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Abstract

Let I' denote a near polygon distance-regular graph with dianwter 3, valencyk and
intersection numberg; > 0, ¢y > 1. Let61 denote the second largest eigenvalué’ofVe show

k—a—c

01 <
1= co—1

We show the following (i)—(iii) are equivalent. (i) Equality is attained above; [(iils Q-polynomial
with respect td; (iii) I" is adual polar graph or a Hamming graph.

© 2004 Elsevier Ltd. All rights reserved.

MSC: 05E30

Keywords: Near polygon; Distance-regular grap@:polynomial; Dual polar graph; Hamming graph

1. Introduction

Let I" denote a near polygon distance-regular graph with diandeteB (seeSection 2
for formal definitions). Suppose the intersection numbkars> 0 andc; > 1. It was
shown ly Brouwer, Cohen and Neumaier that/if has classical paramete(d, g, O, 8)
then!" is a Hanming graph or a dual polar grap® [Theorem 9.4.4]. The same conclusion
was obtained by the second author under the assumption th&Q-polynomial and has
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diameterd > 4 [10, Corollary 5.7]. Let6p > 61 > --- > 6y denote the eigenvalues 6f
It is known thatfy = k, wherek denotes the valency df. By [2, Proposition 4.4.6(i)],

k

O > ——,
d a+1

with equality if and only ifI" is a near #-gon. We now state our result.

Theorem 1.1. Let I" denote a near polygon distance-regular graph with diameter d > 3,
valency k, and intersection numbersa; > 0, ¢; > 1. Let ; denote the second largest
eigenvalue of I'. Then

k — a — C
0 < ————. 11
1= &1 (1.1)
Moreover, the following (i)—(iii) are equivalent.
(i) Equalityisattainedin (1.2);
(i) I'is Q-polynomial with respect to 61;

(i) I' isadual polar graph or a Hamming graph.

2. Preliminaries

In this section we review some definitions and basic concepts. See the books by Bannai
and Ito [1] or Brouwer et al. 2] for more background information.

Let I' = (X, R) denote a finite, undirected, connedtgraph without loops or multiple
edges, withvertex setX, edge setR, path-length distance functiord and diameter
d =maxd(x,y) | X,y € X}. Forx € X and for all integers, set

Lix):={ylye X, o(x,y) =i}.

Letk denote a nonnegative integer. We gaig regular with valency k whenevelf ' (x)| =
k for all x € X. Pick aninteger (0 <i < d). Forx € X and fory € [j(x), set

B(x,y) == I1(X) N Ii41(y), (2.1)
A(X,y) == I'1(x) N Ii(y), (2.2)
C(x,y) := () N Ii—a(y). (2.3)

The graphl” is said to balistance-regular whenever for all integeris(0 < i < d), and for
all x, y € X with 9(x, y) =i, thenumbers
¢ = |C(X, Y, a = |AX, Y, bi == [B(X, y)I (2.4)

are independent ofandy. Wecall theg;, &, b theintersection numbersof I'. Weobserve
co = 0,80 = 0,by = 0 andc; = 1. For the rest of this paper we assumeés distance-
regular with diameted > 3. We observel is regular with valenc& = bp and that
[2, p. 126]

c+a+b=k (0<i=<d). (2.5)
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We recall the Bose—Mesner algebra Bf For 0 < i < d let A; denote the matrix in
Maty (R) which hasxy entry

