be positive measures on V, E with π(V ) = 1. For λ ∈ R, let ξλ be a
function on {1, 2, . . . , n} defined by ξλ(1) = −1 and, for 1 ≤ k < n,

ξλ(k + 1) = ξλ(k)+
[ξλ(k)− ξλ(k − 1)]ν(k − 1, k)− λπ(k)ξλ(k)

ν(k, k + 1)
.

Remark 3.2. Note that ξ0 = −1 and, for λ < 0, ξλ is strictly decreasing and of type 1. For
λ > 0, if ξλ(k − 1) < ξλ(k) = ξλ(k + 1), then ξλ(k) > 0 and this implies ξλ(k + 2) < ξλ(k + 1).
Similarly, if ξλ(k − 1) > ξλ(k) = ξλ(k + 1), then ξλ(k) < 0 and ξλ(k + 2) > ξλ(k + 1). Thus,
ξλ must be of type i for some 1 ≤ i ≤ n − 1.
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Lemma 3.2. For λ > 0, let ξλ be the function in Definition 3.2. Suppose that ξλ is of type i with
1 ≤ i ≤ n − 1.

(1) If ξλ(n − 1) ≠ ξλ(n), then there is ϵ > 0 such that ξλ+δ is of type i for −ϵ < δ < ϵ.
(2) If ξλ(n − 1) = ξλ(n), then there is ϵ > 0 such that ξλ+δ is of type i + 1 and ξλ−δ is of type i

for 0 < δ < ϵ.

Proof. Let a j , b j be the peak-valley points of ξλ. By the continuity of ξλ in λ and Remark 3.2,
one can choose ϵ > 0 such that, for δ ∈ (−ϵ, ϵ), ξλ+δ remains strictly monotonic on [a j , b j ] for
j = 1, . . . , i and

[ξλ+δ(b j − 1)− ξλ+δ(b j )][ξλ+δ(a j+1 + 1)− ξλ+δ(a j+1)] > 0,

for 1 ≤ j < i . In (1), bi = n. Fix δ ∈ (−ϵ, ϵ) and set a′

1 = a1 = 1, b′

i = bi = n. For 1 < j < i ,
set 

b′

j = a′

j+1 = b j if [ξλ+δ(b j − 1)− ξλ+δ(b j )][ξλ+δ(b j )− ξλ+δ(a j+1)] < 0

b′

j = a′

j+1 = a j+1 if [ξλ+δ(b j − 1)− ξλ+δ(b j )][ξλ+δ(b j )− ξλ+δ(a j+1)] > 0

b′

j = b j , a′

j+1 = a j+1 if [ξλ+δ(b j − 1)− ξλ+δ(b j )][ξλ+δ(b j )− ξλ+δ(a j+1)] = 0.

Clearly, ξλ+δ is of type i with peak-valley points a′

j , b′

j . This proves Lemma 3.2(1).
For part (2), we consider i ≤ n − 2 and bi = n − 1. By similar argument as before,

one can choose ϵ > 0 such that the restriction of ξλ+δ to {1, 2, . . . , n − 1} is of type i for
δ ∈ (−ϵ, ϵ). To finish the proof, it remains to compare ξλ+δ(n − 1) and ξλ+δ(n). Recall that
T j (λ) =

 j
k=1 ξλ(k)π(k) as in the proof for Proposition 2.5. Using a similar reasoning as for

(2.7), one shows that Ti+1(λ) = −π(1) det Ai (λ) for 1 ≤ i < n, where Ai (λ) is the matrix
in (2.4). This implies that the non-zero eigenvalues of MG

π,ν , say λG
1 , . . . , λ

G
n−1, are the roots of

det An−1(λ) = 0. As a consequence of Lemma A.2, det An−2(λ) = 0 has exactly n − 2 distinct
roots, say α1 < α2 < · · · < αn−1, and they satisfy the interlacing property λG

j < α j < λG
j+1 for

1 ≤ j ≤ n − 2. Note that det An−2(λ) and det An−1(λ) tend to infinity as −λ tends to infinity.
This leads to the fact that if det An−2(λ) = 0 and det An−1(λ) < 0, then det An−2(·) is strictly
decreasing in a neighborhood of λ. If det An−2(λ) = 0 and det An−1(λ) > 0, then det An−2(·) is
strictly increasing in a neighborhood of λ.

Back to the proof of (2). Suppose that ξλ(n − 2) < ξλ(n − 1). By Remark 3.2, it is easy to
check that Tn−1(λ) = 0 and Tn(λ) > 0 or, equivalently, det An−2(λ) = 0 and det An−1(λ) < 0.
According to the conclusion in the previous paragraph, we can find ϵ > 0 such that det An−2(·)

is strictly decreasing on (λ− ϵ, λ+ ϵ), which yields

ξλ+δ(n) = ξλ+δ(n − 1)−
(λ+ δ)Tn−1(λ+ δ)

ν(n − 1, n)


<ξλ+δ(n − 1) if 0 < δ < ϵ

>ξλ+δ(n − 1) if − ϵ < δ < 0.

This gives the desired property in Lemma 3.2(2). The other case, ξλ(n − 2) > ξλ(n − 1), can be
proved in the same way and we omit the details. �

The following proposition characterizes the shape of ξλ for λ > 0.

Proposition 3.3. For λ > 0, let ξλ be the function in Definition 3.2. Let λG
1 < · · · < λG

n−1 be
non-zero eigenvalues of MG

π,ν in (3.1) and α1 < · · · < αn−2 be zeros of det An−2(λ), where
An−2(·) is the matrix in (2.4). Then,

(1) λG
j < α j < λG

j+1, for 1 ≤ j ≤ n − 2.
(2) ξλ is of type j for λ ∈ (α j−1, α j ] and 1 ≤ j ≤ n − 1, where α0 := 0 and αn−1 := ∞.
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Proof. (1) is immediate from Lemma A.2. For (2), note that αi is an eigenvalue of the submatrix
of MG

π,ν obtained by removing the nth row and column. This implies ξαi (n − 1) = ξαi (n) for
i = 1, . . . , n − 2 and ξλ(n − 1) ≠ ξλ(n) for λ > 0 and λ ∉ {α1, . . . , αn−2}. By Lemma 3.2, ξλ
is of type i for αi−1 < λ ≤ αi . �

Given λ > 0, the above proposition provides a simple criterion to determine which of the
intervals (α j , α j+1]λ belongs to, that is, the type of ξλ. However, knowing the type of ξλ is not
sufficient to determine whether λ is bigger or smaller than λG

i . We need the following remark.

Remark 3.3. Using the same argument as the proof of Proposition 2.5, one can show that
π(ξλ) = −π(1) det An−1(λ), where An−1(λ) is the matrix in (2.4). Clearly, π(ξλ) has zeros
λG

1 , . . . , λ
G
n−1 and tends to minus infinity as λ tends to minus infinity. This implies that π(ξλ) <

0, for λ < λG
1 , and

π(ξλ) > 0 ∀λ ∈ (λG
2i−1, λ

G
2i ), π(ξλ) < 0 ∀λ ∈ (λG

2i , λ
G
2i+1),

for i ≥ 1, where λG
n := ∞.

As a consequence of Proposition 3.3 and Remark 3.3, we obtain the following dichotomy
algorithm, which is a generalization of (A2). Let 1 ≤ i ≤ n − 1.

Choose positive reals L0 < λG
i < U0 and set, for ℓ = 0, 1, . . . ,

1. ξλℓ be the function generated by λℓ = (Lℓ + Uℓ)/2 in Definition 3.2,
2.According to Definition 3.1, set

Lℓ+1 = Lℓ, Uℓ+1 = λℓ if ξλℓ is of type j with j > i ,
or if ξλℓ is of type i and (−1)i−1π(ξλℓ) > 0

Uℓ+1 = Uℓ, Lℓ+1 = λℓ if ξλℓ is of type j with j < i ,
or if ξλℓ is of type i and (−1)i−1π(ξλℓ) < 0

Lℓ+1 = Uℓ+1 = λℓ if ξλℓ is of type i and π(ξλℓ) > 0.

(Di)

Theorem 3.4. Referring to (Di),

0 ≤ max{Uℓ − λG
i , λ

G
i − Lℓ} ≤ (U0 − L0)2−ℓ, ∀ℓ ≥ 0.

Proof. Immediate from Proposition 3.3 and Remark 3.3. �

Proposition 3.3(2) bounds the eigenvalues using the shape of ξλ generated from one end point.
We now introduce some other criteria to bound eigenvalues using the shape of ξλ from either
boundary point. Those results will be used to prove Theorem 6.1.

Proposition 3.5. For λ > 0, let ξλ be the function in Definition 3.2 andξλ be a function given by

ξλ(k − 1) =ξλ(k)+
[ξλ(k)−ξλ(k + 1)]ν(k, k + 1)− λπ(k)ξλ(k)

ν(k − 1, k)
,

for k = n, n − 1, . . . , 2 with ξλ(n) = −1. Let λG
0 < · · · < λG

n−1 be eigenvalues of MG
π,ν

in (3.1) and let f |B be the restriction of f to a subset B of V . Suppose 1 ≤ k0 ≤ n.

(1) If ξλ|{1,...,k0} is of type i with (−1)iξλ(k0) > 0 andξλ|{k0,...,n} is of type j with (−1) jξλ(k0) >

0, then λG
i+ j−2 < λ < λG

i+ j−1.
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(2) If ξλ|{1,...,k0} is of type i with (−1)iξλ(k0) < 0 andξλ|{k0,...,n} is of type j with (−1) jξλ(k0) <

0, then λG
i+ j−1 < λ < λG

i+ j+1.

(3) If ξλ|{1,...,k0} is of type i with (−1)iξλ(k0) > 0 andξλ|{k0,...,n} is of type j with (−1) jξλ(k0) <

0, then λG
i+ j−2 < λ < λG

i+ j .

Proof. By Proposition 3.3, ξλ(n) is a polynomial of degree n − 1 satisfying

(−1)i+1ξλG
i
(n) > 0 ∀0 ≤ i < n, (−1)i+1ξβi (n) > 0 ∀1 ≤ i < n − 1.

