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Abstract

Let Γ denote a near polygon distance-regular graph with diameterd ≥ 3, valencyk and
intersection numbersa1 > 0, c2 > 1. Letθ1 denote the second largest eigenvalue ofΓ . We show

θ1 ≤ k − a1 − c2

c2 − 1
.

We show the following (i)–(iii) are equivalent. (i) Equality is attained above; (ii)Γ is Q-polynomial
with respect toθ1; (iii) Γ is adual polar graph or a Hamming graph.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let Γ denote a near polygon distance-regular graph with diameterd ≥ 3 (seeSection 2
for formal definitions). Suppose the intersection numbersa1 > 0 andc2 > 1. It was
shown by Brouwer, Cohen and Neumaier that ifΓ has classical parameters(d, q, 0, β)

thenΓ is a Hamming graph or a dual polar graph [2, Theorem 9.4.4]. The same conclusion
was obtained by the second author under the assumption thatΓ is Q-polynomial and has
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diameterd ≥ 4 [10, Corollary 5.7]. Letθ0 > θ1 > · · · > θd denote the eigenvalues ofΓ .
It is known thatθ0 = k, wherek denotes the valency ofΓ . By [2, Proposition 4.4.6(i)],

θd ≥ − k

a1 + 1
,

with equality if and only ifΓ is a near 2d-gon. We now state our result.

Theorem 1.1. Let Γ denote a near polygon distance-regular graph with diameter d ≥ 3,
valency k, and intersection numbers a1 > 0, c2 > 1. Let θ1 denote the second largest
eigenvalue of Γ . Then

θ1 ≤ k − a1 − c2

c2 − 1
. (1.1)

Moreover, the following (i)–(iii) are equivalent.

(i) Equality is attained in (1.1);

(ii) Γ is Q-polynomial with respect to θ1;

(iii) Γ is a dual polar graph or a Hamming graph.

2. Preliminaries

In this section we review some definitions and basic concepts. See the books by Bannai
and Ito [1] or Brouwer et al. [2] for more background information.

Let Γ = (X, R) denote a finite, undirected, connected graph without loops or multiple
edges, withvertex setX , edge setR, path-length distance function∂ and diameter
d := max{∂(x, y) | x, y ∈ X}. Forx ∈ X and for all integersi , set

Γi (x) := {y | y ∈ X, ∂(x, y) = i}.
Let k denote a nonnegative integer. We sayΓ is regular with valency k whenever|Γ1(x)| =
k for all x ∈ X . Pick an integeri (0 ≤ i ≤ d). Forx ∈ X and fory ∈ Γi (x), set

B(x, y) := Γ1(x) ∩ Γi+1(y), (2.1)

A(x, y) := Γ1(x) ∩ Γi (y), (2.2)

C(x, y) := Γ1(x) ∩ Γi−1(y). (2.3)

The graphΓ is said to bedistance-regular whenever for all integersi (0 ≤ i ≤ d), and for
all x, y ∈ X with ∂(x, y) = i , thenumbers

ci := |C(x, y)|, ai := |A(x, y)|, bi := |B(x, y)| (2.4)

are independent ofx andy. Wecall theci , ai , bi theintersection numbers of Γ . Weobserve
c0 = 0, a0 = 0, bd = 0 andc1 = 1. For the rest of this paper we assumeΓ is distance-
regular with diameterd ≥ 3. We observeΓ is regular with valencek = b0 and that
[2, p. 126]

ci + ai + bi = k (0 ≤ i ≤ d). (2.5)
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We recall the Bose–Mesner algebra ofΓ . For 0 ≤ i ≤ d let Ai denote the matrix in
MatX (R) which hasxy entry

(Ai )xy =
{

1 if ∂(x, y) = i
0 if ∂(x, y) �= i

(x, y ∈ X).

