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Heparin and heparan sulfate bind a host of basic proteins that

take advantage of the sugar’s dense structural information. The

significance of these interactions in various aspects of

development, physiology, and disease stimulated keen interest

in evaluating structure–activity relationships. The well-defined

heparin and heparan sulfate oligosaccharides needed for these

studies can be mainly accessed by chemical synthesis and,

more recently by chemoenzymatic means. The various

synthetic strategies available to chemical synthesis have

recently enabled the acquisition of several regular and irregular

sequences, including a number of dodecasaccharides, through

improved coupling methods and judicial protecting group

manipulations. Controlled chain elongation and critical

application of modification enzymes allowed the generation of

well-defined constructs via chemoenzymatic synthesis.

Investigations of various protein interactions with the synthetic

constructs delivered valuable information that could aid future

drug development endeavors.

Address
1 Genomics Research Center, Academia Sinica, 128, Section 2,

Academia Road, Taipei 115, Taiwan
2 Department of Applied Chemistry, National Chiao Tung University,

1001, Ta-Hsueh Road, Hsinchu 300, Taiwan

Corresponding author: Hung,

Shang-Cheng (schung@gate.sinica.edu.tw)

Current Opinion in Chemical Biology 2013, 17:1023–1029

This review comes from a themed issue Synthetic biomolecules

Edited by Shang-Cheng Hung and Derek N Woolfson

For a complete overview see the Issue and the Editorial

Available online 30th October 2013

1367-5931/$ – see front matter, # 2013 Elsevier Ltd. All rights

reserved.

http://dx.doi.org/10.1016/j.cbpa.2013.10.008

Introduction
Proteoglycans are vital components of cell surfaces and

extracellular matrices of animal tissues [1,2]. They are

complex macromolecules that comprise a core protein

and one or more conjugated glycosaminoglycans

(GAGs) — linear polymers with repeating disaccharide

backbones. While the protein segments displayed notable

activities [3,4], the vast majority of proteoglycan functions

are associated with GAGs of which heparan sulfate (HS) is

the most heterogeneous and most widespread [5]. Alter-

nating 1 ! 4-linked a-D-glucosamine (GlcN) and either
www.sciencedirect.com 
b-D-glucuronic acid (GlcA) or a-L-iduronic acid (IdoA)

make up the extended HS backbone (Figure 1). Potential

sulfations may occur at C3 and C6 of GlcN and at C2 of

the uronic acid (UA), and the GlcN amine function may

be sulfonated, acetylated or unsubstituted. These vari-

ations account to 48 disaccharide possibilities within the

chain. However, only about half of those were observed in

Nature, likely due to biological restrictions that also

granted tissue-specific sulfonation patterns and intermit-

tent swatches of unsulfated regions [6]. Hundreds of basic

proteins, implicated in fertilization, growth and develop-

ment, bacterial and viral infections, wound healing,

immune response, and cancer progression among others,

take advantage of the rich structural diversity of HS [7].

HS grant proteins localized availability near the cell sur-

face and facilitate various means of delivering intended

functions. The biomedical significance of these inter-

actions prompted intense investigations aiming to deter-

mine the structural features optimally required for

function. The antithrombin activation by the HS analog

heparin leading to the development of the anticoagulant

fondaparinux has long inspired the study of HS–protein

associations [8]. Sequestered in vivo by mastocytes,

heparin is generated similar to HS and carries the same

disaccharide variations. It is, however, more homo-

geneous with N-sulfonated and 6-O-sulfonated GlcN

(GlcNS6S) and 2-O-sulfonated IdoA (IdoA2S) occupying

most of the chain [9]. The binding of antithrombin with a

distinct 3-O-sulfonated pentasaccharide sequence in

heparin triggers the exposure of the protease reactive

center loop capable of deactivating factors IIa and Xa of

the coagulation cascade [10].

The heparin and HS fragments isolated from natural

sources are typically unsuitable for structure–activity

relationship evaluations because of their polydispersity

and structural ambiguity. Chemoenzymatic alterations of

such fragments and that of heparosan, the N-acetyl-D-

glucosamine (GlcNAc)–GlcA copolymer harvested from

Escherichia coli strain K5 [11,12], to afford certain defined

features only supplied partial information on the struc-

tural requirements for binding [13]. Here, the non-

uniform starting materials, the incomplete enzymatic

transformations, and the difficulties in reaction monitor-

ing and product purification are persistent concerns.