This implies that there are wi ∈ (βi , λ
G
i+1), 0 ≤ i ≤ n − 2, such that (−1)i+1ξλ(n) > 0 for

λ ∈ (wi−1, wi ) and 0 ≤ i ≤ n − 1 with w−1 = −∞ and wn−1 = ∞.
The proofs for (1)–(3) in Proposition 3.5 are similar and we deal with (1) only. By the

Euler–Lagrange equations in (3.2), it is easy to see that, for 1 ≤ l < n, ξλG
l

and ξλG
l

are eigenvectors of MG
π,ν in (3.1) associated with λG

l , which implies ξλG
l

= −ξλG
l
(n)ξλG

l
.

First, assume that λ ≤ λG
i+ j−2. By Proposition 3.3, ξλG

i+ j−2
|{1,...,k0} is of type at least i andξλG

i+ j−2
|{k0,...,n} is of type at least j . This implies that the patching of ξλG

i+ j−2
|{1,...,k0} and

−ξλG
i+ j−2

(n)ξλG
i+ j−2

|{k0,...,n}, which equals ξλG
i+ j−2

, is of type at least i + j − 1. This is a

contradiction.
Next, assume that λ ≥ λG

i+ j−1. By Proposition 3.3, we may choose a1 < λ (resp. a2 < λ)

such that ξλ|{1,...,k0} (resp.ξλ|{k0,...,n}) changes the type at a1 (resp. a2). If λG
i+ j−1 ≤ min{a1, a2},

then a similar reasoning as before implies that ξλG
i+ j−1

is of type at most i + j − 2, a

contradiction. If min{a1, a2} < λG
i+ j−1 < max{a1, a2}, then exactly one of ξλG

i+ j−1
|{1,...,k0} andξλG

i+ j−1
|{k0,...,n} does not change its type. This implies that the gluing point k0 cannot be a local

extremum and, thus, the patching function is of type at most i + j − 2, another contradiction!
According to the discussion in the first paragraph of this proof, if λG

i+ j−1 ≥ max{a1, a2},

then none of ξλG
i+ j−1

|{1,...,k0} and ξλG
i+ j−1

|{k0,...,n} changes type nor, of course, the sign at k0.

Consequently, we obtain (−1)i+ jξλG
i+ j−1

(k0)ξλG
i+ j−1

(k0) > 0, which contradicts the fact ξλG
i+ j−1

=

−ξλG
i+ j−1

(n)ξλG
i+ j−1

. �

Proposition 3.6. For λ > 0 and 1 ≤ k ≤ n − 1, let sk(λ) be the kth sign change of ξλ defined
by s0 := 0 and sk+1(λ) := inf{l > sk(λ)|ξλ(l)ξλ(l − 1) < 0 or ξλ(l) = 0}, where inf ∅ := n + 1.
Then, for 0 < λ1 < λ2, sk(λ1) ≥ sk(λ2) for all 1 ≤ k ≤ n − 1.

Proof. Let 1 ≤ k ≤ n − 1. If sk(λ1) = n + 1, then it is clear that sk(λ1) ≥ sk(λ2). Suppose that
sk(λ1) = ℓ ≤ n. Obviously, ξλ1 |{1,...,ℓ} is of type k. Referring to (2.4), let λℓ1, . . . , λ

ℓ
ℓ−1 be the

roots of det Aℓ−1(λ) = 0 and αℓ1, . . . , α
ℓ
ℓ−2 be roots of det Aℓ−2(λ) = 0. According to the first

paragraph of the proof for Proposition 3.5, there arewℓi ∈ (αℓi−1, λ
ℓ
i )with 1 ≤ i ≤ ℓ−1 such that

(−1)i+1ξλ(ℓ) > 0 for λ ∈ (wℓi , w
ℓ
i+1) and 1 ≤ i ≤ ℓ−1, where αℓ0 := 0. Since ξλ1(ℓ)ξλℓk

(ℓ) ≥ 0,

one has wℓk ≤ λ1 < αℓk . As it is assumed that λ2 > λ1, if λ2 > αℓk , then ξλ2 |{1,...,ℓ} is of type at
least k + 1 and, consequently, sk(λ2) < ℓ = sk(λ1). If λ1 < αℓk , then ξλ2 |{1,...,ℓ} is type k and
ξλ2(ℓ) < 0. This implies sk(λ2) ≤ ℓ = sk(λ1), as desired. �
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3.2. Bounding eigenvalues from below

Motivated by Theorem 3.1, we introduce another scheme generalizing (2.1) to bound the other
eigenvalues of MG

π,ν from below.

Definition 3.3. For λ > 0, let ξλ be a function in Definition 3.2. If ξλ is of type i , 1 ≤ i ≤ n − 1,
with peak-valley points 1 = a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ai < bi ≤ n, then define

ξ
( j)
λ (k) =


ξλ(k) for k ≤ b j
ξλ(k) = ξλ(b j ) for k > b j ,

∀1 ≤ j < i

and set ξ ( j)
λ = ξλ for i ≤ j ≤ n − 1.

Remark 3.4. For λ > 0, if ξλ is of type i , then ξ ( j)
λ is of type j for j < i . Moreover, for k < b j ,

ξ
( j)
λ (k + 1) = ξ

( j)
λ (k)+

[ξ
( j)
λ (k)− ξ

( j)
λ (k − 1)]ν(k − 1, k)− λπ(k)ξ ( j)

λ (k)

ν(k, k + 1)

= ξ
( j)
λ (k)−

λ[π(1)ξ ( j)
λ (1)+ · · · + π(k)ξ ( j)

λ (k)]

ν(k, k + 1)
,

and, for b j ≤ k < n,

ξ
( j)
λ (k + 1) = ξ

( j)
λ (k)+

F j ([ξ
( j)
λ (k)− ξ

( j)
λ (k − 1)]ν(k − 1, k)− λπ(k)ξ ( j)

λ (k))

ν(k, k + 1)
,

where F j (t) = max{t, 0} if j is odd, and F j (t) = min{t, 0} if j is even. Note that ξ (1)λ is exactly
φλ in Proposition 2.5.

Thereafter, let L and L(i) be functions on (0,∞) defined by

L(λ) =
Eν(ξλ, ξλ)
Varπ (ξλ)

, L(i)(λ) =
Eν(ξ (i)λ , ξ

(i)
λ )

Varπ (ξ
(i)
λ )

, ∀1 ≤ i ≤ n − 1, (3.3)

where ξλ and ξ (i)λ are functions in Definitions 3.2–3.3.

Remark 3.5. Note that L = L(n−1). By a similar reasoning as in the proof for (2.2), one can
show that, for λ > 0,

L(λ) = λ+
λπ(ξλ)[π(ξλ)− ξλ(n)]

Varπ (ξλ)
, L(i)(λ) = λ+

λπ(ξ
(i)
λ )[π(ξ

(i)
λ )− ξ

(i)
λ (n)]

Varπ (ξ
(i)
λ )

.

From Proposition 3.3, it follows immediately that L(λ) = L(i)(λ) for λ ∈ (0, αi ].

To explore further L and L(i), we need more information of π(ξλ), π(ξ
(i)
λ ), π(ξλ)− ξλ(n) and

π(ξ
(i)
λ )− ξ

(i)
λ (n).

Lemma 3.7. Let ξλ be the function in Definition 3.2 and λG
i , αi be constants in Proposition 3.3.

Then, π(ξλ)−ξλ(n) = 0 has n−1 distinct roots, say β0 < β1 < · · · < βn−2, which satisfy β0 = 0
and αi < βi < λG

i+1 for 1 ≤ i ≤ n − 2. Furthermore, π(ξλ) − ξλ(n) > 0 for λ ∈ (β2i−1, β2i )

and π(ξλ)− ξλ(n) < 0 for λ ∈ (β2i , β2i+1), with β−1 = −∞ and βn−1 = ∞.
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Proof. Set u(λ) := π(ξλ) − ξλ(n). According to Definition 3.2, u(λ) is a polynomial of degree
n − 1 and satisfies u(0) = 0. Note that π(ξλ) = 0 for λ ∈ {λG

1 , . . . , λ
G
n−1}. If i is odd, then

ξλG
i
(n − 1) < ξλG

i
(n). This implies ξλG

i
(n) > 0 and, hence, u(λG

i ) < 0. Similarly, if i is even,

then u(λG
i ) > 0.

By Lemma 3.2 and Proposition 3.3, if λ = αi with odd i , then ξαi is of type i with
ξαi (n − 1) = ξαi (n). This implies ξαi (n) > 0 and π(ξαi ) = π(n)ξαi (n), which yields u(αi ) < 0.
Similarly, one can show that u(αi ) > 0 if i is even. �

Remark 3.6. We consider the sign of π(ξ (i)λ ) and π(ξ
(i)
λ ) − ξ

(i)
λ (n) in this remark. By

Proposition 3.3, ξ (i)λ = ξλ for λ ≤ αi . If λ > αi with 1 ≤ i ≤ n − 2, then ξλ is of type j with

j > i . Fix 1 ≤ i ≤ n − 2 and set k0 = k0(λ) = min{k|ξ
(i)
λ ( j) = ξ

(i)
λ (n), ∀k ≤ j ≤ n}. Clearly,

k0(λ) ≤ n −1 for λ > αi . Observe that, for λ > αi with odd i , ξλ(k0 −1) < ξλ(k0) ≥ ξλ(k0 +1),
which implies

k0−1
k=1 π(k)ξλ(k) < 0 and

k0
k=1 π(k)ξλ(k) ≥ 0. A similar reasoning for the case

of even i gives
k0−1

k=1 π(k)ξλ(k) > 0 and
k0

k=1 π(k)ξλ(k) ≤ 0. Consequently, we obtain

(−1)i−1π(ξ
(i)
λ ) > 0, (−1)i [π(ξ (i)λ )− ξ

(i)
λ (n)] > 0, (3.4)

for λ > αi and 1 ≤ i ≤ n − 2. Note that, by Proposition 3.3, ξ (i)λ = ξλ for λ ≤ αi . In addition

with Remark 3.3, Lemma 3.7 and the continuity of ξ (i)λ , the first inequality of (3.4) holds for
λ > λG

i and the second inequalities of (3.4) hold for λ > βi−1.

According to Lemma 3.7 and Remark 3.6, we derive a generalized version of Proposition 2.3
in the following.

Proposition 3.8. Let n ≥ 3 and 1 ≤ i ≤ n − 1. For λ > 0, let ξλ, ξ
(i)
λ be the functions

in Definition 3.2 and βi be the constants in Lemma 3.7.

(1) For λ > βi−1, the following are equivalent.

(1-1) Eν(ξ (i)λ , ξ
(i)
λ ) = λVarπ (ξ

(i)
λ ).

(1-2) π(ξ (i)λ ) = 0.