We call Ai the i th distance matrix of Γ . Observe (ai)A0 = I ; (aii)
∑d

i=0 Ai = J ;
(aiii) At

i = Ai (0 ≤ i ≤ d); (aiv) there exist constantsph
i j (0 ≤ i, j ≤ d) suchthat

Ai A j = ∑d
h=0 ph

i j Ah , where I denotes the identity matrix andJ denotes the all ones
matrix. We abbreviateA := A1 and call this theadjacency matrix of Γ . Let M denote the
subalgebra of MatX (R) generated byA. Using (ai)–(aiv) we find A0, A1, . . . , Ad form
a basis ofM. We call M the Bose–Mesner algebra of Γ . By [1, p. 59, 64], M has a
second basisE0, E1, . . . , Ed such that (ei) E0 = |X |−1J ; (eii)

∑d
i=0 Ei = I ; (eiii)

Et
i = Ei (0 ≤ i ≤ d); (eiv) Ei E j = δi j Ei (0 ≤ i, j ≤ d). We call E0, E1, . . . , Ed

theprimitive idempotents for Γ . SinceE0, E1, . . . , Ed form a basis forM there exist real
scalarsθ0, θ1, . . . , θd suchthatA = ∑d

i=0 θi Ei . By this and (eiv) we findAEi = θi Ei (0 ≤
i ≤ d). Observeθ0, θ1, . . . , θd are mutually distinct sinceA generatesM. We assume the
Ei are indexed so thatθ0 > θ1 > · · · > θd . We call θi theeigenvalue of Γ corresponding
to Ei . By [1, p. 197] we haveθ0 = k and−k ≤ θi ≤ k (0 ≤ i ≤ d). Wecall θ0 the trivial
eigenvalue.

Let θ denote an eigenvalue ofΓ and let E denote the corresponding primitive
idempotent. SinceE ∈ M, there exist real numbersσ0, σ1, . . . , σd suchthat

E = m|X |−1
d∑

i=0

σi Ai , (2.6)

wherem = rank E . We haveσ0 = 1 and

ciσi−1 + aiσi + biσi+1 = θσi (0 ≤ i ≤ d), (2.7)

whereσ−1, σd+1 denote indeterminates [1, p. 191]. The sequenceσ0, σ1, . . . , σd is called
the cosine sequence associated withθ . Let σ0, σ1, . . . , σd denote the cosine sequence
associated with the eigenvaluek. Comparing (2.5) and (2.7) we findσi = 1 (0 ≤ i ≤ d).
By the trivial cosine sequence of Γ we mean the cosine sequence associated withk.
Let θ denote an eigenvalue ofΓ and letσ0, σ1, . . . , σd denote the corresponding cosine
sequence. By (2.7),

σ1 = θk−1, (2.8)

σ2 = θ2 − a1θ − k

kb1
. (2.9)

Combining (2.5), (2.8) and (2.9) we find

(σ1 − σ2)b1 = (θ + 1)(σ0 − σ1). (2.10)

SetV = R
X (column vectors). We define the inner product

〈u, v〉 = utv (u, v ∈ V ).
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For eachx ∈ X set

x̂ = (0, 0, . . . , 1, 0, . . . , 0)t ,

where the 1 is in coordinatex . Weobserve{x̂ | x ∈ X} is an orthonormal basis forV . By
(2.6), for x, y ∈ X we have

〈Ex̂, E ŷ〉 = m|X |−1σi , (2.11)

wherei = ∂(x, y).
By aclique in Γ we mean a nonempty set consisting of mutually adjacent vertices ofΓ .

A givenclique inΓ is said to bemaximal whenever it is notproperly contained in a clique.
The graphΓ is said to be anear polygon whenever

(i) Each maximal clique has cardinalitya1 + 2.
(ii) For all maximal cliques� and for allx ∈ X , either

(iia) ∂(x, y) = d for all y ∈ �, or
(iib) there exists an integeri (0 ≤ i ≤ d −1) and a uniquez ∈ � suchthat∂(x, z) = i

and∂(x, y) = i + 1 for all y ∈ � − {z}.
We give an alternate description of a near polygon. LetK1,2,1 denote the graph with 4
verticess, x, y, s′ suchthat∂(s, x) = ∂(s, y) = ∂(x, y) = ∂(x, s′) = ∂(y, s′) = 1 and
∂(s, s′) = 2. Then by [2, Theorem 6.4.1]Γ is a near polygon if and only if both the
following (i′)–(ii ′) hold.

(i′) Γ does not contain an inducedK1,2,1 subgraph;
(ii ′)

ai = a1ci (0 ≤ i ≤ d − 1). (2.12)

AssumeΓ is a near polygon. Then

ad ≥ a1cd . (2.13)

Moreover ad = a1cd if and only if no maximal clique satisfies (iia) above [2, Theorem
6.4.1]. In this case we callΓ a near 2d-gon. Otherwise wecall Γ a near (2d + 1)-gon.
AssumeΓ is a near polygon. The Hoffman bound states that

θd ≥ − k

a1 + 1
, (2.14)

with equality if and only ifΓ is a near 2d-gon [2, Proposition 4.4.6(i)].