Despite the considerable effort and resources involved,

chemical synthesis remains the most common and

reliable source of well-defined heparin and HS oligosac-

charides [14–16,17�]. The chemical approach grew in
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Figure 1
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Structure of a proteoglycan with attached heparan sulfate chain and some notable structures found in heparin.
sophistication by adopting advances in mainstream carbo-

hydrate chemistry and discovering novel ways in dealing

with the challenges associated with the complex structure

of heparin and HS. On the other hand, chemoenzymatic

approach progressed by dealing with the problem of

selectivity during enzymatic modifications [18]. The

recent methodologies in generating defined heparin

and HS oligosaccharides and the information obtained

from their biological evaluations are the subject of the

present review.

Chemical synthesis
As a synthetic target for many years, numerous strategies

were disclosed addressing the challenges in the chemical

synthesis of heparin and HS oligosaccharides [17�].
Orthogonal protecting groups at key positions played

central roles in the transformations, ensuring the regios-

electivity and stereoselectivity in glycosylation as well as

the functional group pattern of the target constructs.

Additionally, unnatural functional groups, such as linkers

that are tailor-made for assay purposes, can be con-

veniently installed on the sugar chain. Novel and

improved methodologies in recent reports contributed

in increasing the variety and complexity of the synthes-

ized structures.

The repeating disaccharide nature of heparin and HS

motivated the generation of disaccharide building blocks

to form longer skeletons (Figure 2). As enzymatic degra-

dation of the natural compound delivers oligosaccharides

with repeating UA–GlcN backbone, past syntheses often

leaned toward disaccharide building blocks correspond-

ing to this sequence. Notably, a higher number of recent

efforts were developed using the GlcN–UA disaccharide

precursor. The latter approach acknowledges the greater
Current Opinion in Chemical Biology 2013, 17:1023–1029 
difficulty in a-glucosaminylation relative to 1,2-trans gly-

cosylation involving the UA precursor. With azide

masking the 2-amine function, a-glucosaminylation

particularly relies on anomeric effect. a-Stereoselectivity

is further enhanced by an acceptor with axially oriented

hydroxyl nucleophile [19], the remote participation by

acyl groups, and the steric influence of bulky groups. In

particular, Hung showed that tert-butyldiphenylsilyl and

p-bromobenzyl groups at the respective 6-O and 3-O

positions of a glucosaminyl donor confer full a-stereo-

selectivity regardless of leaving group, activator, and

acceptor [20�]. tert-Butyldimethylsilyl group at 4-O also

provided similar effect on stereoselectivity [21�]. The UA

precursor can be made with the carboxyl function already

present before chain assembly. Conversely, oxidation

may be carried out, typically using 2,2,6,6-tetramethyl-

1-piperidinyloxyl free radical, until the relevant glycosi-

dic bonds have formed to avoid reactivity and epimeriza-

tion issues. The acquisition of the L-idose or IdoA

derivative is another main concern. Fueled by the high

price of the unprotected monosaccharide, several syn-

thetic strategies were developed using cheaper starting

materials [22]. There are recent updates concerning the

formation of 1,6-anhydro-L-idose by Hung [23] and intro-

duction of various protecting groups in the D-xylose-

derived IdoA derivative by Seeberger [24]. Alternatively,

Gardiner’s group disclosed a new method via D-xylodial-

dose involving the stereoselective cyanohydrin formation

at C5 in the L-ido configuration [25].

Glycosylations with the same disaccharide building

block is a typical route in generating heparin and HS

oligosaccharide. By this approach, different lengths can

be readily prepared leading to compounds with regular

repeating patterns. Elongations were achieved using
www.sciencedirect.com
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Figure 2
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General overview of the chemical and chemoenzymatic synthesis of heparin and HS oligosaccharides and their biological evaluation.
iterative [2 + n]-coupling toward the nonreducing end

[23,26,27�,28,29�,30] or by the initial generation and

further convergent use of long chain donors [20�,31,32].

