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Anenhancement of the back region forced convection heat transfer rates of a reciprocating curved channelwith a
rib by the ALE method is investigated numerically. In order to avoid damage caused by a huge difference of heat
transfer rates between the front and back regions of a reciprocating curved channel, a rib is selected and installed
at an appropriate location to enhance the heat transfer rate of the back region. In theALEmethod, the generalized
minimal residual method preconditioned by the mesh free pressure convection–diffusion in which the pressure
terms are arranged in a finite element linearizedmatrix system is used to solve governing equations. The results
show that the heat transfer rate of the back region is indeed enhanced by the installation of the rib at an appro-
priate location.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The heat transfer mechanisms of a reciprocating heated object
cooled by heat convection modes are very interesting and complicated
because a dynamic interaction between the object and cooling fluids is
inevitable. Lots of numerical and experimental literature [1–8] then in-
vestigated the above subject uninterruptedly for deepening academic
research and stretching industrial applications. A reciprocating curved
channel well recognized as an operating piston is a kind of the recipro-
cating heated object and investigated by authors numerically and ex-
perimentally [9–13]. Based on detailed analyses of above results, heat
transfer rates of the front heated surface where is near the inlet are re-
markable because the front heated surface is directly impinged by
cooling fluids. Oppositely, heat transfer rates of the back heated surface
where is near the outlet are rather inferior since cooling fluids already
turn to the outlet before reaching the back region. An apparent differ-
ence of heat transfer rates between the front and back regions easily
causes thermal damage to occur and should be avoided asmuch as pos-
sible. An issue of enhancing heat transfer rates of the back region to de-
crease the occurrence of the thermal damage becomes important and
urgent.

Thework aims to select an appropriate location to install a rib for en-
hancing heat transfer rates of the back region. Thework is classified into
a moving boundary problem, and then the Arbitrary Lagrangian and
Eulerian (ALE)method is suitable to be adopted as the solution method
of this work. The generalized minimal residual method (GMRES) [14]
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preconditioned by the mesh free pressure convection–diffusion (PCD)
[15] in which the pressure terms are arranged in a finite element
linearized matrix system is utilized to solve governing equations. The
compressed row storage (CRS) [16] matrix format deals with a spare
matrix of the PCD to decrease usage of storage memory, as well a dis-
tributed memory parallel technique is used to economize computing
time. The results that show that the rib installed at the appropriate loca-
tion can substantially enhance heat transfer rates of the back region that
leads to the damage caused by the thermal unbalance between the front
and back regions need to be improved.

2. Physical model

A physical model of this work is a two dimensional curved chan-
nel which is composed of two vertical channels and a horizontal
channel and shown in Fig. 1. The total width and length are w1 and
h0, respectively, and the width of the channel is w0. A high and con-
stant temperature Th is set on the top surface BC. In order to examine
the enhancement of heat transfer rates of the back region, the top
surface is evenly divided into three regions of front, middle and
back. Cooling fluids of which the temperature and velocity are T0
and v0, respectively, via the left vertical channel flow into the curved
channel. The other surfaces are adiabatic. Five different locations in-
dicated by dashed lines of ribs evenly distributed on the horizontal
channel are used to select an appropriate location to enhance heat
transfer rates of the back region. The height and width of the rib are
h2 and w3, respectively. The interval of ribs is w2. The region between
theOPandMNisflexible and be elongated fromw0 tow0 + lC. Themag-
nitude of lC is the reciprocating amplitude. Therefore, computational
grids in this region are extensible. As the horizontal channel moves up-
ward thatmeans theMNto befixed and theOPtomove upward, and the

http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.08.005
mailto:wsfu@mail.nctu.edu.tw
http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.08.005
http://www.sciencedirect.com/science/journal/07351933


Nomenclature

Ab.r. Area of back region ¼ W1
3

� �
b Right hand side vector of N–S equation
B Discretized coefficient matrix of the pressure differen-

tial terms
BBt Preconditioning coefficient matrix
c Dimensionless computational variable of θ
D Discretized coefficient matrix of the N–S equation
e Element number in finite element method
e1 Unit vector of size k
En Enhancement factor
f Right hand side vector of Energy equation
fC Dimensional reciprocating frequency of the horizontal

channel (s−1)
FC Dimensionless reciprocating frequency of the horizontal

channel
FP Bilinear quadrilateral convection–diffusion coefficient

matrixbHk Upper Hessenberg matrix
h0 Dimensional height of the channel (m)
h1 Dimensional height of the right vertical channel (m)
h2 Dimensional height of the rib (m)
k Number of the GMRES iterations
K Coefficient matrix of the N–S equation
lC Dimensional reciprocating amplitude of the horizontal