Definition 2.1. Let Γ denote a distance-regular graph with diameterd ≥ 3. We sayΓ has
classical parameters (d, q, α, β) whenever the intersection numbers are given by

ci =
[

i
1

](
1 + α

[
i − 1

1

])
(1 ≤ i ≤ d), (2.15)

bi =
([

d
1

]
−

[
i
1

]) (
β − α

[
i
1

])
(0 ≤ i ≤ d), (2.16)
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where[
j
1

]
:= 1 + q + q2 + · · · + q j−1. (2.17)

We give two examples of near polygon distance-regular graphs with classical
parameters(d, q, α, β).

Example 2.2 (The Hamming GraphH (d, n) (d ≥ 3, n ≥ 2) [4–6, 8]). X is the set of all
d-tuples of elements from the set{1, 2, . . . , n}, xy ∈ R iff x, y differ in exactly 1
coordinate(x, y ∈ X),

q = 1, α = 0, β = n − 1,

ci = i, bi = (d − i)(n − 1), ai = (n − 2)i (0 ≤ i ≤ d),

θi = (d − i)(n − 1) − i (0 ≤ i ≤ d).

Example 2.3 (The Dual Polar Graphs [3, 7]). Let U denote a finite vector space with one
of the following nondegenerate forms:

name dim(U) field form ε

Bd(pn) 2d + 1 G F(pn) quadratic 1

Cd (pn) 2d G F(pn) symplectic 1

Dd (pn) 2d G F(pn)
quadratic

(Witt index d)
0

2Dd+1(pn) 2d + 2 G F(pn)
quadratic

(Witt index d)
2

2A2d(pn) 2d + 1 G F(p2n) Hermitean 3
2

2A2d−1(pn) 2d G F(p2n) Hermitean 1
2

whered ≥ 3, p is prime andn ∈ N\{0}.
A subspace ofU is called isotropic whenever the form vanishes completely on that

subspace. In each of the above cases, the dimension of any maximal isotropic subspace
is d.

X is the set all maximal isotropic subspaces ofU ,

xy ∈ R iff dim (x ∩ y) = d − 1 (x, y ∈ X),

α = 0, β = qε,

ci = qi − 1

q − 1
, ai = qi+ε − qi − qε + 1

q − 1
(0 ≤ i ≤ d),

bi = qi+ε(qd−i − 1)

q − 1
(0 ≤ i ≤ d − 1),

θi = qd+ε−i − qε − qi + 1

q − 1
(0 ≤ i ≤ d),

where

q = pn, pn, pn, pn, p2n, p2n respectively.
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Note that the dual polar graphs onBd(pn) andCd(pn) are isomorphic if and only ifp is
equal to 2 [2, p. 277].

The following three theorems will be used in the proof of our results.

Theorem 2.4 ([9, Theorem 4.1]). Let Γ denote a distance-regular graph with diameter
d ≥ 3, and let q denote a real number at least 1. Then the following conditions (i), (ii) are
equivalent.

(i) Γ has a nontrivial cosine sequence σ0, σ1, . . . , σd such that σi−1 − qσi is
independent of i(1 ≤ i ≤ d).

(ii) The intersection numbers of Γ are such that qci −bi −q(qci−1−bi−1) is independent
of i(1 ≤ i ≤ d).

Furthermore, if (i), (ii) hold, then

c3 ≥ (c2 − q)(1 + q + q2). (2.18)

Theorem 2.5 ([9, Theorem 4.2]). Let Γ denote a distance-regular graph with diameter
d ≥ 3, and let q denote a real number at least 1. Then the following conditions (i), (ii) are
equivalent.

(i) Statements (i), (ii) hold in Theorem 2.4, and c3 = (c2 − q)(1 + q + q2).
(ii) There exists α, β ∈ R such that Γ has classical parameters (d, q, α, β).

Theorem 2.6 ([2, Theorem 9.4.4]).Let Γ denote a distance-regular graph with diameter
d ≥ 3 with classical parameters (d, q, 0, β). Assume the intersection numbers a1 > 0 and
c2 > 1. Suppose Γ is a near polygon. Then Γ is a dual polar graph or a Hamming graph.