(1-3) λ = λG
i .

(2) For βi−1 < λ < βi , the following are equivalent.
(2-1) Eν(ξλ, ξλ) = λVarπ (ξλ).
(2-2) π(ξλ) = 0.
(2-3) λ = λG

i .

Proof. The proof for Proposition 3.8(2) is similar to the proof for Proposition 3.8(1) and we deal
only with the latter. By Lemma 3.7 and Remark 3.6, one has

π(ξ
(i)
λ )[π(ξ

(i)
λ )− ξ

(i)
λ (n)]


<0 for λ > λG

i
>0 for βi−1 < λ < λG

i .

This proves the equivalence of (1-1) and (1-2). Under the assumption of (1-2) and using
Remark 3.3, one has λ ≤ αi . This implies ξ (i)λ = ξλ is an eigenvector for MG

π,ν with associated
eigenvalue λ. As λ ∈ (βi−1, αi ], it must be the case λ = λG

i . This gives (1-3), while (1-3)⇒(1-2)
is obvious and omitted. �
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Remark 3.7. It is worthwhile to note that if (1-1) and (2-1) of Proposition 3.8 are removed, then
the equivalence in (1) holds for λ > λG

i−1 and the equivalence in (2) holds for λ ∈ (λG
i−1, λ

G
i+1).

Once λG
i−1 is known, we can determine λG

i using the sign of π(ξ (i)λ ). See Theorem 3.9 for details.

Remark 3.8. Note that condition (4) of Proposition 2.3 is not included in Proposition 3.8. In
fact, the equivalence may fail, that is, there may exist some λ ∈ (βi−1, βi ) \ {λG

i } such that
Eν(ξλ, ξλ)/Varπ (ξλ) = λG

i . See Example 3.2 for a counterexample.

As Proposition 3.8 focuses on the characterization of zeros of L(λ)−λ, the following theorem
concerns the sign of L(λ)− λ.

Theorem 3.9. Let λG
i , αi , βi be the constants in Proposition 3.3 and Lemma 3.7, and L be the

function in (3.3). Then, λG
1 , . . . , λ

G
n−1, β1, . . . , βn−2 are fixed points of L and, for 1 ≤ i ≤ n −2,

(1) L(λ) < λ for λ ∈ (λG
i , βi ).

(2) L(λ) > λ for λ ∈ (βi , λ
G
i+1).

(3) L(i)(λ) < λ for λ ∈ (λG
i ,∞).

Proof. Immediate from Lemma 3.7 and Remarks 3.5–3.6. �

By Theorem 3.9, we obtain a lower bound on any specified eigenvalue of MG
π,ν .

Corollary 3.10. Let 1 ≤ i ≤ n − 1 and λ0 > λG
i . Consider the sequence λℓ+1 = L(i)(λℓ) with

ℓ ≥ 0 and set

λ∗
=

 lim
ℓ→∞

λℓ if λℓ converges

sup
ℓ∈I

λℓ if λℓ diverges,

where I = {ℓ|λℓ−1 > λℓ < λℓ+1}. Then, λ∗
≤ λG

i .

It is not clear yet whether the sequence λℓ in Corollary 3.10 is convergent, even locally. This
subject will be discussed in the next subsection. Now, we establish some relations between the
roots of det Ai (λ) = 0 and the shape of ξ (i)λ . This is a generalization of Proposition 2.5.

Proposition 3.11. For 1 ≤ i ≤ n − 1, let Ai (λ) be the matrix in (2.4), θ (i)1 < · · · < θ
(i)
i be zeros

of det Ai (λ) = 0 and set θ (i−1)
i := ∞. Referring to the notation in Proposition 3.3, it holds true

that, for 1 ≤ i ≤ n − 1,

(1) λG
i = θ

(n−1)
i < αi = θ

(n−2)
i < · · · < θ

(i)
i .

(2) ξ (i)λ ( j) ≠ ξ
(i)
λ ( j + 1) = · · · = ξ

(i)
λ (n) for λ ∈ [θ

( j)
i , θ

( j−1)
i ) and i ≤ j ≤ n − 2.

(3) ξ (i)λ (n − 1) ≠ ξ
(i)
λ (n) for λ ∈ (θ

(n−2)
i−1 , θ

(n−2)
i ) and i ≤ n − 1.

Proof. The order in (1) is a simple application of Lemma A.3. For (2), fix 1 ≤ i ≤ n − 1
and set γ (λ) = min{ j |ξ (i)λ (k) = ξ

(i)
λ (n), ∀ j ≤ k ≤ n} and B(λ) = {1, 2, . . . , γ (λ)},

B+(λ) = B(λ) ∪ {γ (λ)+ 1}. Clearly, i + 1 ≤ γ (λ) ≤ n. We use the notation ξλ|C to denote the
restriction of ξλ to a set C . Suppose that i is odd. By Remark 3.4, ξ (i)λ = ξλ on B(λ) and ξλ|B(λ)
is of type i with

ξλ(γ (λ)− 1) < ξλ(γ (λ)) ≥ ξλ(γ (λ)+ 1).
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By Lemma 3.2(1), if ξλ(γ (λ) + 1) < ξλ(γ (λ)), then there is ϵ > 0 such that, for |δ| < ϵ,
ξλ+δ|B(λ) is of type i and

ξλ+δ(γ (λ)− 1) < ξλ+δ(γ (λ)) > ξλ+δ(γ (λ)+ 1).

This implies γ (λ + δ) = γ (λ) for δ ∈ (−ϵ, ϵ). By Lemma 3.2(2), if ξλ(γ (λ) + 1) = ξλ(γ (λ)),
then there is ϵ > 0 such that, for δ ∈ (−ϵ, 0), ξλ+δ|B+(λ) is of type i with

ξλ+δ(γ (λ)− 1) < ξλ+δ(γ (λ)) < ξλ+δ(γ (λ)+ 1),

and, for δ ∈ (0, ϵ), ξλ+δ|B+(λ) is of type i + 1 with

ξλ+δ(γ (λ)− 1) < ξλ+δ(γ (λ)) > ξλ+δ(γ (λ)+ 1).

This yields γ (λ+ δ) = γ (λ) for δ ∈ (0, ϵ) and γ (λ+ δ) = γ (λ)+ 1 for δ ∈ (−ϵ, 0). The proof
for the case of even i is similar and we conclude from the above that γ (λ) is a non-increasing
and right-continuous function taking values on {i + 1, . . . , n}. Let ci+1 > · · · > cn−1 be the
discontinuous points of γ (λ) such that γ (c j ) = j for i + 1 ≤ j ≤ n − 1. As a consequence
of the above discussion, ξc j |{1,..., j} is of type i with ξc j ( j) = ξc j ( j + 1) and this implies j

k=1 π(k)ξc j (k) = 0. That means c j is a root of det A j−1(λ) = 0 for j = i + 1, . . . , n − 1.

By Proposition 3.3 and the second equality in (1), γ (λ) = n for θ (n−2)
i−1 < λ < θ

(n−2)
i and, thus,

c j ≥ θ
(n−2)
i for j ≥ i +1. As a consequence of the interlacing relationship θ (ℓ)i < θ

(ℓ−1)
i < θ

(ℓ)
i+1,

it must be c j = θ
( j+1)
i for i + 1 ≤ j ≤ n − 1. This finishes the proof. �

Remark 3.9. For 1 ≤ i ≤ n−1, θ (i)1 , . . . , θ
(i)
i are also non-zero eigenvalues of the (i+1)×(i+1)

principal submatrix of (3.1) indexed by 1, . . . , i + 1.

Remark 3.10. In fact, by Proposition 2.5, ξ (1)λ (n − 1) ≠ ξ
(1)
λ (n) for λ ∈ (0, θ (n−2)

1 ), which is
better than Proposition 3.11(3).

3.3. Local convergence of L

This subsection is dedicated to the local convergence of L in (3.3). Let αi , βi , λ
G
i be the

constants in Proposition 3.3 and Lemma 3.7. As before, let ζ0 = 1, . . . , ζn−1 denote the L2(π)-
normalized eigenvectors of MG

π,ν associated with λG
0 , . . . , λ

G
n−1. Clearly, ξλG

i
= −ζi/ζi (1) and

ξλ =
n−1

i=0 ρi (λ)ζi , where ρi (λ) = π(ξλζi ) for 0 ≤ i ≤ n − 1. Note that ρi (λ) is a polynomial
of degree n − 1 and satisfies ρi (λ j ) = −δi ( j)/ζi (1) for i, j ∈ {0, 1, . . . , n − 1}. This implies

ρ0(λ) = −

n−1
j=1

λG
j − λ

λG
j

, ρi (λ) = −
λ

ζi (1)λG
i

n−1
j=1, j≠i

λG
j − λ

λG
j − λG

i

, (3.5)

for all 1 ≤ i ≤ n − 1. Moreover, by multiplying (3.2) with ξλ(k) and summing up k, we obtain
Eν(ξλ, ζi ) = λG

i ρi (λ). In the same spirit, one can show that Eν(ξλ, ζi ) = λ[ρi (λ) − ζi (n)ρ0(λ)]

using Definition 3.2. Putting both equations together yields

ρi (λ) =
λζi (n)

λ− λG
i

ρ0(λ), ∀0 ≤ i ≤ n − 1. (3.6)



864 G.-Y. Chen, L. Saloff-Coste / Stochastic Processes and their Applications 124 (2014) 848–882

As a consequence of Remark 3.5, this gives

L(λ) =

n−1
i=1

λG
i ρ

2
i (λ)

n−1
i=1

ρ2
i (λ)

= λ+

n−1
i=1
(λG

i − λ)−1ζ 2
i (n)

n−1
i=1
(λG

i − λ)−2ζ 2
i (n)

, (3.7)

for λ ∉ {λG
0 , . . . , λ

G
n−1}. The next proposition follows immediately from the second equation in

(3.5) and (3.6).

Proposition 3.12. Let λG
1 , . . . , λ

G
n−1 be the non-zero eigenvalues of MG

π,ν in (3.1) and ζ1, . . . ,

ζn−1 be the corresponding L2(π)-normalized eigenvectors. Then,

ζi (1)ζi (n) = −

n−1
j=1, j≠i

λG
j

λG
j − λG

i

, ∀1 ≤ i ≤ n − 1.