Thus far, chemical synthesis enabled the assembly of

several dodecasaccharides [26,27�,29�,31,32] on top of

many shorter homologues. The ensuing functional group

transformations typically involve partial deblocking of

key hydroxyls, oxidation, if needed, and sulfonation using

an SO3-based reagent followed by complete removal of

other O-protecting groups usually through hydrogenoly-

sis. The azide can be converted to the amine, acetamide,

or sulfonamide at a synthetically convenient stage.

Because multi-O-sulfonation after chain assembly is often

tricky, Huang demonstrated the feasibility of preinstalled

2,2,2-trichloroethyl sulfate esters [33]. Fluorous tags were

also incorporated at either the reducing [30] or non-

reducing end [32] to allow purification via fluorous

solid-phase extraction. Boons showed [30] that repeated
www.sciencedirect.com 
reagent treatment to afford higher yields is possible in

fluorous-supported heparin and HS synthesis.

Aside from length variations, heparin and HS diversity

can be emulated by changing the manner of functional

group transformations from assembled skeletons — the

divergent approach — and by using differentially

functionalized building blocks in a modular fashion.

Understandably, representing the heparin and HS diver-

sity by synthesis becomes less feasible as length increases

because of concurrent exponential increase in the number

of prospective structures. Complete synthesis was only

accomplished, so far, on the disaccharide level by Hung

and coworkers [34��]. Using two orthogonally protected

disaccharides precursors, all 48 disaccharide possibilities

in the heparin and HS chains were synthesized using

divergent functional group transformation. Hung [35��]
and Huang [33] also applied divergent transformations of
Current Opinion in Chemical Biology 2013, 17:1023–1029
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disaccharide precursors to prepare multiple disaccharide

building blocks for further use in making oligosaccharides

with irregular sequences. Proper selection of protecting

groups, leaving groups, and glycosylation conditions led

to the successful synthesis of exotic HS structures such as

the 3-O-sulfonated octasaccharide generated by Hung

[35��] notable for carrying amine, acetamide, and sulfo-

namide groups. In several instances, common fully pro-

tected oligosaccharides (tetrasaccharide and longer) were

variably transformed to create multiple final products that

mainly differ in overall amine substitution [21�,26,33,36]

or O-sulfonation patterns [29�,32,37]. These strategies

enhance the utility of the assembled skeletons. Modular

strategies coupled with divergent transformations were

recently applied to make small sugar libraries

[21�,29�,36,37]. In Huang’s case [21�], several hexasac-

charide skeletons were assembled under preactivation-

based one-pot sequential glycosylation from the nonre-

ducing to the reducing end.

The full-fledged synthesis of proteoglycan is still beyond

reach. Conjugation between a heparin-like dodecasac-

charide through a non-carbohydrate linker and the lysine

residue of a CD4 mimetic peptide was, nonetheless,

achieved [31]. More importantly, a glycopeptide derived

from syndecan-1, a widespread HS proteoglycan, contain-

ing a serine-attached tetrasaccharide linkage region and

includes an HS-based tetrasaccharide has been success-

fully synthesized [38]. The synthesis encountered gly-

cosylation and functional group transformation issues, but

the know-how gained here could lay the groundwork for

the preparation of more complex targets.

Chemoenzymatic synthesis
With some exemptions, the enzymes that give heparin

and HS their remarkable structure can be expressed in E.
coli in adequate quantities [13,39��]. Together with

heparosan’s availability as starting material [12], the che-

moenzymatic approach attracted interests as a method for

generating heparin-like and HS-like compounds with

certain desired characteristics. The synthetic cost was

brought down significantly by regeneration [40] or enzy-

matic synthesis [41] of the sulfotransferase coenzyme 30-
phosphoadenosine-50-phosphosulfate (PAPS), which can

also be radiolabeled with 35S to aid detection during

purification and analysis. Chemical synthesis also offered

access to starting materials of defined lengths to address

the polydispersity of heparosan chains [20�,42]. While

particular modifications can be introduced with high

regioselectivity, however, controlling the extent and

location of the modification amid numerous residues in

the substrate to afford a well-defined structure is difficult.

Despite many concerns, chemoenzymatic treatment of

heparosan sufficiently provided long oligosaccharides for

bioassays that are impractical by current chemical means.

It even effectively delivered a 13C/15N-labeled HS-based
Current Opinion in Chemical Biology 2013, 17:1023–1029 
octasaccharide from a purposely labeled heparosan poly-

mer [43].