3. The inequality

In this section we obtain the inequality inTheorem 1.1.

Lemma 3.1. Let Γ denote a near polygon distance-regular graph with diameter d ≥ 3,
valency k, and intersection numbers a1 > 0, c2 > 1. Let θ1 denote the second largest
eigenvalue of Γ . Then

θ1 ≤ k − a1 − c2

c2 − 1
. (3.1)

Proof. AbbreviateE = E1. Letσ0, σ1, . . . , σd denote the cosine sequence associated with
θ1. Fix any twoverticesx, y ∈ X with ∂(x, y) = 2. We consider the vectors

u =
∑

z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ, (3.2)

v = Ex̂ − E ŷ. (3.3)

By the Cauchy-Schwartz inequality,

‖u‖2‖v‖2 ≥ 〈u, v〉2. (3.4)
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We compute the terms in (3.4). Using (2.11), (3.2) and (3.3) we find

‖v‖2 = 2m|X |−1(σ0 − σ2), (3.5)

〈u, v〉 = 2ma2|X |−1(σ1 − σ2). (3.6)

We now compute‖u‖2. To do this we first discuss the distances between vertices inA(x, y)

and vertices inA(y, x). We claim that for all z ∈ A(x, y), z is adjacent toc2 − 1 vertices
in A(y, x) and is at distance 2 from the remaininga2 − c2 + 1 vertices in A(y, x). To
see this fixz ∈ A(x, y). Then� := A(x, z) ∪ {x, z} is a maximal clique; hence there
exists aunique vertexs ∈ � with ∂(s, y) = 1. That iss ∈ C(x, y) ∩ C(z, y). Observe
|C(x, y) ∩ C(z, y)| = 1, since any others′ ∈ C(x, y) ∩ C(z, y) will cause eitherxss′y
or sxzs′ to be aK1,2,1 subgraph. Hence there arec2 − 1 vertices inC(z, y) ∩ A(y, x).
Observe forw ∈ A(y, x) we have∂(w, x) = 2 and∂(w, s) ≤ 2 so∂(w, z) ≤ 2. We have
now proved the claim. Using the claim and applying (2.11) we find

‖u‖2 =
∥∥∥∥∥∥

∑
z∈A(x,y)

Eẑ

∥∥∥∥∥∥
2

+
∥∥∥∥∥∥

∑
w∈A(y,x)

Eŵ

∥∥∥∥∥∥
2

− 2

〈 ∑
z∈A(x,y)

Eẑ,
∑

w∈A(y,x)

Eŵ

〉

= 2ma2|X |−1(σ0 + (a1 − c2)σ1 + (c2 − a1 − 1)σ2). (3.7)

Evaluating (3.4) using (3.5)–(3.7) we routinely find

(σ0 + (a1 − c2)σ1 + (c2 − a1 − 1)σ2)(σ0 − σ2) ≥ a2(σ1 − σ2)
2. (3.8)

Evaluating (3.8) using (2.8), (2.9) and (2.12) we obtain

(θ1 − k)2(θ1(a1 + 1) + k)(k − θ1(c2 − 1) − a1 − c2) ≥ 0. (3.9)

Clearly(θ1 − k)2 > 0. By (2.14) and sinceθ1 > θd we findθ1(a1 +1)+ k > 0. Evaluating
(3.9) using these comments we find

k − θ1(c2 − 1) − a1 − c2 ≥ 0

and (3.1) follows. �
Remark 3.2. Referring to Examples 2.2and 2.3, the eigenvalueθ1 satisfies (3.1) with
equality.

We comment on the proof ofLemma 3.1.

Lemma 3.3. With the notation of Lemma 3.1, the following (i)–(iii) are equivalent.

(i) Equality is attained in (3.1).
(ii) For all x, y ∈ X such that ∂(x, y) = 2,∑

z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ ∈ Span(Ex̂ − E ŷ). (3.10)

(iii) There exist x, y ∈ X such that ∂(x, y) = 2 and∑
z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ ∈ Span(Ex̂ − E ŷ). (3.11)

Here E = E1.
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Proof. Observe from theproof of Lemma 3.1that equality is attained in (3.1) if and only
if equality is attained in (3.4). We claimv �= 0. This will follow from ( 3.5) provided we
can showσ0 �= σ2. Supposeσ0 = σ2. Settingθ = θ1 andσ2 = σ0 in (2.10) and simplifyi ng
the result we find θ1 = −b1 − 1. This is inconsistent with (2.14) andθ1 > θd . We have
now shownσ0 �= σ2 and it followsv �= 0. We now see that equality is attained in (3.4) if
and only ifu ∈ Span(v). The resultfollows. �

4. The case of equality

In this section we consider the case of equality in (3.1).