Set u(λ) =
n−1

j=1(λ
G
j − λ)−1ζ 2

j (n). By Theorem 3.9, β1, . . . , βn−2 are zeros of u(λ)
n−1

j=1

(λG
j − λ), which is a polynomial of degree n − 2. This implies

u(λ) = C


n−1
j=1

1

λG
j − λ


n−2
j=1

(β j − λ)


,

where C =
λ1···λn−1
β1···βn−2

n−1
j=1 ζ

2
j (n)/λ

G
j . Putting this back to L yields

1
L(λ)− λ

=
u′(λ)

u(λ)
=

n−1
j=1

1

λG
j − λ

−

n−2
j=1

1
β j − λ

, (3.8)

for λ ∉ {λG
0 , . . . , λ

G
n−1, β1, . . . , βn−2}.

Proposition 3.13. Let L be the function in (3.3), λG
i be the eigenvalue of MG

π,ν and βi be the

constant in Lemma 3.7. Let Di =
n−2

j=1(β j −λ
G
i )

−1
−
n−1

j=1, j≠i (λ
G
j −λG

i )
−1 with 1 ≤ i ≤ n−1.

Then, for 2 ≤ i ≤ n − 2,

(1) If Di < 0, then there is τ ∈ (λG
i , βi ) such that L is strictly increasing on (βi−1, λ

G
i )∪(τ, βi )

and strictly decreasing on (λG
i , τ ).

(2) If Di > 0, then there is η ∈ (βi−1, λ
G
i ) such that L is strictly increasing on (βi−1, η) ∪

(λG
i , βi ) and strictly increasing on (η, λG

i ).
(3) If Di = 0, then L is strictly increasing on (βi−1, βi ).

Proof. Using (3.7) and (3.8), one can show that L′(λG
i ) = 0 and

L′′(λG
i ) =

n−1
j=1, j≠i

ζ 2
i (n)

λG
j − λG

i

= 2


n−2
j=1

1

β j − λG
i

−

n−1
j=1, j≠i

1

λG
j − λG

i


= 2Di . (3.9)

To prove (1) and (2), it suffices to show that if L′(τ ) = 0 for some τ ∈ (λG
i , βi ), then τ is a

local minimum of L, and if L′(η) = 0 for some η ∈ (βi−1, λ
G
i ), then η is a local maximum
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of L. We discuss the first case, whereas the second case is similar and is omitted. Recall that
u(λ) =

n−1
j=1(λ

G
j − λ)−1ζ 2

j (n). As τ is a critical point for L, one has 2(u′(τ ))2 = u(τ )u′′(τ ).
This implies

L′′(τ ) =
u(τ )[3(u′′(τ ))2 − 2u′(τ )u′′′(τ )]

2(u′(τ ))3
> 0,

where the last inequality uses the fact that u(λ) < 0, for λ ∈ (λG
i , βi ), and

3(u′′(λ))2 − 2u′(λ)u′′′(λ) = −12


1≤i< j≤n−1


(λG

i − λG
j )ζi (n)ζ j (n)

(λG
i − λ)2(λG

j − λ)2

2

< 0.

This proves (1) and (2).
To see (3), we assume that Di = 0. Computations show that

L(λ)− λG
i

L(λ)− λ
= (λ− λG

i )


n−1

j=1, j≠i

1

λG
j − λ

−

n−2
j=1

1
β j − λ



= (λ− λG
i )

2


n−1

j=1, j≠i

1

(λG
j − λ)(λG

j − λG
i )

−

n−1
j=1

1

(β j − λ)(β j − λG
i )


< 0,

for λ ∈ (βi−1, λ
G
i ) ∪ (λ

G
i , βi ), where the last inequality uses the fact that (λG

j − λ)(λG
j − λG

i ) >

(β j − λ)(β j − λG
i ) for j < i and (λG

j − λ)(λG
j − λG

i ) > (β j−1 − λ)(β j−1 − λG
i ) for j > i . By

Theorem 3.9, this implies L(λ) > λG
i for λ ∈ (λG

i , βi ) and L(λ) < λG
i for λ ∈ (βi−1, λ

G
i ). The

desired property comes immediate from the discussion in the previous paragraph. �

Remark 3.11. Note that D1 > 0 and Dn−1 < 0. Using the same proof as above, this implies that
L(λ) is strictly increasing on (λG

1 , β1) ∪ (βn−2, λ
G
n−1). Moreover, by (3.7), one may compute

(u′(λ))2 L′(λ) = −2

i< j

(λG
i − λG

j )
2

(λG
i − λ)3(λG

j − λ)3
< 0, ∀λ ∈ (0, λG

1 ) ∪ (λG
n−1,∞).

This implies L(λ) is strictly decreasing on (0, λG
1 ) ∪ (λG

n−1,∞) and

lim
λ→0

L(λ) =

n−1
i=1

ζ 2
i (n)/λ

G
i

n−1
i=1

ζ 2
i (n)/(λ

G
i )

2

, lim
λ→∞

L(λ) =


1

π(n)
− 1

 n−1
i=1

λG
i ζ

2
i (n).

The following local convergence is a simple corollary of Theorem 3.9 and Proposition 3.13.

Theorem 3.14 (Local Convergence). Let λ0 > 0 and set λℓ+1 = L(λℓ) for ℓ ≥ 0. Then, there is
ϵ > 0 such that the sequence (λℓ)∞ℓ=1 is monotonic and converges to λG

i for λ0 ∈ (λG
i −ϵ, λG

i +ϵ)

and 1 ≤ i ≤ n − 1.

We use the following examples to illustrate the different cases in Proposition 3.13.

Example 3.1 (Simple Random Walks). Let n > 1. A simple random walk on {1, 2, . . . , n} with
reflecting probability 1/2 at the boundary is a birth and death chain with transition matrix given
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by K (i, j) = K (1, 1) = K (n, n) = 1/2 for |i − j | = 1. It is easy to see that the uniform
probability is the stationary distribution of K . In the setting of graph, we have ν(i, i+1) = 1/(2n)
and π(i) = 1/n. One may apply the method in [11] to obtain the following spectral information.

λG
j = 1 − cos

jπ

n
, ζ j (k) =

1
λG

j


sin

jkπ

n
− sin

j (k − 1)π
n


, ∀1 ≤ j < n.

See, e.g., [3, Section 7]. By (3.9), we get

Di =
1
2

n−1
j=1, j≠i

sin2( jπ/n)

λG
j (λ

G
j − λG

i )
=

n−1
j=1, j≠i

1 + cos( jπ/n)

cos(iπ/n)− cos( jπ/n)
.

Clearly, D1 > 0 and Dn−1 < 0. If n is even, then Dn/2 < 0.

Example 3.2 (Ehrenfest Chains). An Ehrenfest chain on V = {0, 1, . . . , n} is a Markov chain
with transition matrix K given by K (i, i + 1) = 1 − i/n and K (i + 1, i) = (i + 1)/n for
i = 0, . . . , n − 1. The associated stationary distribution is the unbiased binomial distribution
on V , that is, π(i) =

 n
i


2−n for i ∈ V . To the Ehrenfest chain, the measure ν is defined by

ν(i, i + 1) =


n−1

i


2−n for i = 0, . . . , n − 1. Using the group representation for the binary

group {0, 1}
n , one may compute

λ j =
2 j

n
, ζ j (k) =


n

j

−1/2 j
ℓ=0

(−1)ℓ


k

ℓ


n − k

j − ℓ


, ∀1 ≤ j ≤ n.

Plugging this back into (3.9) yields

Di =
n

4

n
j=1, j≠i


n
j


j − i

>0 for i < n/2
=0 for i = n/2
<0 for i > n/2.

This example points out the possibility of different signs in {Di |i = 1, . . . , n − 1} including 0.

3.4. A remark on the separation for birth and death chains

In this subsection, we give a new proof of a result, Theorem 3.15, which deals with
convergence in separation distance for birth and death chains. Let (Xm)

∞

m=0 be a birth and death
chain with transition matrix K given by (1.1). In the continuous time setting, we consider the
process Yt = X Nt , where Nt is a Poisson process with parameter 1 independent of Xm . Given
the initial distribution µ, which is the distribution of X0, the distributions of Xm and Yt are
respectively µK m and µe−t (I−K ), where eA

:=


∞

l=0 Al/ l!. Briefly, we write Ht = e−t (I−K ).
It is well-known that if K is irreducible, then µHt converges to π as t → ∞. If K is irreducible
and ri > 0 for some i , then µK m converges to π as m → ∞. Concerning the convergence, we
consider the separations of Xm, Yt with respect to π , which are defined by

dsep(µ,m) = max
0≤x≤n


1 −

µK m(x)

π(x)


, dc

sep(µ, t) = max
0≤x≤n


1 −

µHt (x)

π(x)


.

The following theorem is from [9].
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Theorem 3.15. Let K be an irreducible birth and death chain on {0, 1, . . . , n} with eigenvalues
λ0 = 0 < λ1 < · · · < λn .

(1) For the discrete time chain, if pi + qi+1 ≤ 1 for all 0 ≤ i < n, then

dsep(0,m) = dsep(n,m) =

n
j=1


n

i=1,i≠ j

λi

λi − λ j


(1 − λ j )

m .

(2) For the continuous time chain, it holds true that

dc
sep(0, t) = dc

sep(n, t) =

n
j=1


n

i=1,i≠ j

λi

λi − λ j


e−λ j t .

Diaconis and Fill [5,12] introduce the concept of dual chain to express the separations in
Theorem 3.15 as the probability of the first passage time. Brown and Shao [1] characterize the
first passage time using the eigenvalues of K for a special class of continuous time Markov chains
including birth and death chains. The idea in [1] is also applicable for discrete time chains and
this leads to the formula above. See [9] for further discussions. Here, we use Proposition 3.12
and Lemma 3.16 to prove this result directly.

Lemma 3.16. Let K be the transition matrix in (1.1) with stationary distribution π . Suppose that
µ is a probability distribution satisfying µ(i)/π(i) ≤ µ(i + 1)/π(i + 1) for all 0 ≤ i ≤ n − 1.

(1) For the discrete time chain, if pi + qi+1 ≤ 1 for all 0 ≤ i < n, then µK m(i)/π(i) ≤

µK m(i + 1)/π(i + 1) for all 0 ≤ i < n and m ≥ 0.
(2) For the continuous time chain, µHt (i)/π(i) ≤ µHt (i + 1)/π(i + 1) for all 0 ≤ i < n and

t ≥ 0.