A recent shift in chemoenzymatic synthesis allowed the

preparation of defined heparin-based and HS-based com-

pounds. Alternating application of two bacterial enzymes,

KfiA from E. coli strain K5 and pmHS2 from Pasteurella
multocida, permitted controlled polymer elongation using

uridine diphosphate (UDP) derivatives of GlcNAc and

GlcA, respectively (Figure 2) [39��]. A convenient starting

unit in this case is GlcA–AnMan (AnMan: 2,5-anhydro-

mannitol) obtained by chemical degradation of heparosan

[44]. GlcA–AnMan is also amenable to functionalization,

such as adding a fluorous tag [45,46]. KfiA cannot add

GlcN and selective N-deacetylation is not feasible by

enzymatic or chemical means. Fortunately, N-trifluoroa-

cetyl glucosamine (GlcNTFA) can also be added by KfiA,

providing selective access to the free amine and its

sulfonation with N-sulfotransferase (NST) and PAPS

[45]. NST is the truncated version of the natural bifunc-

tional enzyme N-deacetylase/N-sulfotransferase. Con-

versely, pmHS2 adds GlcA to substrates with

nonreducing GlcNAc, GlcNTFA, and the N-sulfonated

GlcN (GlcNS) residues, but not GlcN [42]. C5-epimerase

(C5-epi) acts on GlcA residues flanked by GlcNS at its

nonreducing side and GlcNS or GlcNAc at its reducing

side [45]. The GlcA residue transformation into IdoA is

known to be reversible, but a GlcNAc three residues away

at the nonreducing side was found to influence the

irreversible IdoA generation [47]. Concurrent treatment

with C5-epi and 2-O-sulfotransferase causes the selective

formation of IdoA2S. While the 6-O-sulfotransferase iso-

forms 1 and 3 appear to indiscriminately act on different

GlcN residues [46], the 3-O-sulfotransferase (3-OST)

isoform-1 only sulfonate GlcNS6S with an unsulfonated

UA at its nonreducing side [39��]. Other 3-OST isoforms

provide differing substrate specificities [39��,48,49]. By

proper order and selection of enzymatic treatment, Liu

generated various well-defined compounds, including a

heptasaccharide carrying the antithrombin-binding

sequence at a good yield and scale [50��]. His laboratory

also achieved a 21-mer oligosaccharide that has anti-IIa

and anti-Xa activities [51�]. Because contiguous GlcNS

residues are present in that construct, however, reversible

epimerization occurred on C5-epi treatment resulting to a

mixture of compounds.

Protein interactions with synthetic heparin
and HS oligosaccharides
Crucial structural features and parameters involved in

protein interactions are revealed by various techniques,

including surface plasmon resonance (SPR), isothermal

titration calorimetry (ITC), microarray analysis, affinity

electrophoresis, fluorescence resonance energy transfer,

various competition assays, NMR perturbation, X-ray

crystallography, and many others (Figure 2). The kinetic

and thermodynamic aspects of the interaction and the
www.sciencedirect.com
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participating residues and functional group on both bind-

ing entities are beneficial in generating a good picture of

the encounter [7].

Growth factors are among the most important group of

proteins that bind HS. With 48 disaccharides, Hung

identified GlcNS–IdoA2S by ITC as the minimum

requirement for fibroblast growth factor-1 (FGF-1) inter-

action that occurs at a shallow binding site in the protein

revealed by X-ray analysis [34��]. Aside from the N-

sulfonate and 2-O-sulfonate functionalities, the 3-O-sul-

fonate, if present, and the 3-hydroxyl of IdoA contribute

to the encounter. FGF-2 binds the disaccharide

GlcNS6S–IdoA2S, albeit weak [28]. Using longer sugars,

Huang and Liu determined the importance of IdoA2S

and GlcNS in binding to FGF-2 and an additional 6-O-

sulfonate group gives a twofold affinity enhancement

[42]. Jayson and coworkers showed that the interaction

of a GlcNS–IdoA2S repeating sequence with vascular

endothelial growth factor165 is considerably weaker

than that with FGF-2 and a long sugar, such as a dode-

casaccharide, is needed for effective protein inhibition

[26].

HS often assists bacterial and viral entry into host cells.