channel (m)
L Coefficient matrix of the Energy equation
LC Dimensionless reciprocating amplitude of the horizon-

tal channel
m Number of non-linear iterations of the N–S equation
M Preconditioning operator matrix
MF Quadratic quadrilateral convection–diffusion coefficient

matrix
MP Bilinear quadrilateral mass coefficient matrix
ne Total numbers of elements in flow field
p Dimensional pressure (N m−2)
P Dimensionless pressure
PB Dimensionless surface-averaged pressure at inlet surface
PX Dimensionless pressure at inlet surface
Pr Prandtl number (=υ/α)
p∞ Dimensional reference pressure (N m−2)
r0 Initial residual vector of the GMRES method
rk Normalized residual vector at k step of the GMRES

methodbrk Unorthonormalized residual vector at k step of the
GMRES method

Re Reynolds number (=v0w0/υ)
t Dimensional time (s)
T Dimensional temperature (K)
T0 Dimensional reference temperature (K)
TH Dimensional high temperature (K)
u, v Dimensional velocities of x− and y− directions (ms−1)
U, V Dimensionless velocities of X‐ and Y‐ directions
v0 Dimensional velocity of the inlet cooling air (ms−1)
vC Dimensional reciprocating velocity of the piston (ms−1)
VC Dimensionless reciprocating velocity of the piston
vm Dimensional maximum velocity of the piston (ms−1)
Vm Dimensionless maximum velocity of the pistonbv Dimensional mesh velocity in y− direction (ms−1)bV Dimensionless mesh velocity in Y‐ direction
Vη Dimensionless node velocity of themovingmesh region
w0 Dimensional width of the channel (m)
w1 Dimensional length of the horizontal channel (m)

w2 Dimensional distances between locations of rib installa-
tion (m)

w3 Dimensional width of the rib (m)
x, y Dimensional Cartesian coordinates (m)
X, Y Dimensionless Cartesian coordinates
Z Discretized coefficient matrix of the Energy equation

Greek symbols
υ Kinematic viscosity (m2s−1)
α Thermal diffusivity (m2s−1)
τ Dimensionless time
Δτ Dimensionless time step interval
τP Dimensionless time interval of a periodic cycle
ρ0 Dimensional density of air (kg m−3)
ηi Vertical position of the node in themovingmesh region
η0 Vertical total length of the moving mesh region
θ Dimensionless temperature
φ Dimensionless computational variables U, V and P
ζk Intermediate vector at k step of the GMRES method

Other
‖‖ Normalized value
[] 2-dimensional matrix value
{ } Vector value
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maximum moving distance is lC. Afterward, the OP moves downward
and returns to the original location. Themoving velocity is vC expressed
in terms of vC = vm sin(2π fC t) in which vm and fC are the maximum
velocity and frequency, respectively. The maximum velocity is equal
to 2π lCfC . The reciprocating motion of the channel affects behaviors
of fluids transiently, thus phenomena become time-dependent and
could be classified into a kind of moving boundary problem. For satisfy-
ing convergence conditions of computation, the length of the right ver-
tical channel h1 is long enough and the exit conditions of temperature
and velocity are both fully developed. For facilitating the analysis, the
assumptions are described as follows:

1. An incompressible laminar flow is adopted.
2. Fluid properties are constant and the effect of the gravity is neglected.
3. A no-slip condition is held on all surfaces. Thefluid velocities onmov-

ing boundaries is equal to the boundary moving velocities.

Based upon the characteristic scales ofw0, v0, ρ0v02 and T0, the dimen-
sionless variables are defined as follows:

X ¼ x
w0

;Y ¼ y
w0

;U ¼ u
v0

;V ¼ v
v0

;P ¼ p−p∞
ρ0v

2
0

;

θ ¼ T‐T0
Th‐T0

; bV ¼ bv
v0

;VC ¼ vC
v0

; FC ¼ f Cw0

v0
;

Vm ¼ vm
v0

;τ ¼ tv0
w0

;Re ¼ v0w0

υ
;Pr ¼ υ

α

ð1Þ

where bv is defined as the mesh velocity.
According to the above assumptions and dimensionless variables,

the dimensionless ALE governing equations are expressed as the fol-
lowing equations:

Continuity equation

∂U
∂X þ ∂V

∂Y ¼ 0 ð2Þ



Fig. 1. Physical model.
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Momentum equations

∂U
∂τ þ U

∂U
∂X þ V−bV� �∂U

∂Y ¼ −∂P
∂Xþ 1

Re
∂2U
∂X2 þ

∂2U
∂Y2

 !
ð3Þ

∂V
∂τ þ U

∂V
∂Xþ V−bV� �∂V

∂Y ¼ −∂P
∂Yþ 1

Re
∂2V
∂X2 þ

∂2V
∂Y2

 !
ð4Þ

Energy equation

∂θ
∂τþ U

∂θ
∂Xþ V−bV� � ∂θ

∂Y ¼ 1
RePr

∂2θ
∂X2 þ

∂2θ
∂Y2

 !
: ð5Þ

In this study, the curved channel moves upward and downward in
the vertical direction only, therefore, the horizontal mesh velocity is
absent in the above governing equations. According to the ALE method,
themesh velocitiesbV0sare linearly distributed in the region between the
MN (fixed) and OP (movable). In other regions, the mesh velocities bV0s
are equal to 0. Steady state solutions are used as an initial condition be-
fore the channel executing reciprocatingmotion, and the boundary con-
ditions for the physical model are as follows:

At the inlet cross section AE:

U ¼ 0;V ¼ 1;
∂P
∂Y ¼ 0; θ ¼ 0 ð6Þ

At the outlet cross section HD:

∂U
∂Y ¼ 0;

∂V
∂Y ¼ 0;

∂θ
∂Y ¼ 0; P ¼ 0 ð7Þ
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Walls between the MN and OP:

U ¼ 0;V ¼ 0
Vη

τ ¼ 0
τN0 ;

∂P
∂X ¼ 0;

∂θ
∂X ¼ 0

�
ð8Þ

Mesh velocities between theMN andOP are defined as Vη = VC × ηi/
η0, and are proportional to the distance between the MN and OP.

Vertical walls BO and CP:

U ¼ 0;V ¼ 0
VC

τ ¼ 0
τN0 ;

∂P
∂X ¼ 0;

∂θ
∂X ¼ 0

�
ð9Þ

Horizontal wall FG and heated wall BC:

U ¼ 0;V ¼
(

0
VC

τ ¼ 0
τN0 ;

∂P
∂Y ¼ 0;

∂θ
∂Y ¼ 0

U ¼ 0;V ¼ 0
VC

τ ¼ 0
τN0 ;

∂P
∂Y ¼ 0; θ ¼ 1

�
8>>><>>>: ð10Þ

Other walls:

U ¼ 0;V ¼ 0;
∂P
∂X ¼ 0;

∂θ
∂X ¼ 0: ð11Þ

3. Numerical method

The governing equations and boundary conditions are solved by the
Galerkin finite element formulation and a backward scheme is adopted
to deal with the time terms of the governing equations. The velocity
terms are expressed as quadrilateral elements, and eight-node quadrat-
ic Lagrangian interpolation is utilized to simplify the non-linear terms in
the momentum equations, and pressure terms are expressed as four-
node bilinear quadrilateral elements. Then, Eqs. (3) and (4) can be
expressed as the following matrix form

Xne
1

D½ � eð Þ φf g eð Þ
τþΔτ ¼

Xne
1

ð K1½ � eð Þþ K2½ � eð Þ þ K3½ � eð Þ þ K4½ � eð ÞÞ φf g eð Þ
τþΔτ

¼
Xne
1

bf g eð Þ ð12Þ

where

φf g eð Þ
τþΔτ ¼ U1;U2; :::;U8;V1;V2; :::;V8; P1; P2; :::;P4h imþ1

τþΔτ: ð13Þ

[K1](e) includes the (m)th iteration values of U and V at the time
τ + Δτ; [K2](e) includes a shape function, diffusion terms, bV and time
differential terms; [K3](e) includes the pressure differential terms;
[K4](e) includes differential terms in the continuity equation; {b}(e) in-
cludes the known values of U and V at the time τ.

The energy Eq. (5) can be expressed as the following matrix form

Xne
1

Z½ � eð Þ cf g eð Þ
τþΔτ ¼

Xne
1

ð L1½ � eð Þþ L2½ � eð ÞÞfcg eð Þ
τþΔτ ¼

Xne
1

ff g eð Þ ð14Þ

where

cf g eð Þ
τþΔτ ¼ θ1; θ2; :::; θ8h iτþΔτ: ð15Þ
[L1](e) includes the values of U and V at time τ + Δτ; [L2](e) includes
a shape function, themesh velocitybV, diffusion terms, and timedifferen-
tial terms; {f}(e) includes the known values of θ at time τ.