Proof. Note that (2) follows from (1) if we write Ht = exp{−2t (I −
I+K

2 )}. For the proof of
(1), observe that

µK m+1(i)

π(i)
=
µK m(i − 1)
π(i − 1)

qi +
µK m(i)

π(i)
ri +

µK m(i + 1)
π(i + 1)

pi , ∀i.

By induction, if µK m(i)/π(i) ≤ µK m(i + 1)/π(i + 1) for 0 ≤ i < n, then

µK m+1(i + 1)
π(i + 1)

=
µK m(i)

π(i)
qi+1 +

µK m(i + 1)
π(i + 1)

ri+1 +
µK m(i + 2)
π(i + 2)

pi+1

≥
µK m(i)

π(i)
qi+1 +

µK m(i + 1)
π(i + 1)

(1 − qi+1)

≥
µK m(i)

π(i)
(1 − pi )+

µK m(i + 1)
π(i + 1)

pi ≥
µK m+1(i)

π(i)
. �

Remark 3.12. Lemma 3.16 is also developed in [10] in which it is shown that, for any non-
negative function f , K m f is non-decreasing if f is non-decreasing for all m ≥ 0. Consider the
adjoint chain K ∗ of K in L2(π). As birth and death chains are reversible, one has K ∗

= K .
Using the identity µK/π = K ∗(µ/π), it is easy to see that the above proof is consistent with
the proof in [10].
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Proof of Theorem 3.15. Assume that K is irreducible and let λ0 = 0 < λ1 < · · · < λn be the
eigenvalues of I − K with L2(π)-normalized eigenvector ζ0 = 1, . . . , ζn . By Lemma 3.16, if µ
satisfies µ(i)/π(i) ≥ µ(i + 1)/π(i + 1) for 0 ≤ i < n, then

dc
sep(µ, t) = 1 −

µHt (n)

π(n)
=

n
j=1

µ(ζ j )ζ j (n)e
−λ j t ,

where µ(ζ j ) =
n

i=0 ζ j (i)µ(i). If K satisfies pi + qi+1 ≤ 1 for all 0 ≤ i < n, then

dsep(µ,m) = 1 −
µK m(n)

π(n)
=

n
j=1

µ(ζ j )ζ j (n)(1 − λ j )
m .

By Proposition 3.12, setting µ to be one of the Dirac measure δ0, δn leads to the desired
identities. �

4. Paths of infinite length

In this section, the graph G = (V, E) under consideration is infinite with V = {1, 2, . . .}
and E = {{i, i + 1}|i = 1, 2, . . .}. As before, let π, ν be positive measures on V, E satisfying
π(V ) = 1. The Dirichlet form and the variance are defined in a similar way as in the introduction
and the spectral gap of G with respect to π, ν is given by

λG
π,ν = inf


Eν( f, f )

Varπ ( f )

 f is non-constant and π( f 2) < ∞


.

For n ≥ 2, let Gn = (Vn, En) be the subgraph of G with Vn = {1, 2, . . . , n}, En = {{i, i +1}|1 ≤

i < n} and let πn, νn be normalized restrictions of π, ν to Vn, En . That is, πn(i) = cnπ(i),
νn(i, i + 1) = cnν(i, i + 1) with cn = 1/[π(1)+ · · · + π(n)]. As before, let MG

π,ν be an infinite
matrix indexed by V and defined by

MG
π,ν(i, j) = −

ν(i, j)

π(i)
, ∀|i − j | = 1, MG

π,ν(i, i) =
ν(i − 1, i)+ ν(i, i + 1)

π(i)
. (4.1)

Clearly, MGn
πn ,νn is the principal submatrix of MG

π,ν indexed by Vn × Vn .

Lemma 4.1. Referring to the above setting, λGn+1
πn+1,νn+1 < λ

Gn
πn ,νn for n > 1 and λG

π,ν =

limn→∞ λ
Gn
πn ,νn .

Proof. Briefly, we write λ for λG
π,ν and λn for λGn

πn ,νn . Note that λn is the smallest non-zero
eigenvalue of the principal submatrix of MG

π,ν indexed by Vn × Vn . As a consequence of
Proposition 3.11(1) and Remark 3.9, λn+1 < λn . For n > 1, let φn be a minimizer for λn
and define ψn(i) = 1Vn (i)φn(i) for i ≥ 1. Clearly, one has Eνn (φn, φn) = cn Eν(ψn, ψn)

and Varπn (φn) = cnVarπ (ψn). This implies λ ≤ λn for n ≥ 2. Let λ∗
= limn→∞ λn .

Note that it remains to show λ∗
= λ. For ϵ > 0, choose a function f on V such that

Eν( f, f ) < (λ + ϵ/2)Varπ ( f ) with π( f 2) < ∞. For δ > 0, we choose N > 0 such that
VarπN (g) > (1 − δ)Varπ ( f ) and EνN (g, g) < (1 + δ)Eν( f, f ), where g = f |VN , the restriction
of f to VN . This implies

λ∗
≤ λN ≤

EνN (g, g)

VarπN (g)
≤
(1 + δ)Eν( f, f )

(1 − δ)Varπ ( f )
.

Letting δ → 0 and then ϵ → 0 yield λ∗
≤ λ, as desired. �
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Remark 4.1. Silver [17] contains a discussion of the (weak*) convergence of the spectral
measure for Gn to the spectral measure for G in a very general setting. Lemma 4.1 can also
be proved using Theorem 4.3.4 in [17].

Proposition 4.2. For λ > 0, let φλ(1) = −1 and

φλ(i + 1) = φλ(i)+
{[φλ(i)− φλ(i − 1)]ν(i − 1, i)− λπ(i)φλ(i)}+

ν(i, i + 1)
, ∀i ≥ 1.

Set λ1 = ∞ and λn = λ
Gn
πn ,νn for n ≥ 2.

(1) For i ≥ 2 and λ ∈ [λi , λi−1), φλ(i − 1) < φλ(i) = φλ(i + 1).
(2) For λ ∈ (0, λG

π,ν], φλ(i) < φλ(i + 1) for all i ≥ 1.

Proof. Immediate from Proposition 3.11 and Remarks 3.9–3.10. �

Remark 4.2. By Proposition 4.2, one may generate a dichotomy algorithm for λG
π,ν using the

shape of φλ. See (Di).

The following theorem extends Theorem 1.1 to infinite paths.

Theorem 4.3. If λG
π,ν > 0 and Eν(ψ,ψ)/Varπ (ψ) = λG

π,ν for some function ψ on V with
π(ψ) = 0, then ψ is strictly monotonic and satisfies

λG
π,νπ(i)ψ(i) = [ψ(i)− ψ(i + 1)]ν(i, i + 1)+ [ψ(i)− ψ(i − 1)]ν(i − 1, i) ∀i ≥ 1.

Theorem 4.4. For λ > 0, let φλ be the function in Proposition 4.2 and set L(λ) = Eπ (φλ, φλ)/
Varπ (φλ). Then,
(1) λG

π,ν < L(λ) < λ for λ ∈ (λG
π,ν,∞).

(2) Ln(λ) → λG
π,ν as n → ∞ for λ ∈ (λG

π,ν,∞).

Proof. Let λ > λG
π,ν . By Lemma 4.1, λi ≤ λ < λi−1 for some i ≥ 2. By Proposition 4.2(1), one

has φλ(i − 1) < φλ(i) = φλ(i + 1). As in (2.2), we obtain

L(λ) = λ+ λ
π(φλ)[π(φλ)− φλ(i)]

Varπ (φλ)
,

i
j=1

φλ( j)π( j) ≥ 0.

This leads to π(φλ) > 0 and π(φλ) < φλ(i), which implies L(λ) < λ. That means L has no
fixed point on (λG

π,ν,∞). The lower bound of (1) follows immediately from Theorem 4.3. For
(2), set λ∗

= limn→∞ Ln(λ) ≥ λG
π,ν . As a consequence of (1), L is continuous on (λG

π,ν,∞). If
λ∗ > λG

π,ν , then λ∗ is a fixed point of L , a contradiction! Hence, λ∗
= λG

π,ν . �

5. A numerical experiment

In this section, we illustrate the algorithm (A2) on a specific Metropolis chain. The Metropolis
algorithm introduced by Metropolis et al. in 1953 is a widely used construction that produces a
Markov chain with a given stationary distribution π . Let π be a positive probability measure
on V and K be an irreducible Markov transition matrix on V . For simplicity, we assume that
K (x, y) = K (y, x) for all x, y ∈ V . The Metropolis chain evolves in the following way.
Given the initial state x , select a state, say y, according to K (x, ·) and compute the ratio
A(x, y) = π(y)/π(x). If A(x, y) ≥ 1, then move to y. If A(x, y) < 1, then flip a coin with
probability A(x, y) on heads and move to y if the head appears. If the coin lands on tails, stay
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at x . Accordingly, if M is the transition matrix of the Metropolis chain, then

M(x, y) =


K (x, y) if A(x, y) ≥ 1, x ≠ y
K (x, y)A(x, y) if A(x, y) < 1

K (x, x)+


z:A(x,z)<1

K (x, z)(1 − A(x, z)) if x = y.

It is easy to check π(x)M(x, y) = π(y)M(y, x). As K is irreducible, M is irreducible.
Moreover, if π is not uniform, then M(x, x) > 0 for some x ∈ V . This implies that M is
aperiodic and, consequently, M t (x, y) → π(y) and e−t (I−M)(x, y) → π(y) as t → ∞. For
further information on Metropolis chains, see [6] and the references therein.

For n ≥ 1, let Gn = (Vn, En) be a graph with Vn = {0,±1, . . . ,±n} and En = {{i, i + 1} :

i = −n, . . . , n − 1}. Suppose that Kn is the transition matrix of the simple random walk on
Vn , that is, Kn(−n,−n) = Kn(n, n) = 1/2 and Kn(i, i + 1) = Kn(i + 1, i) = 1/2 for all
−n ≤ i < n. For a > 0, let π̌n,a, π̂n,a be probabilities on Vn = {0,±1, . . . ,±n} given by

π̌n,a(i) = čn,a(|i | + 1)a, π̂n,a(i) = ĉn,a(n − |i | + 1)a,

where čn,a and ĉn,a are normalizing constants. It is easy to compute that

cn,a/2 ≤ 1/ĉn,a < 1/čn,a ≤ 2cn,a, (5.1)

where

cn,a =
(n + 1)a+1

a + 1
+ (n + 1)a .

