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Abstract—We demonstrate three-dimensional (3-D) self-aligned
[IrO2–IrO2–Hf]–LaAlO3–Ge-on-Insulator (GOI) CMOSFETs
above 0.18- m Si CMOSFETs for the first time. At an equiv-
alent oxide thickness of 1.4 nm, the 3-D IrO2–LaAlO3–GOI
p-MOSFETs and IrO2–Hf–LaAlO3–GOI nMOSFETs show high
hole and electron mobilities of 234 and 357 cm2 Vs respectively,
without depredating the underneath 0.18- m Si devices. The
hole mobility is 2.5 times higher than the universal mobility, at 1
MV/cm effective electric field. These promising results are due to
the low-temperature GOI device process, which is well-matched
to the low thermal budget requirements of 3-D integration.
The high-performance GOI devices and simple 3-D integration
process, compatible to current very large-scale integration (VLSI)
technology, should be useful for future VLSI.

Index Terms—Ge-on-insulator (GOI), LaAlO3, metal–gate,
MOSFET, three-dimensional (3-D).

I. INTRODUCTION

ONE of the biggest challenges for very large-scale inte-
gration (VLSI) technology is the ac power consumption

[1] caused by the interconnect parasitic capacitance ( ),
which becomes a major limit for VLSI ICs beyond the imple-
mentation of metal–gates and high- nano-CMOS to solve the
dc power in gate leakage [2]. Increasing operational frequency
( ) of circuits with denser interconnects makes the ac power
consumption even worse. A potential solution is three-di-
mensional (3-D) integration which can effectively shorten
the interconnect distances and therefore reduce the ac power
consumption. Such 3-D integration can also provide a way to
increase the IC density [3] (equivalent to scaling down) once
the quantum–mechanical scaling barrier is reached. However,
the technology challenges are how to realize 3-D ICs [4]–[6]
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Fig. 1. (a) Schematic the structure of GOI CMOS and (b) the surface profiles
of the fabricated wafer, before and after GOI bonding. The thickness is 300 �m
for Si substrate and 1.6 �m for Ge thin body. The gate length is 0.18-�m for
lower layer Si MOSFETs and 10-�m for top layer GOI MOSFETs.

with a low thermal budget and small impact on lower mul-
tiple interconnect and CMOSFET layers. Using the inherent
low-temperature process of the Ge-on-insulator (GOI) tech-
nology [7]–[13], we have integrated self-aligned IrO -IrO –Hf
dual-gated–LaAlO –GOI CMOSFETs on 1-Poly-6-Metal
(1P6M) 0.18- m Si devices. The process yields GOI CMOS-
FETs with high hole and electron mobilities, without degrading
the underlying Si devices. This approach is promising for future
high-performance VLSI ICs.

II. EXPERIMENTAL DETAILS

The self-aligned 3-D GOI CMOSFETs were formed by de-
positing 200-nm plasma-enhanced chemical vapor deposition
oxide on both H -implanted Ge (5 cm dose at 200
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Fig. 2. (a) I -V and (b) the I -V characteristics of lower layer Si 0.18-�m
MOSFETs, before and after GOI bonding.

KeV) and 1P6M 0.18- m MOSFETs wafers, O plasma-en-
hanced bonding, a 300 C “smart cut,” 400 C annealing for
0.5 h, and then slight polishing [7]–[9], [12], [13]. Both (100)
and (110) n-Ge and (100) p-Ge substrates were used for the 3-D
GOI. The LaAlO gate dielectric was deposited by PVD from a
LaAlO source ( ) followed by 400 C oxidation [12],
[13]. Then a 150-nm IrO or 150-nm IrO –15-nm Hf gate was
deposited on the LaAlO by PVD for the p- or nMOSFETs,
respectively. Low work-function Hf was used for nMOSFETs,
similar to fully silicided NiSi:Hf–Al O devices [12], [13]. The
IrO –LaAlO p-MOSFETs or IrO –Hf–LaAlO nMOSFETs
was formed by self- aligned 25 keV boron or 35 keV phos-
phorus implantation, followed by a 500 C rapid thermal an-
nealing (RTA) .

III. RESULTS AND DISCUSSION

Fig. 1 shows the schematic the structure of GOI CMOS. Be-
cause the top metal (M6) was 2 m thick and not planarized, the
GOI can only be formed on the selective area above the metal
pads. This is evident from the surface profile shown in Fig. 1(b),
where there is no Ge beyond the metal pads. The measured Ge
thickness of 1.6- m is close to that of our previous reports [12],
[13].

It is important to characterize the effect of the GOI pro-
cessing on the lower layer of Si devices. Fig. 2(a) and (b) shows
the - and - characteristics of the lower Si MOSFETs.
We have used additional metal contact area, outside the top
GOI transistor, to connect the lower layer Si CMOSFETs.

Fig. 3. (a) I -V and (b) the I -V characteristics for the top layer
[IrO -IrO –Hf]–LaAlO –GOI CMOSFETs. The gate length was 10-�m.

Further developing the more dense contact, similar to a VLSI
backend interconnect, is under development. The 500 C
RTA thermal budget for ion implantation of the self-aligned
[IrO -IrO –Hf]–LaAlO –GOI CMOSFETs did not result in
any significant degradation of the subthreshold swing (
mV/decade) and (5 m) in underneath 0.18- m
Si MOSFETs. Besides, the thermal budget used here is even
lower than that of 10-nm MOSFETs [2] and suitable for further
3-D integration with ultrasmall devices. The thermal budget
constrain also makes the 3-D integration of Si-on-insulator
(SOI) over interconnect and bottom MOSFETs impossible,
because of the high RTA temperature (1000 C–1050 C)
required for the ion implantation anneal of the top layer SOI
CMOSFETs. This will damage the bottom layer silicide junc-
tion and interconnects. It is also contrary to the trend toward
low thermal budgets for nano-CMOS [2].

Fig. 3(a) and (b) shows - characteristics for a family of
values, and - of 3-D LaAlO –GOI CMOSFETs

with metal-like IrO –Hf and IrO dual gates. An EOT of 1.4-nm
was obtained from the - measurements. To the best of our
knowledge these good results are the first demonstration of 3-D
integration, using a process compatible with current VLSI tech-
nology, which does not degrade the lower layer MOSFETs. The
(110) p-MOSFETs had higher drive current than the (100) de-
vices – such hole mobility enhancement has been reported in
the literature [14].
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Fig. 4. Electron and hole mobilities of IrO –Hf–LaAlO –GOI nMOSFETs
and IrO –LaAlO –GOI p-MOSFETs.

The IrO –Hf–LaAlO –GOI nMOSFETs have a peak elec-
tron mobility of 357 cm Vs and values close to universal elec-
tron mobility at higher (Fig. 4). Peak hole mobilities of
181 and 234 cm Vs were measured for the IrO –LaAlO –GOI
p-MOSFETs on (100) and (110) substrates, respectively. These
hole mobilities are higher than universal mobility values. The
136 and 156 cm Vs values at of 1 MV/cm are 2.2- and
2.5-times higher than that of the universal hole mobility. Such
mobility enhancement reflects the smaller Ge effective mass
than Si [11].

IV. CONCLUSION

We have fabricated the [IrO -IrO –Hf]–LaAlO –GOI
CMOSFETs on 1P6M 0.18- m Si devices. At the 1.4-nm EOT,
the peak electron and hole mobilities are 357 and 234 cm Vs,
the hole mobility being 2.5 times higher than the universal
mobility at 1 MV/cm . These high mobility self-aligned
3-D metal-gate/high- –GOI devices and their successful 3-D
integration are promising for future VLSI.
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