1 ifax,y)=i

(Aixy = {0 if 9(x, y) £ X,y € X).
We call A; the ith distance matrix of I'. Observe (ai)Ag = 1; (aii) Zid:O A = J;
(aiii) Ait = A (0 < i =< d); (aiv) there exist constantpn (0 <i,j =< d) suchthat
A A = Zﬂ:o pﬂ An, wherel denotes the identity matrix and denotes the all ones
mattix. We abbreviateA := A; and call this theadjacency matrix of I". LetM denote the
subalgebra of Mat(R) generated byA. Using (ai)—&iv) we find Ag, Ay, ..., Aq form
a basis ofM. We call M the Bose-Mesner algebra of I'. By [1, p. 59, 64],M has a
second basisEy, Ej, ..., Egq such that (ei) Ep = IX|~1J; (eii) Zid:O Ei = 1; (eiii)
El = E (0<i <d)(ev)EEj = &E (0 <i,j < d).Wecall Eg, Eg, ..., Eg
the primitive idempotentsfor I". SinceEg, Ej, ..., Eq form a basis foM there exist real
scalardp, 01, . . ., 64 suchthatA = Z?:o 6; E;. By this and (eiv) we findAE; = 6;E; (0 <
i < d). Observedp, 61, ..., 6y are mutually distinct sincé generate$!. We assume the
Ej are indexed so thay > 01 > --- > 64. Wecall 6; theeigenvalue of I" corresponding
to Ej. By [1, p. 197] we havedg = kand—k < 6; < k (0 <i < d). Wecall 6p thetrivial
eigenvalue.

Let 6 denote an eigenvalue of and let E denote the corresponding primitive

idempoten SinceE € M, there exisreal numbersyg, o1, . .., og suchthat
d
E=mXI"") oA, (2.6)
i=0

wherem = rank E. We havesg = 1 and

Cioi—1+ aioj + bjoi11 = bo O=<i=<d), (2.7)
whereo_1, o4+1 denote indeterminated,[p. 191]. The sequencs, o1, ..., aq is called
the cosine seguence associated witho. Let o9, 01, ..., 0g denote the cosine sequence

associated with the eigenvalkeConparing .5 and @.7) we findo; = 1 (0 < i < d).
By the trivial cosine sequence of I" we mean the cosine sequence associated kvith

Let 6 denote an eigenvalue df and letoo, o1, . . ., og denote the corresponding cosine
squence. By 2.7),

o1 = 0k 1, (2.8)

02 = Gz%gf—k (2.9)
Combining @.5), (2.8) and .9 we find

(01 — o2)by = (0 + 1) (00 — 01). (2.10)

SetV = RX (column vectors). We define the inner product

vy =uv (U veV).
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For eachx € X set

%x=(0,0,...,1,0,...,01,
where the 1 isn coordinatex. We observe(X | x € X} is an orthonormal basis for. By
(2.6), forx, y € X we have

(EX, EY) = m[X| to;, (2.11)

wherei = 3(X, y).

By acliquein I we mean a nonempty set consisting of mutually adjacent verticEs of
A givenclique in[" is said to bemaximal whenever it is noproperly contained in a clique.
The graphl” is said to be aear polygon whenever

(i) Each maximal clique has cardinaligy + 2.
(ii) For all maximal cliqued and for allx € X, dther

(i) a(x,y) =dforally € ¢, or
(iib) there exists anintegen0 < i < d—1) and a unique € ¢ suchthatd(x, z) =i
andia(x,y) =i+ 1forally € ¢ — {z}.

We give an alternate description of a near polygon. Ket 1 denote the graph with 4
verticess, X, y, s’ suchthata(s, x) = 3(s,y) = 9(X,y) = d(x,s) = d(y,s) = 1 and
9(s,s') = 2. Then by P, Theorem 6.4.1]I" is a rear polygon if and only if both the
following (i")—(ii") hold.
(") I' does not contain an inducéd 2 1 subgraph;
(ii")
a = aiG O<i<d-1). (2.12)

Assumel’ is a near polygon. Then

ad = a1Cqg. (2.13)

Moreoverag = aicq if and only if no maximal clique satisfies (iia) abov& [Theorem
6.4.1]. In this case we call' a near 2d-gon. Otherwse wecall I" a near (2d + 1)-gon.
Assumel!’ is a near polygon. The Hoffman bound states that

k
a; + 1
with equality if and only ifI" is a near &-gon [2, Proposition 4.4.6(i)].