The Metropolis chains, Ǩn,a and K̂n,a , for π̌n,a and π̂n,a based on the simple random walk Kn
have transition matrices given by

Ǩn,a(i, j) = Ǩn,a(−i,− j), K̂n,a(i, j) = K̂n,a(−i,− j)

and

Ǩn,a(i, j) =



1
2

if j = i + 1, i ∈ [0, n − 1]

ia

2(i + 1)a
if j = i − 1, i ∈ [1, n]

(i + 1)a − ia

2(i + 1)a
if j = i, i ∉ {0, n}

1 −
na

2(n + 1)a
if i = j = n

and

K̂n,a(i, j) =



1
2

if j = i − 1, i ∈ [1, n]

(n − i)a

2(n − i + 1)a
if j = i + 1, i ∈ [0, n − 1]

(n − i + 1)a − (n − i)a

2(n − i + 1)a
if j = i ≠ 0

1 −
na

(n + 1)a
if i = j = 0.
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Saloff-Coste [16] discussed the above chains and obtained the correct order of the spectral
gaps. Let λ̌n,a, λ̂n,a denote the spectral gaps of Ǩn,a, K̂n,a . Referring to the recent work in [4],
one has

1/(4C) ≤ λ ≤ 1/C,

where (λ,C) is any of (λ̌n,a, Čn(a)) and (λ̂n,a, Ĉn(a)), and

Čn(a) = 2 max
1≤i≤n


i−1
j=0

( j + 1)−a


n

j=i

( j + 1)a

,

and

Ĉn(a) = 2 max
1≤i≤n


i−1
j=0

( j + 1)a


n−1
j=i−1

( j + 1)−a


.

Theorem 5.1. Let λ̌n,a, λ̂n,a be spectral gaps for Ǩn,a, K̂n,a . Then,

1
8η−a(1, n)ηa(2, n + 1)

≤ λ̌n,a ≤
2

η−a(1, n)ηa(2, n + 1)
,

and

1
64ηa(1, ⌈n/2⌉)η−a(⌈n/2⌉, n)

≤ λ̂n,a ≤
1

2ηa(1, ⌈n/2⌉)η−a(⌈n/2⌉, n)

where ηa(k, l) =
l

i=k ia .

Proof of Theorem 5.1. The bound for λ̌n,a follows immediately from the fact

η−a(1, n)ηa(2, n + 1)
2

≤ Čn(a) ≤ 2η−a(1, n)ηa(2, n + 1).

For λ̂n,a , note that

Ĉn(a) = 2 max
n/2≤i≤n


i−1
j=0

( j + 1)a


n−1
j=i−1

( j + 1)−a


.

Taking i = ⌈n/2⌉ yields the upper bound. For the lower bound, we write

Ĉn(a) = 2 max
n/2≤i≤n


i−1
j=0


1 −

j

i

a


n−i
j=0


1 −

j

i + j

a

.

For i ≥ n/2, it is clear that

i−1
j=0


1 −

j

i

a

≥

i−1
j=0


1 −

2 j

n

a

≥
1
2

n−1
j=0


1 −

j

n

a

.

Observe that, for a > 0,

C ′

i,n(a)

2
≤

n−i
j=0


1 −

j

i + j

a

≤ C ′

i,n(a), (5.2)
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where

C ′

i,n(a) = 1 +


i
(i/n)a−1

− 1
1 − a

if a ≠ 1

i log
n

i
if a = 1.

It is clear that, for i ≥ n/2, C ′

i,n(a) ≤ 2C ′

⌈n/2⌉,n(a) and this leads to

n−i
j=0


1 −

j

i + j

a

≤ 4
n−⌈n/2⌉

j=0


1 −

j

⌈n/2⌉ + j

a

.

Summarizing all above gives the desired lower bound. �

Remark 5.1. Comparing with [16, Theorem 9.5], the bounds for λ̌n,a given in Theorem 5.1 have
a similar lower bound and an improved upper bound by a multiple of about 1/4. For λ̂n,a , observe
that

C ′′

i (a)

2
≤

i−1
j=0


1 −

j

i

a

≤ C ′′

i (a),

where

C ′′

i (a) = 1 +
i − i−a

1 + a
.

Recall the constant C ′

i,n(a) in the proof of Theorem 5.1. Note that

n + a

2(1 + a)
≤ C ′′

⌈n/2⌉
(a) ≤

2(n + a)

(1 + a)
,

and, for a > 0, a ≠ 1 and n ≥ 3,

C ′

⌈n/2⌉,n(a) ≤ 1 +
n + 1

2(1 + a)
sup

a>0,a≠1

(21−a
− 1)(1 + a)

1 − a
≤

3(n + a)

1 + a
,

where the last inequality is obtained by considering the subcases a < 2 and a ≥ 2. The above
computation also applies for a = 1 and n ∈ {1, 2}. In the same spirit, one can show that
C ′

⌈n/2⌉,n(a) ≥
n+a

6(1+a) . This yields

(n + a)2

6(1 + a)2
≤ Ĉn,a ≤

12(n + a)2

(1 + a)2
, ∀n ≥ 1. (5.3)

Hence, we have λ̂n,a ≍ (1 + a)2/(n + a)2. As a consequence of (5.1) and (5.2), we obtain that,
uniformly for a > 0,

1/λ̌n,a ≍ na


1 +
1
n

a

+
n

1 + a


(1 + v(n, a)) as n → ∞,

where v(n, 1) = log n and v(n, a) = (n1−a
− 1)/(1 − a) for a ≠ 1.

Remark 5.2. Note that the lower bound in Theorem 6.1 provides the correct order of the spectral
gap for the chain Ǩn,a uniformly in a but not for K̂n,a . For instance, if a grows with n, say a = n,
then Theorem 6.1 implies 1/λ̂n,n = O(n), while (5.3) gives 1/λ̂n,n ≍ 1.
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Fig. 1. These curves display the mapping m → λ̌100m,aη−a(1, 100m)ηa(2, 100m + 1) in Theorem 5.1 in order from
the top a = 0.8, 0.9, 1.0, 1.1 and 1.2. The right most point corresponds to a path of length n = 5000.

Remark 5.3. Consider the chain in Theorem 5.1. A numerical experiment of algorithm (A2)
is implemented and the data is collected in Fig. 1 and Table 1. One may conjecture that
λ̌n,aη−a(1, n)ηa(2, n + 1) → c(a) as n → ∞, where c(a) is a constant depending on a.

6. Spectral gaps for uniform measures with bottlenecks

In this section, we discuss some examples of special interests and show how the theory
developed in the previous sections can be used to bound the spectral gap. In the first subsection,
we develop a lower bound on the spectral gap in a very general setting using the theory in
Section 3. In the second subsection, we focus on the case of one bottleneck, where a precise
estimation on the spectral gap is presented. Those computations are based on the theoretical
work in Section 2. In the third subsection, we consider the case of multiple bottlenecks in which
the exact order of the spectral gap is determined for some special classes of chains.

In what follows, we will use the notation π(A) to represent the summation


i∈A π(i) for
any measure π on V and any set A ⊂ V . Given two sequences of positive reals an, bn , we
write an = O(bn) if an/bn is bounded. If an = O(bn) and bn = O(an), we write an ≍ bn . If
an/bn → 1, we write an ∼ bn .

6.1. A lower bound on the spectral gap

In this subsection, we give a lower bound on the spectral gap in the general case.

Theorem 6.1. Let G = (V, E) be a graph with vertex set V = {0, 1, . . . , n} and edge set
E = {{i, i + 1}|i = 0, . . . , n − 1}. Let π, ν be positive measures on V, E with π(V ) = 1. Then,

λG
π,ν ≥ max

0≤i≤n




i−1
j=0

π([0, j])

ν( j, j + 1)

−1

∧


n

j=i+1

π([ j, n])

ν( j − 1, j)

−1
 ,

where a ∧ b := min{a, b}.
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Table 1

These numbers denote λ̌n,aη−a(1, n)ηa(2, n + 1) in Theorem 5.1.

n 10 000 20 000 30 000 40 000 50 000

a = 0.8 0.5983 0.5960 0.5948 0.5941 0.5935
a = 0.9 0.5652 0.5625 0.5610 0.5601 0.5594
a = 1.0 0.5405 0.5377 0.5362 0.5353 0.5345
a = 1.1 0.5235 0.5210 0.5197 0.5189 0.5183
a = 1.2 0.5128 0.5109 0.5099 0.5093 0.5088

Remark 6.1. Let C be the lower of the spectral gap in Theorem 6.1. Note that, for any positive
reals, (a +b)/2 ≤ max{a, b} ≤ a +b. Using this fact, it is easy to see that C ′

≤ C ≤ 2C ′, where

C ′
= max

0≤i≤n


i−1
j=0

π([0, j])

ν( j, j + 1)
+

n
j=i+1

π([ j, n])

ν( j − 1, j)

−1

.

In particular, if i0 is the median of π , that is, π([0, i0]) ≥ 1/2 and π([i0, n]) ≥ 1/2, then

C ′
=


i0−1
j=0

π([0, j])

ν( j, j + 1)
+

n
j=i0+1

π([ j, n])

ν( j − 1, j)

−1

.

Remark 6.2. Let (Xm)
∞

m=0 be an irreducible birth and death chain on {0, 1, . . . , n} with birth
rate pi , death rate qi and holding rate ri as in (1.1). For 0 ≤ i ≤ n, set τi = min{m ≥ 0|Xm = i}
as the first passage time to state i . By the strong Markov property, the expected hitting time to i
started at 0 can be expressed as

E0τi =

i−1
j=0

π([0, j])

p jπ( j)
, Enτi =

n
j=i+1

π([ j, n])

q jπ( j)
,

where π is the stationary distribution of (Xm)
∞

m=0. Let λ be the spectral gap for (Xm)
∞

m=0. Then,
λ = λG

π,ν , where G is the path with vertex set {0, . . . , n} and ν(i, i +1) = piπ(i) = qi+1π(i +1)
for 0 ≤ i < n. The conclusion of Theorem 6.1 can be written as 1/λ ≤ min0≤i≤n{E0τi ∨ Enτi }.

Remark 6.3. The lower bound in Theorem 6.1 is not necessarily the right order of the spectral
gap. See Remark 5.2.

Proof of Theorem 6.1. For λ > 0, let ξλ be the function in Definition 3.2. That is, ξλ(0) = −1
and, for i ≥ 0,

[ξλ(i + 1)− ξλ(i)]ν(i, i + 1) = [ξλ(i)− ξλ(i − 1)]ν(i − 1, i)− λπ(i)ξλ(i).