SPR competitive assays indicated that the HS dodeca-

saccharide–CD4 mimic conjugate inhibits the binding of

immobilized CD4 with gp120, a human immunodefi-

ciency virus (HIV) envelope glycoprotein needed for cell

entry [31]. Binding of the CD4 mimic exposed the

adjacent coreceptor domain of gp120, which has affinity

to the HS dodecasaccharide. This cooperative behavior of

the conjugated components enabled the inhibition of

HIV entry onto peripheral blood mononuclear cells.

The dodecasaccharide carries the IdoA2S–GlcNS6S

repeating unit and is at an appropriate length to cover

the coreceptor domain of gp120. Conversely, two differ-

ent 3-O-sulfonated octasaccharides inhibited the herpes

simplex virus-1 (HSV-1) infection of Vero cells in a

dosage dependent manner [35��]. A 3-O-sulfonated HS

is known to interact with HSV-1 envelope glycoprotein

gD enabling viral entry. The similar inhibition profiles of

the two sugars suggest minor contribution of other struc-

tural features and the location of the 3-O-sulfonate group

on the extent of gD binding. Heparin-binding hemagglu-

tinin (HBHA) is the virulence factor crucial for extra-

pulmonary dissemination of Mycobacterium tuberculosis.
ITC experiments identified a hexasaccharide with

GlcNS6S–IdoA2S repeating sequence as the shortest

sugar that interacts with HBHA in an entropically driven

manner [20�].

Assays with other proteins also revealed interesting results.

Competitive inhibition indicated that a heptasaccharide

with GlcNS6S–IdoA2S repeats can inhibit the binding of

eosinophil-derived neurotoxin (EDN) to Beas-2B cells

[23]. Fluorescence-assisted carbohydrate electrophoresis
www.sciencedirect.com 
showed that the shorter pentasaccharide of the same

sequence possess the ability to bind eosinophil cationic

protein (ECP), a close relative of EDN [52]. Using NMR

perturbation, the dissociation constant of the trisaccharide

GlcNS6S–IdoA2S–GlcNS6S and ECP was measured at

around 15–30 mM with the nonreducing end positioned at

the protein interior [53]. Concerning the Alzheimer’s dis-

ease-related protease BACE-1, interaction with both

sequences containing IdoA/GlcNS and GlcA/GlcNAc

suggests the probability of dual binding regions [36].

Octasaccharides and longer sugars with GlcNAc6S–
UA2S units showed potent binding with BACE-1 [29�].
SPR and microarray experiments with the natural cytotox-

icity receptors NKp30, NKp44, and NKp46 using a com-

pound library denote binding to the highly charged regions

of the sugar, but with differing individual specificities and

length dependencies [54].

Conclusion
In a molecule as complex as HS, only a small sampling of a

huge structural potential have been evaluated. This

reflects on the many difficulties associated with the acqui-

sition of well-defined oligosaccharides by chemical and

chemoenzymatic means. Nevertheless, current advances

keep pushing the boundaries of structural complexity and

the effectiveness and efficiency of the synthetic process.

Recent evaluations identify the important structural fea-

tures in the sugar that could form the foundations of future

studies. With the antithrombin-binding sequence that

started a rethinking of HS–protein interactions, the motiv-

ations for identifying new candidate drugs derived from

heparin and HS are stronger than ever.
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26. Cole CL, Hansen SU, Baráth M, Rushton G, Gardiner JM,
Avizienyte E, Jayson GC: Synthetic heparan sulfate
oligosaccharides inhibit endothelial cell functions essential
for angiogenesis. PLoS ONE 2010, 5:e11644.

27.
�

Hansen SU, Miller GJ, Jayson GC, Gardiner JM: First gram-scale
synthesis of a heparin-related dodecasaccharide. Org Lett
2013, 15:88-91.

Long chain heparin and heparan sulfate oligosaccharides are difficult to
synthesize and the authors of this paper achieved a dodecasaccharide in
gram-scale.

28. Maza S, Macchione G, Ojeda R, Lopez-Prados J, Angulo J, de
Paz JL, Nieto PM: Synthesis of amine-functionalized heparin
oligosaccharides for the investigation of carbohydrate–
protein interactions in microtiter plates. Org Biomol Chem
2012, 10:2146-2163.

29.
�
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