Lemma 4.1. Let Γ denote a near polygon distance-regular graph with diameter d ≥ 3
and intersection numbers a1 > 0, c2 > 1. Let θ1 denote the second largest eigenvalue of Γ
and let σ0, σ1, . . . , σd denote the corresponding cosine sequence. Suppose equality holds
in (3.1). Then σi−1 − qσi is independent of i (1 ≤ i ≤ d), where q = c2 − 1.

Proof. Settingc2 = q + 1 in (3.1) andusingk − a1 − 1 = b1 we findθ1 + 1 = b1q−1.
In particularθ1 �= −1. Observeσ1 �= σ2; otherwiseσ0 = σ1 by (2.10) forcing θ1 = k by
(2.8), a contradiction. Evaluating (2.10) usingθ1 + 1 = b1q−1 we find

σ0 − σ1

σ1 − σ2
= q. (4.1)

Fix two verticesx, y ∈ X with ∂(x, y) = 2. AbbreviateE = E1. By Lemma 3.3there
existsλ ∈ R suchthat∑

z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ = λ(Ex̂ − E ŷ). (4.2)

Fix an integeri (1 ≤ i ≤ d − 1) and picku ∈ X with ∂(u, x) = i − 1 and∂(u, y) = i + 1.
Taking the inner product ofEû with both sides of (4.2) andusing the fact thatΓ is a near
polygon, we find

a2(σi − σi+1) = λ(σi−1 − σi+1). (4.3)

Settingi = 1 in (4.3) we finda2(σ1 − σ2) = λ(σ0 − σ2). From (4.1) we findσ0 − σ2 =
(σ1 − σ2)(1 + q). By thesecommentsλ = a2/(q + 1). Evaluating (4.3) using this we find

σi−1 − qσi = σi − qσi+1 (1 ≤ i ≤ d − 1).

From this we findσi−1 − qσi is independent ofi for 1 ≤ i ≤ d. �

Lemma 4.2. Let Γ denote a near polygon distance-regular graph with d ≥ 3 and
intersection numbers a1 > 0, c2 > 1. Let θ1 denote the second largest eigenvalue of Γ
and assume equality holds in (3.1). Then Γ has classical parameters (d, q, 0, β).

Proof. Let the scalarq be as inLemma 4.1. By Lemma 4.1we haveTheorem 2.4(i) and
henceTheorem 2.4(ii). Applying Theorem 2.4(ii) with i = 2, 3 we find

qc2 − b2 − q(qc1 − b1) = qc3 − b3 − q(qc2 − b2). (4.4)
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Simplifying (4.4) using (2.5) andc2 = q + 1, a2 = a1c2 we obtain

(a1 + 1 + q)(1 + q + q2 − c3) = a3 − a1c3. (4.5)

By (2.12) we havea3 = a1c3 if d > 3, and by (2.13) we havea3 ≥ a1c3 if d = 3. In any
casea3 ≥ a1c3 so the right-hand side of (4.5) is nonnegative. Alsoa1 + 1 + q > 0 since
q = c2 − 1. Evaluating (4.5) using these comments we find

c3 ≤ 1 + q + q2. (4.6)

By (2.18) andusingc2 = 1 + q we findc3 ≥ 1 + q + q2. Now c3 = 1 + q + q2 and so
c3 = (c2 − q)(1 + q + q2). Applying Theorem 2.5we find there exist realnumbersα, β

suchthatΓ has classical parameters(d, q, α, β). By (2.15) we findc2 = (1 + q)(1 + α).
By the constructionc2 = q + 1. Comparing these equations we findα = 0. �
Proof of Theorem 1.1. The inequality (1.1) is from (3.1).

(i) (iii). By Lemma 4.2, Γ has classical parameters(d, q, 0, β). By this and
Theorem 2.6we findΓ is adual polar graph or a Hamming graph.

(iii) (ii). This is immediate from [2, Corollary 8.5.3].

(ii) (i). Lemma 3.3(ii) holds by [9, Theorem 3.3], soLemma 3.3(i) holds and the result
follows.
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