Inductively, one can show that if 1/λ >
ℓ−1

j=0[π([0, j])/ν( j, j + 1)], then
0 < ξλ(i + 1)− ξλ(i) ≤ λπ([0, i])/ν(i, i + 1),

−1 ≤ ξλ(i + 1) ≤ −1 + λ

i
j=1

[π([0, j])/ν( j, j + 1)] < 0,
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for 0 ≤ i ≤ ℓ − 1. One may do a similar computation from the other end point and, by
Proposition 3.5, this implies

1/λGn
πn ,νn

≤ max


ℓ−1
j=0

π([0, j])

ν( j, j + 1)
,

n−ℓ
j=1

π([n − j + 1, n])

ν(n − j, n − j + 1)


.

Taking the minimum over 1 ≤ ℓ ≤ n gives the desired inequality. �

6.2. One bottleneck

For n ≥ 1, let Gn = (Vn, En) be the path on {0, 1, . . . , n} and set πn ≡ 1/(n + 1) and
νn ≡ 1/(n + 1) with C > 0. Using Feller’s method in [11, Chapter XVI.3], one can show that
the eigenvalues of MGn

πn ,νn are 2(1 − cos iπ
n+1 ) for 0 ≤ i ≤ n.

Theorem 6.2. For n ≥ 1, let ϵn > 0, 1 ≤ xn ≤ ⌈n/2⌉ and set πn ≡ 1/(n + 1),

νxn
n (xn − 1, xn) =

ϵn

n + 1
, νxn

n (i − 1, i) =
1

n + 1
, ∀i ≠ xn . (6.1)

Then, the spectral gap is bounded by

1

n2/4 + xn/ϵn
≤ λG

πn ,ν
xn
n

≤ min


2


1 − cos
π

n − xn + 1


,
ϵn

xn


.

In particular, λGn

πn ,ν
xn
n

≍ min{1/n2, ϵn/xn}.

Proof of Theorem 6.2. The lower bound is immediate from Theorem 6.1 by choosing i = ⌈n/2⌉

in the computation of the maximum. For the upper bound, we set λn = 1 − cos π
n+1 and let fn

be the function on Vn−xn defined by fn(0) = −1 and, for 0 ≤ i ≤ n − xn − 1,

fn(i + 1) = fn(i)+
[ fn(i)− fn(i − 1)]νn−xn (i − 1, i)− 2λn−xnπn−xn (i) fn(i)

νn−xn (i, i + 1)
.

By Proposition 2.3, Eνn−xn
( fn, fn) = 2λn−xn Varπn−xn

( fn) and πn−xn ( fn) = 0. Let gn be the
function on Vn defined by gn(n − i) = fn(i) for 0 ≤ i ≤ n − xn and gn(i) = fn(n − xn) for
0 ≤ i < xn . A direct computation shows that

(n + 1)Eνxn
n
(gn, gn) = (n − xn + 1)Eνn−xn

( fn, fn)

and

(n + 1)Varπn (gn, gn) = (n − xn + 1)Varπn−xn
( fn)+

xn(n − xn + 1)
n + 1

f 2
n (n − xn).

This implies λGn

πn ,ν
xn
n

≤ 2λn−xn . On the other hand, using the test function, hn(i) = n − xn + 1
for 0 ≤ i < xn and hn(i) = −xn for xn ≤ i ≤ n, one has Eνxn

n
(hn, hn)/Varπn (hn) =

ϵn(n + 1)/[xn(n − xn + 1)] ≤ ϵn/xn . This finishes the proof. �

The next theorem has a detailed description on the coefficient of the spectral gap. The proof is
based on Section 3, particularly Proposition 3.11 and Remark 3.10, and is given in the Appendix.

Theorem 6.3. For n ≥ 1, let xn, ϵn, πn, ν
xn
n be as in Theorem 6.2. Suppose xn/(ϵnn2) → a ∈

[0,∞] and xn/n → b ∈ [0, 1/2].
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(1) If a < ∞ and b = 0, then λGn

πn ,ν
xn
n

∼ min{π2, a−2
}n−2.

(2) If a < ∞ and b ∈ (0, 1/2], then λGn

πn ,ν
xn
n

∼ Cn−2, where C is the unique positive solution of
the following equation.

1 + 4 log 2 −
π2

6
−
π2aC

1 − b
− bC

∞
i=1

(1 − b)i2
− bC

(i2 − C)[(1 − b)2i2 − b2C]
= 0.

(3) If a = ∞, then λGn

πn ,ν
xn
n

∼ ϵn/xn .

6.3. Multiple bottlenecks

In this subsection, we consider paths with multiple bottlenecks. As before, Gn = (Vn, En)

with Vn = {0, 1, . . . , n} and En = {{i, i + 1}|i = 0, . . . , n − 1}. Let k be a positive integer
and xn = (xn,1, . . . , xn,k) be a k-vector satisfying xn,i ∈ Vn and xn,1 ≥ 1 and xn,i < xn,i+1 for
1 ≤ i < k. Let ϵn = (ϵn,1, . . . , ϵn,k) be a vector with positive entries and νxn

n be the measure on
En given by

νxn
n (i − 1, i) =


1/(n + 1) if i ∉ {xn,1, . . . , xn,k}

ϵn, j/(n + 1) if i = xn, j , 1 ≤ j ≤ k.
(6.2)

Theorem 6.4. Let Gn = (Vn, En) be the path on {0, . . . , n}. For 0 ≤ k ≤ n, let πn be the
uniform probability on Vn and νxn

n be the measure on En given by (6.2). Then,

min{1/(4n2),Cn,1/2} ≤ λ
Gn

πn ,ν
xn
n

≤ min


2


1 − cos
π

n − k + 1


,Cn,2


,

where

Cn,1 =


n2

4
+

k
i=1

min{xn,i , n − xn,i + 1}


1
ϵn,i

− 1
−1

and

Cn,2 = min
0≤m1≤m2≤n


(n + 1)

m2
i=m1

1/ϵn,i
m1≤i≤ j≤m2

xn,i (n − xn, j + 1)/(ϵn,iϵn, j )

 .

Remark 6.4. Observe that, in Theorem 6.4, 1 − cos 2π
n−k+1 ≍ n−2 and

Cn,2 ≤ min
1≤ j≤k


ϵn, j

min{xn, j , n − xn, j + 1}


= min


min

j :xn, j ≤
n
2

ϵn, j

xn, j
, min

j :xn, j>
n
2

ϵn, j

n − xn, j + 1


.

Proof of Theorem 6.4. We first prove the upper bound. Let f1 be a function on {0, 1, . . . , n}

satisfying f (xn, j − 1) = f (xn, j ) for 1 ≤ i ≤ k and f2 be a function on {0, . . . , n − k} obtained
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Fig. 2. The dashed lines denote the weak edges of ν in Theorem 6.5.

by identifying points xn,i − 1 and xn,i for 1 ≤ i ≤ k. By setting f2 as a minimizer for λGn−k
πn−k ,νn−k

with πn( f1) = 0, we obtain

2


1 − cos
2π

n − k + 1


=

Eνn−k ( f2, f2)

Varπn−k ( f2)
≥

Eνn−k ( f2, f2)

πn−k( f 2
2 )

≥
Eνn ( f1, f1)

πn( f 2
1 )

=
Eνn ( f1, f1)

Varπn ( f1)
.

To see the other upper bound, let f j be the function on Vn satisfying g j (i) = −(n − xn, j + 1)
for 0 ≤ i ≤ xn, j − 1 and g j (i) = xn, j for xn, j ≤ i ≤ n. Computations show that πn(g j ) = 0,
πn(gi g j ) = xn,i (n − xn, j + 1) for i ≤ j , and Eνn (g j , g j ) = ϵn, j (n + 1). Set g =

k
j=1 a j g j .

As a consequence of the above discussion, we obtain

Eνn (g, g)

Varπn (g)
=

(n + 1)
k

i=1
a2

i ϵn,i

2

i< j

ai a j xn,i (n − xn, j + 1)+

k
i=1

a2
i xn,i (n − xn,i + 1)

.

Taking ai = 1/ϵn,i for m1 ≤ i ≤ m2 and ai = 0 otherwise gives the bound Cn,2.
The lower bound is immediate from Theorem 6.1 and Remark 6.1. �

Finally, we discuss some special cases illustrating Theorem 6.4.

Theorem 6.5. For n ≥ 1, let πn ≡ 1/(n + 1) and νn be the measure in (6.2) with kn bottlenecks
satisfying n − kn ≍ n. Suppose there are In ⊂ {1, . . . , kn}, a ∈ (0, 1) and Jn > 0 such that |In|

is bounded and, for i ∉ In , a Jn ≤ min{xn,i , n − xn,i + 1} ≤ Jn/a. Then,

λGn
πn ,νn

≍ min


1

n2 ,min
i∈In

ϵn,i

min{xn,i , n − xn,i + 1}
,


kn

i=1,i ∉In

1/ϵn,i

−1

Jn


.

Proof. It is easy to get the lower bound from Theorem 6.4, while the upper bound is the minimum
of Cn,2 over all connected components of {1, . . . , ℓ} \ In and {ℓ+ 1, . . . , kn} \ In . �

See Fig. 2 for a reference on the bottlenecks. The following are immediate corollaries of
Theorems 6.4–6.5.

Corollary 6.6 (Finitely Many Bottlenecks). Referring to Theorem 6.5, if kn is bounded, then

λGn
πn ,νn

≍ min


1

n2 , min
1≤i≤kn

ϵn,i

min{xn,i , n − xn,i + i}


.
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Corollary 6.7 (Bottlenecks far Away the Boundary). Referring to Theorem 6.5, if n − kn ≍ n
and there are a ∈ (0, 1) and Jn > 0 such that a Jn < min{xn,i , n − xn,i + 1} < Jn/a for
1 ≤ i ≤ kn , then

λGn
πn ,νn

≍ min


1

n2 ,


kn

j=1
1/ϵn,i

−1

Jn


.

Corollary 6.8 (Uniformly Distributed Bottlenecks). Referring to Theorem 6.5, if mini ϵn,i ≍

maxi ϵn,i and xn,i = ⌊in/kn⌋ with kn ≤ n/2, then

λGn
πn ,νn

≍ min


1

n2 ,
ϵn,1

nkn


.

Remark 6.5. Note that the assumption of the uniformity of π and ν, except at the bottlenecks,
can be relaxed by using a comparison argument.
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Appendix. Techniques and proofs

We start with an elementary lemma.