B4 >

(2.14)

Definition 2.1. Let I" denote a distance-regular graph with diameter 3. We sayl" has
classical parameters (d, q, «, 8) whenever the intersection numbers are given by

cizm(ug[‘;l}) (asizo (2.15)
(LD e e
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where

[‘J =14+9+q?+---+q L (2.17)

We give two examples of near polygon distance-regular graphs with classical

parametergd, q, «, 8).
Example 2.2 (The Hamming Graptd (d, n) (d > 3, n > 2) [4-6, 8]). X is the set of all
d-tuples of elements from the sét,2,...,n}, xy € R iff x,y differ in exadly 1
coordinatex, y € X),

g=1, a =0, B=n-1,

G =Wd—-i)(n—-1) —i O<i<d.
Example 2.3 (The Dual Polar Graph$[ 7]). LetU denote a finite vector space with one
of the following nondegenerate forms:

name dimu) field form €
Bq(p™ 2d+1 GF(p" guadratic 1
Ca(pM 2d GF(p") symplectic 1
Da(p" 2d  GF(P") rmies O
Dapa(ph)  20+2 GF(p") pladale o
2Pg(p")  2d+1 GF(p?) Hermitean 3
2 Aog—1(p™ 2d GF(p™ Hermitean 3

whered > 3, pis prime anch € N\{0}.

A subspace oU is calledisotropic whenever the form vanishes completely on that
subspace. In each of the above cases, the dimension of any maximal isotropic subspace
isd.

X is the set all maximal isotropic subspacesJof

xy € Riff dm(xnNny)=d-1 X,y € X),
o = Os /8 = q€7
qi—l qi+5_qi_qe+1

G=q-1 4= q-1 O=<i=<d),
i+e dfi_l
u=9—%LT—3 O<i<d-1),
dte—i _ ~ne _ Qi 1
9i=q qq1q+ O<i<d),
where

q=p", p", p", p", p?", p*" respectively
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Note that the dugpolar graphs oBy(p") andCq(p") are isomorphic if and only ip is
equalto 2, p. 277].

The following three theorems will be used in the proof of our results.

Theorem 2.4 ([9, Theorem 4.1]).Let I" denote a distance-regular graph with diameter
d > 3, and let q denote a real number at least 1. Then the following conditions (i), (i) are
equivalent.

(i) I' has a nontrivial cosine sequence oo, 01, ...,04 such that oi_1 — qoj is
independentof i (1 <i < d).
(i) Theintersection numbersof I" aresuchthat gqc; —bj —q(qci—1—b;j—1) isindependent
ofi(l<i <d).
Furthermore, if (i), (i) hold, then
3> (C2— DL+q+77. (2.18)

Theorem 2.5 ([9, Theorem 4.2]). Let I" denote a distance-regular graph with diameter
d > 3, and let q denote a real number at least 1. Then the following conditions (i), (i) are
equivalent.

(i) Satements (i), (i) hold in Theorem 2.4, and c3 = (C2 — q)(1+ q + g?).
(i) Thereexistsa, B € R suchthat I" has classical parameters (d, q, «, 8).

Theorem 2.6 ([2, Theorem 9.4.4]).Let I" denote a distance-regular graph with diameter
d > 3 with classical parameters (d, g, 0, 8). Assume the intersection numbersa; > 0 and
c2 > 1. Suppose I" isa near polygon. Then I" isa dual polar graph or a Hamming graph.

3. Theinequality
In this section we obtain the inequality Thheorem 1.1

Lemma 3.1. Let I" denote a near polygon distance-regular graph with diameter d > 3,
valency k, and intersection numbersa; > 0,c2 > 1. Let 61 denote the second largest

eigenvalue of I'. Then
k—a1—02

0 < ——. 3.1

1= o (3.1)

Proof. AbbreviateE = E;. Letoy, o1, .. ., o4 denote the cosine sequence associated with
01. Fix any twovetticesx, y € X with 9(x, y) = 2. We consider the vectors

u= Y Ez- ) Ed, (3.2)

ze A(X,Y) weA(Y,X)
v = EX — EY. (3.3)

By the Cauchy-Schwartz inequality,
lullvl > (u, v)2. (3.4)
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We conpute the terms in3.4). Using .13, (3.2) and @.3) we find
IvlI? = 2m|X| (o0 — 02), (3.5)
(u, v) = 2magz|X| (o1 — 02). (3.6)