In Eq. (12), the Gaussian quadrature procedure is 3 × 3 quadratic,
and conveniently used to execute the numerical integration. The terms
within the continuity equation are integrated by bilinear quadrilateral
shape functions, while the terms in momentum and energy equations
are integrated by quadrilateral shape functions.

The iterative preconditioned GMRES method is applied to solve
Eqs. (12) and (14), and the calculation of the initial residual {r0} is
expressed as

r0f g ¼
Xne
1

bf g eð Þ−
Xne
1

D½ � eð Þ φf g eð Þ
τþΔτ: ð16Þ

The initial residual is normalized by ‖{r0}‖.

r0f g ¼ r0f g
r0f gk k ð17Þ

An unorthonormalized residual brk� �
is calculated by the following

equation in which [M]‐1 is an inverted preconditioning operator

brk� � ¼
Xne
1

D½ � eð Þ
 !

M½ �‐1 rk−1f g
� �

: ð18Þ

The product of multiplication of the inverted preconditioning op-
erator [M]‐1 and vector rk−1f g is solved by a direct method of the LU
decomposition. The preconditioning operation is used to form the
approximate solution.

φf gmþ1 ¼ φf gm þ M½ �‐1 r1ekn oh i
ζkf g

� �
; φ ¼ u; v;p ð19Þ

where {ζk} minimizes the solution of r0f gk ke1− bHk

h i
ζkf g

��� ���. e1 is the

unit vector of the size k and [ bHk ] is the upper Hessenberg matrix
resulting from the GMRES procedure.

The PCD preconditioning method [15] is applied to solve the mo-
mentum equation of Eq. (12), and the operator [M] is expressed as the
following form.

M½ � ¼ M F½ � B½ �
0 − BBt½ � FP½ �−1 MP½ �

� 	
ð20Þ

where the [MF] and [B] are coefficient matrices containing the

∑
ne

1
K1½ � eð Þ þ K2½ � eð Þ

� �
and∑

ne

1
K3½ � eð Þ indicated in Eq. (12), respectively;

[MP] and [FP] are bilinear quadrilateral integratedmass and convection–
diffusion matrices, respectively. As well, the Robin boundary condi-
tion [17] is applied to thematrix [FP]; the [BBt] means themultiplication
of the [B] with each row divided by corresponding diagonals of the [MF]
and a transposed matrix of the [B].

When the preconditioning operator [M] is used for solving the energy

equation, it only contains the∑
ne

1
L1½ � eð Þ þ L2½ � eð Þ

� �
indicated in Eq. (14).

A brief outline of the solution procedure is described as follows.

1. Determine an optimal mesh distribution and number of the ele-
ments and nodes.

2. Solve the values of U, V and P at a steady state and regard them as
initial values.



Table 1
Relative length parameters and solid surface mesh divisions of the horizontal channel.

Labels w0/w0 w1/w0 w2/w0 w3/w0 h2/w0

Relative length 1 7 1.23 0.04 0.3
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3. Determine the time stepΔτ and themovingmesh velocities bVof the
computational meshes.

4. Update the coordinates of the nodes and examine the determinant
of the Jacobian transformationmatrix to ensure the one to onemap-
ping to be satisfied during the Gauss integration.

5. Calculate the corresponding coefficient matrix [D](e) and pre-
conditioning matrices of [MF], [B], [MP], [FP] and [BBt] with the
previous iteration values of the flow field.

6. Solve Eq. (18) and orthonormalize the brk� �
with previous vectors of

the r1ek−1

� �
by the modified Gram–Schmidt procedure within the

GMRES iterations to obtain the rkf g . The convergent criterion for
GMRES iteration is

rkf g
r0f g

���� ����b1:0� 10−6
: ð21Þ
0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

00 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

00 1 2 3 4 5 6 7

streamlines

Fig. 2. Comparisons of distributions of streamlines and isotherma
7. Adopt the r1ekn oh i
obtained from step (6) to solve Eq. (19) and ob-

tain the approximate solution {φ}m + 1, where φ = U, V and P for
Eq. (12) and φ = θ for Eq. (14).