Lemma A.1. Let a > 0 and f : [a,∞) → R be a continuous function satisfying f (a) = a
and f (x) ∈ [a, x) for x > a. For b > a, set Cb = supa≤x≤b{( f (x) − a)/(x − a)}. Then,
Cb < 1 and a ≤ f n(b) ≤ a + Cn

b (b − a) for n ≥ 0. Moreover, if f is bounded on [a,∞), then
a ≤ f n(x) ≤ a + Cn(x − a) for n ≥ 0 and x ≥ a with C = supa≤t<∞{( f (t)− a)/(t − a)} < 1.

Lemma A.2. Let (ai , bi , ci )
∞

i=1 be sequences of reals with bi > 0 and ci > 0. For n ≥ 1 and
t ∈ R, let

Mn(t) =



a1 − c1t 1 0 0 · · · 0

b1 a2 − c2t 1 0
...

0 b2
. . .

. . .
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . . an−1 − cn−1t 1
0 · · · · · · 0 bn−1 an − cn t


.

Then, there are n distinct real roots for det Mn(t) = 0, say t (n)1 < · · · < t (n)n , and

t (n+1)
j < t (n)j < t (n+1)

j+1 , ∀1 ≤ j ≤ n, n ≥ 1.

Furthermore, if a1 ≥ 1 and ai+1 ≥ 1 + bi , then t (n)1 > 0 for all n ≥ 1.
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To prove Lemma A.2, we need the following statement.

Lemma A.3. Fix n > 0 and, for i ≤ 1 ≤ n, let ai , bi , di be reals with bi > 0 and di ≠ 0.
Consider the following matrix

M =



a1 d1 0 0 · · · 0

d−1
1 b1 a2 d2 0

...

0 d−1
2 b2 a3

. . .
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . . an−1 dn−1

0 · · · · · · 0 d−1
n−1bn−1 an


. (A.1)

Then, the eigenvalues of M are distinct reals and independent of d1, . . . , dn−1. Furthermore, if
a1 ≥ 1 and ai+1 ≥ 1 + bi , then all eigenvalues of M are positive.

Proof of Lemma A.3. Let X, Y be diagonal matrices with X11 = Y11 = 1, X i i = d1d1 · · · di−1
and Yi i = (b1b2 · · · bi−1)

−1/2(d1d2 · · · di−1) for i > 1. One can show that

X M X−1
=



a1 1 0 0 · · · 0

b1 a2 1 0
...

0 b2 a3
. . .

. . .
...

0 0
. . .

. . .
. . . 0

...
. . .

. . . an−1 1
0 · · · · · · 0 bn−1 an


.

Since X M X−1 is independent of the choice of d1, . . . , dn−1, the eigenvalues of M are
independent of d1, . . . , dn−1. Note that Y MY −1 is Hermitian. This implies that the eigenvalues
of M are all real. As M is tridiagonal with non-zero entries in the superdiagonal, the rank of
M − λI is either n − 1 or n. This implies that the eigenvalues of M are all distinct.

Next, assume that a1 ≥ 1 and ai+1 ≥ 1 + bi . Let (Y MY −1)i be the leading i × i principal
matrices of Y MY −1. By induction, one can prove that det(Y MY −1)i =

i
j=1 ℓ j , where ℓ1 = a1

and ℓ j+1 = a j+1 − b j/ℓ j for 1 ≤ j < n. By the assumption at the beginning of this paragraph,
ℓ j ≥ 1 for all 1 ≤ j < n and det(Y MY −1)i > 0 for all 1 ≤ i ≤ n. As the leading
principal matrices have positive determinants, (Y MY −1) is positive definite. This proves that
all eigenvalues of M are positive. �

Proof of Lemma A.2. We prove this lemma by induction. For n = 1, it is clear that t (1)1 = a1/c1
is the root for det M1(t). For n = 2, note that det M2(t) is a quadratic function that tends to in-
finity as |t | → ∞. Since det M2(t

(1)
1 ) = −b1 < 0, the polynomial, det M2(t), has two real roots,

say t (2)1 < t (2)2 , satisfying t (2)1 < t (1)1 < t (2)2 . Now, we assume that, for some n ≥ 1, det Mn(t)

and det Mn+1(t) have reals roots (t (n)i )ni=1 and (t (n+1)
i )n+1

i=1 satisfying t (n+1)
i < t (n)i < t (n+1)

i+1 for
1 ≤ i ≤ n. Clearly, det Mn(t) → ∞ as t → −∞. This implies

det Mn(t
(n+1)
2k+2 ) < 0 < det Mn(t

(n+1)
2k+1 ), ∀k ≥ 0.
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Observe that det Mn+2(t) = (an+2 − cn+2t) det Mn+1(t) − bn+1 det Mn(t). Replacing t with
t (n+1)
i yields

det Mn+2(t
(n+1)
2k+2 ) > 0 > det Mn+2(t

(n+1)
2k+1 ), ∀k ≥ 0.

This proves that det Mn+2(t) has (n + 2) distinct real roots with the desired interlacing property.
For the second part, assume that a1 ≥ 1 and ai+1 ≥ 1 + bi for all i ≥ 1. For n = 1, it is ob-

vious that t (1)1 > 0. Suppose t (n)1 > 0. According to the first part, we have t (n+1)
2 > t (n)1 > 0. By

Lemma A.3, det Mn+1(0) > 0, which implies t (n+1)
1 ≠ 0. As it is known that det Mn+1(t) < 0

for t ∈ (t (n+1)
1 , t (n+1)

2 ), it must be the case t (n+1)
1 > 0. Otherwise, there will be another root for

det Mn+1(t) between t (n+1)
1 and 0, which is a contradiction. �

Proof of Theorem 6.3. For convenience, we set λm
n = 1 − cos mπ

n+1 for 1 ≤ m ≤ n and let Ai (λ)

be the i-by-i tridiagonal matrix with entries (Ai (λ))kl = 1 for |k − l| = 1 and (Ai (λ))kk = 2−λ.
For 1 ≤ j ≤ i , let B j

i (λ) be the matrix equal to Ai except the ( j, j)-entry, which is defined by

(B j
i (λ, ϵ)) j j = 2 − λ/ϵ. By Remark 3.9, λGn

πn ,ν
xn
n

is the smallest root of det Bxn
n (λ, ϵn) = 0 and

(λn,m)
n
m=1 are roots of det An(λ) = 0. Note that, for 1 ≤ j ≤ n,

det B j
n (λ, ϵ)

det A j−1(λ) det An− j (λ)
= ∆ j

n(λ, ϵ) = 2 − λ/ϵ − R j−1(λ)− Rn− j (λ),

where det A0(λ) := 1, det A−1(λ) := 0 and

R j (λ) =
det A j−1(λ)

det A j (λ)
=

j−1
i=1
(2λi

j−1 − λ)

j
i=1
(2λi

j − λ)

.

To prove this theorem, one has to determine the sign of ∆ j
n(λ, ϵ).

Let ℓn = δn/n2 with δn → 0. As n → ∞,

log
2λi

n − ℓn

2λi
n

= −
δn

2λi
nn2 (1 + o(1)),

where o(1) is uniform for 1 ≤ i ≤ n. Note that
 j

i=1(2λ
i
j ) = det A j (0) = j + 1. This implies

log Rn(ℓn) = log
n

n + 1
+


n

i=1

1

λi
nn2 −

n−1
i=1

1

λi
n−1(n − 1)2


δn(1 + o(1))

2

= log
n

n + 1
+ O


δn

n


.

By a similar reasoning, one can prove that log R j (ℓn) = log j
j+1 + O(δn/n) for bounded j . This

shows that, for jn ∈ {1, . . . , n} and ℓn = o( j−2
n ),

R jn (ℓn) = 1 −
1

jn + 1
+ O( jnℓn), as n → ∞. (A.2)
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Next, we compute R jn (2Cnλ
1
jn
) with Cn → C ∈ (0, 1) and jn → ∞. Note that, for n large

enough,

log R jn (2Cnλ
1
jn ) =

jn−1
i=1

λi
jn−1 − λi

jn

λi
jn

−
1
2

jn−1
i=1


λi

jn−1 − λi
jn

λi
jn

2

+ Cn

jn−1
i=1

λ1
jn
(λi

jn−1 − λi
jn
)

(λi
jn

− Cnλ
1
jn
)λi

jn

− log 4 + O( j−2
n ). (A.3)

Calculus shows that

jn−1
i=1


λi

jn−1 − λi
jn

λi
jn

2

=
1
π jn

 π

0

θ2 sin2 θ

(1 − cos θ)2
dθ + O( j−2

n )

=
8 log 2 − π2/3

jn
+ O( j−2

n )

and
jn−1
i=1

λ1
jn
(λi

jn−1 − λi
jn
)

(λi
jn

− Cλ1
jn
)λi

jn

=
2
jn

∞
i=1

1

i2 − C
+ O( j−2

n ).

Observe that, as n → ∞,

log
jn

jn + 1
= log R jn (0) =

jn−1
i=1

λi
jn−1 − λi

jn

λ1
jn

− log 4 + O( j−2
n ).

Putting this back into (A.3) implies

R jn (2Cnλ
1
jn ) = 1 +


−1 − 4 log 2 +

π2

6
+ Cn

∞
i=1

1

i2 − Cn


1
jn

+ O( j−2
n ). (A.4)

We consider the following two cases.
Case 1: xn = O(ϵnn2). In this case, Theorem 6.2 implies that λGn

πn ,ν
xn
n

≍ n−2. We assume further

that xn/(ϵnn2) → a and xn/n → b with a ∈ [0,∞) and b ∈ [0, 1/2]. Let Cn → C ∈ (0, 1).
Replacing jn with xn − 1 in (A.2) and with n − xn in (A.4) yields that, for b = 0,

∆xn
n (2Cnλ

1
n−xn

, ϵn) =
(1 − π2aC)(1 + o(1))

xn

and, for b ∈ (0, 1/2],

∆xn
n (2Cnλ

1
n−xn

, ϵn) =


1 + 4 log 2 −

π2

6
−
π2aC

1 − b
− bCκb(C)


(1 + o(1))
b(1 − b)n

,

where κt (c) =


∞

i=1
(1−t)i2

−tc
(i2−c)[(1−t)2i2−t2c]

. This proves (1) and (2).

Case 2: ϵn2
= o(xn). This is exactly (3) and the result is immediate from Theorem 6.2. �
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