We now @mputel|u||2. To do this we first discas the distances between verticeaitx, y)
and vertices iPA(y, x). We clam that for allz € A(x, y), zis adjacent tay — 1 vetices
in A(y, x) and is at distance 2 from the remainiag — c; + 1 vertices in A(y, x). To
see this fixz € A(X,y). Thent = A(X, 2) U {X, z} is a maximal clique; hence there
exids aunique vertexs € ¢ with 9(s,y) = 1. Thatiss € C(x, y) N C(z, y). Observe
IC(x,y) N C(z,y)| = 1, since any othes' € C(x, y) N C(z, y) will cause eithexss'y
or sxzs' to be aKj 21 subgraph. Hence there ace — 1 vertices inC(z, y) N A(y, X).
Observe forw € A(y, X) we haved (w, X) = 2 andd(w, S) < 2 so0d(w, z) < 2. We have
now proved the claim. Using the claim and applyi2gl(l) we find

2 2

=) > Ez|f +| Y Edb —2< > E2 Y Eﬁ)>

ze A(X,Y) weA(Y,X) ze A(X,Y) weA(Y,X)
= 2mag| X| (o0 + (a1 — C2)o1 + (C2 — a1 — 1)o). (3.7)

Evaluating 8.4) using 8.5—(3.7) we rouinely find

(00 + (a1 — C2)o1 + (C2 — 81 — 1)02) (00 — 02) = @z(01 — 02)% (3.8)
Evaluating 8.8) using .8), (2.9 and .12 we obtain

01— K)201(a1+ 1) + k)(k — 01(c — 1) —ag — ¢p) > 0. (3.9)

Clearly (61 — k)2 > 0. By (2.14 and shce6; > 64 we findf1(a; + 1) + k > 0. Evaluating
(3.9 using these@mments we find

k—61(cc—1) —a;—¢c2>0
and @3.1) follows. O

Remark 3.2. Refaring to Examples 2.2and 2.3 the egenvalued; satisfies 8.1) with
equality.

We canment on the proof dfemma 3.1
Lemma 3.3. Wth the notation of Lemma 3.1, the following (i)—(iii) are equivalent.

(i) Equalityisattainedin (3.1).
(ii) For all x,y € X suchthat a(x, y) = 2,

Z Ez— Z Ew € SpanEX — EY). (3.10)
ze A(X,Y) weA(Y,X)
(iii) Thereexist X,y € X suchthat d(x, y) = 2and
> E2- )" Ei e SpanER - EY). (3.11)
ze A(X,Y) weA(Y,X)

Here E = E1.
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Proof. Observe fron theproof of Lemma 3.1that equality is attained ir8(2) if and only
if equality is attained in3.4). We claimv # 0. This will follow from (3.5 provided we
can showsg # o2. SUpPpOSEry = o2. Settingd = 61 andoz = op in (2.10 and simifyi ng
the resul we find6; = —b; — 1. Thisis inconsistent withZ.14 and61 > 64. We have
now shownog # o2 and it followsv # 0. We now see that equality is attained i3.4) if

and only ifu € Sparv). The resulfollows. O

4. The case of equality

In this section we consider the case of equalitydri

Lemma4.1. Let I" denote a near polygon distance-regular graph with diameter d > 3
and intersection numbersa; > 0, ¢ > 1. Let 61 denote the second largest eigenvalue of I’
and let o9, 01, . . ., og denote the corresponding cosine sequence. Suppose equality holds
in(3.1). Thenoi_1 — qoj isindependent of i (1 <i <d),whereq=c; — 1.

Proof. Settingc, = ¢ + 1 in (3.1) andusingk — a; — 1 = by we find6; + 1 = byq~L.
In particularf; # —1. Observer; # o2; otherwisesg = o1 by (2.10 forcing61 = k by
(2.8), a contradiction. Evaluatin@(10 usingf1 + 1 = byq~* we find

0" _ (4.1)
o1 — 02

Fix two verticesx, y € X with 3(x, y) = 2. AbbreviateE = E;. By Lemma 3.3there

exigs 1 € R suchthat

> E2- ) Eib=uER-EY. (4.2)
ze A(X,Y) weA(Y,X)
Fix aninteger (1 <i <d—1)and picku € Xwithad(u,x) =i —landa(u,y) =i+ 1.