8. Repeat steps (5)–(7) until the following criteria for momentum
equations are satisfied

φmþ1−φm

φm












b1:0� 10−3

: ð22Þ

9. With converged flow field values of U, V and P, calculate the coeffi-
cientmatrix [Z](e) and regard it as the preconditioningmatrix. Apply
steps (6) and (7) repeatedly until the relative residual reaches the
criterion defined by Eq. (21).

10. Continue the next time step calculation until periodic solutions are
attained.

4. Results and discussion

Related lengths used in this work are tabulated in Table 1. The re-
spective distributions of streamlines and isothermal lines of different lo-
cations (cases 1-5) of the rib and without the rib (case 0) are indicated
1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

isothermal lines 

(a) case 0 

(b) case 1 

(c) case 2 

(d) case 3 

(e) case 4 

(f) case 5 

l lines for cases 0-5 at a stationary situation under Re = 200.

image of Fig.�2
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in Fig. 2. The results of the case 0 were indicated in the previous study
[9]. Distributions of streamlines and isothermal lines are deeply affected
by the location of the rib. In the case 1, the impingement of cooling
fluids on the front region is more apparent than the other cases. In the
case 5, due to the impediment of the rib cooling fluids are compulsively
postponed to flow into the right vertical channel that causes cooling
fluids to flow through a large area of the back region relative to the
other cases. This phenomenon is able to enhance heat transfer rates of
the back region.

Comparisons of local Nusselt numbers of the back region of different
locations of the rib with that of without a rib case are indicated in Fig. 3,
respectively. The definition of the local Nusselt number NuX of the back
region and enhancement factor En of the back region are expressed as
follows, respectively,

NuX ¼ −∂θ
∂Y ð23Þ

Nu ¼ 1
Ab:r:

Z
Ab:r:

NuXdX ð24Þ
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En = −0.037
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c

e

Fig. 3. Comparisons of Nusselt number distributions of the case
En ¼ Nucase 1–5

Nucase 0
: ð25Þ

The purpose of thiswork is to improve heat transfer rates of the back
region of the curved channel. According to the results shown in Fig. 3,
the improvement of heat transfer rates of the back region is remarkably
achieved by the case 5. Then the case 5 is selected to investigate the im-
provement of heat transfer rates of the back region as the curved chan-
nel is subject to reciprocating motions.

Local Nusselt numbers of cases 0 and 5 at different stages of a peri-
odic cycle are separately revealed in Fig. 4. At each stage the improve-
ments of heat transfer rates of the back region are always achieved.

The respectivemagnitudes of the enhancement factor under the sit-
uations composing different Reynolds numbers, frequencies and ampli-
tudes are tabulated in Table 2. In each situation, the aim of this work is
achieved. The maximum magnitude of the enhancement is about 50%.

5. Conclusions

Anumericalwork of investigation of the enhancement of forced con-
vection heat transfer rates of a reciprocating curved channel with a rib is
case 0
case 5

0
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10

12

14

3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0
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8
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14

case 0
case 2

case 0
case 4

Nu
X

Nu
X

En = 0.026

En = 0.254

En = 0.555

b

d

0 with cases 1-5 at a stationary situation under Re = 200.
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Fig. 4. Comparisons of local Nusselt number distributions of the case 0 with case 5 at Re = 200, LC = 0.25 and FC = 0.1 situation.
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studied. An appropriate location which is the location 5 is selected
from five different locations to achieve the heat transfer rate of the
back region of the curved channel. The following conclusions are
drawn.

(1) The location 5 of the rib is effective to guide cooling fluids to flow
through a large surface of the back region, and it is the main rea-
son to enhance heat transfer rates of the back region.

(2) Under situations of different Reynolds numbers, frequencies and
amplitudes, the magnitudes of the enhancements of the heat
transfer rate of the back region are remarkable. The maximum
magnitude is about 50%. The decrement of the difference of
heat transfer rates of the front and back regions is achieved by
the rib installed at the location 5.
Table 2
Combinations of computational parameters, results of this study and Fu et al. [1] under station

Case Rib position Re LC FC

0 No rib 200 – –

1 ① 200 – –

2 ② 200 – –

3 ③ 200 – –

4 ④ 200 – –

5 ⑤ 200 – –

6 ⑤ 200 0.25 0.1
7 ⑤ 200 0.25 0.2
8 ⑤ 200 0.25 0.4
9 ⑤ 200 0.5 0.1
10 ⑤ 200 1.0 0.1
11 ⑤ 500 0.25 0.1
12 ⑤ 750 0.25 0.1
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