Taking the inner product oEG with both sides 0f4.2) andusing the fact thaf” is a near
polygon, we find

az(0i — 0i4+1) = A(0i—1 — 0i41). (4.3)

Settingi = 1in (4.3) we findax(o1 — 62) = A(op — 02). From @.1) we findog — 02 =
(01 — 02)(1+ Q). By thesecomments. = a»/(q + 1). Evaluating @.3) using this we find

0i—1 —qoi = o0j — (ojt1 1<i<d-1.

From this we finds;_1 — qoj is indegpendentof forl <i <d. O

Lemma4.2. Let I denote a near polygon distance-regular graph with d > 3 and
intersection numbersa; > 0,c2 > 1. Let 6; denote the second largest eigenvalue of I’
and assume equality holdsin (3.1). Then I" has classical parameters (d, q, 0, 8).

Proof. Let the scalag be as inLemma 4.1 By Lemma 4.1we haveTheorem 2.4) and
henceTheorem 2.4i). Applying Theorem 2.4i) with i = 2, 3 we find

gcz — b2 — g(qc1 — by) = qcz — bz — q(gce — by). (4.4)
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Simplifying (4.4) using @.5) andcy = q + 1, ap = a1C2 we obtain
a1+ 1+a)(1+d+09°—c3) = ag — aiCa. (4.5)

By (2.129 we haveaz = ajc3 if d > 3, and by 2.13 we haveaz > ajcz if d = 3. In any
caseag > aiC3 so the right-hand side of4(5 is nonnegative. Als@; + 1+ q > 0 since
g = ¢2 — 1. Evaluating 4.5) using these @mments we find

c3<1+0q+0> (4.6)

By (2.18 andusingc; = 1+ q we findcs > 14+ g+ g2 Nowcs = 1+ g + g2 and so
c3 = (c2 — q)(1+ q + g2). Applying Theorem 2.5ve find there ebst realnumbersy,
suchthatI" has classical parameteid, q, «, 8). By (2.15 we findc; = (1 4+ 9)(1 + «).
By the constructior; = q + 1. Comparing these equations we fing= 0. O

Proof of Theorem 1.1. The inequality £.2) is from (3.1).

(i) = (iii). By Lemma4.2 I' has classical parametefs, g, 0, 8). By this and
Theorem 2.6ve find I" is adual polar graph or a Hamming graph.

(iif) = (ii). This is immediate from2, Corollary 8.5.3].

(i) = (i). Lemma 3.3ii) holds by [9, Theorem 3.3], sd.emma 3.8i) holds and the result
follows.

References

[1] E. Bannai, T. Ito, Algebraic @mbinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.

[2] A.E. Brouwer, A.M. Cohen, A. Neumaier, DisteeRegular Graphs, Springer-Verlag, Berlin, 1989.

[3] P. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982) 75-85.

[4] Y. Egawa, Chaacterization ofH (n, q) by the parameters, J. Combin. Theory Ser. A 31 (1981) 108-125.

[5] A. Neumaier, Characterization of a class of dige-regular graphs, J. Reine Angew. Math. 357 (1985)
182-192.

[6] N. Sloane, An introduction to association schenagsl coding theory, in: R. Askey (Ed.), Theory and
Application of Special Funabns, Academic Press, New York, 1975.

[7] D. Stanton, Somg-Krawtchouk polynomials on Chevalley@ups, Amer. J. Math. 102 (4) (1980) 625-662.

[8] P. Terwilliger, Root systems and the Johnson and Hamming graphs, European J. Combin. 8 (1987) 73-102.

[9] P. Terwilliger, A new inequality for distaneeegular graphs, Discrete Math. 137 (1995) 319-332.

[10] C. Weng,D-bounded distance-regular graphs, European J. Combin. 18 (1997) 211-229.



	An inequality for regular near polygons
	Introduction
	Preliminaries
	The inequality
	The case of equality
	References


